1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: node_hash_set.h
17 // -----------------------------------------------------------------------------
18 //
19 // An `absl::node_hash_set<T>` is an unordered associative container designed to
20 // be a more efficient replacement for `std::unordered_set`. Like
21 // `unordered_set`, search, insertion, and deletion of map elements can be done
22 // as an `O(1)` operation. However, `node_hash_set` (and other unordered
23 // associative containers known as the collection of Abseil "Swiss tables")
24 // contain other optimizations that result in both memory and computation
25 // advantages.
26 //
27 // In most cases, your default choice for a hash table should be a map of type
28 // `flat_hash_map` or a set of type `flat_hash_set`. However, if you need
29 // pointer stability, a `node_hash_set` should be your preferred choice. As
30 // well, if you are migrating your code from using `std::unordered_set`, a
31 // `node_hash_set` should be an easy migration. Consider migrating to
32 // `node_hash_set` and perhaps converting to a more efficient `flat_hash_set`
33 // upon further review.
34
35 #ifndef ABSL_CONTAINER_NODE_HASH_SET_H_
36 #define ABSL_CONTAINER_NODE_HASH_SET_H_
37
38 #include <type_traits>
39
40 #include "absl/algorithm/container.h"
41 #include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export
42 #include "absl/container/internal/node_hash_policy.h"
43 #include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export
44 #include "absl/memory/memory.h"
45
46 namespace absl {
47 ABSL_NAMESPACE_BEGIN
48 namespace container_internal {
49 template <typename T>
50 struct NodeHashSetPolicy;
51 } // namespace container_internal
52
53 // -----------------------------------------------------------------------------
54 // absl::node_hash_set
55 // -----------------------------------------------------------------------------
56 //
57 // An `absl::node_hash_set<T>` is an unordered associative container which
58 // has been optimized for both speed and memory footprint in most common use
59 // cases. Its interface is similar to that of `std::unordered_set<T>` with the
60 // following notable differences:
61 //
62 // * Supports heterogeneous lookup, through `find()`, `operator[]()` and
63 // `insert()`, provided that the map is provided a compatible heterogeneous
64 // hashing function and equality operator.
65 // * Contains a `capacity()` member function indicating the number of element
66 // slots (open, deleted, and empty) within the hash set.
67 // * Returns `void` from the `erase(iterator)` overload.
68 //
69 // By default, `node_hash_set` uses the `absl::Hash` hashing framework.
70 // All fundamental and Abseil types that support the `absl::Hash` framework have
71 // a compatible equality operator for comparing insertions into `node_hash_set`.
72 // If your type is not yet supported by the `absl::Hash` framework, see
73 // absl/hash/hash.h for information on extending Abseil hashing to user-defined
74 // types.
75 //
76 // Example:
77 //
78 // // Create a node hash set of three strings
79 // absl::node_hash_map<std::string, std::string> ducks =
80 // {"huey", "dewey", "louie"};
81 //
82 // // Insert a new element into the node hash map
83 // ducks.insert("donald"};
84 //
85 // // Force a rehash of the node hash map
86 // ducks.rehash(0);
87 //
88 // // See if "dewey" is present
89 // if (ducks.contains("dewey")) {
90 // std::cout << "We found dewey!" << std::endl;
91 // }
92 template <class T, class Hash = absl::container_internal::hash_default_hash<T>,
93 class Eq = absl::container_internal::hash_default_eq<T>,
94 class Alloc = std::allocator<T>>
95 class node_hash_set
96 : public absl::container_internal::raw_hash_set<
97 absl::container_internal::NodeHashSetPolicy<T>, Hash, Eq, Alloc> {
98 using Base = typename node_hash_set::raw_hash_set;
99
100 public:
101 // Constructors and Assignment Operators
102 //
103 // A node_hash_set supports the same overload set as `std::unordered_map`
104 // for construction and assignment:
105 //
106 // * Default constructor
107 //
108 // // No allocation for the table's elements is made.
109 // absl::node_hash_set<std::string> set1;
110 //
111 // * Initializer List constructor
112 //
113 // absl::node_hash_set<std::string> set2 =
114 // {{"huey"}, {"dewey"}, {"louie"}};
115 //
116 // * Copy constructor
117 //
118 // absl::node_hash_set<std::string> set3(set2);
119 //
120 // * Copy assignment operator
121 //
122 // // Hash functor and Comparator are copied as well
123 // absl::node_hash_set<std::string> set4;
124 // set4 = set3;
125 //
126 // * Move constructor
127 //
128 // // Move is guaranteed efficient
129 // absl::node_hash_set<std::string> set5(std::move(set4));
130 //
131 // * Move assignment operator
132 //
133 // // May be efficient if allocators are compatible
134 // absl::node_hash_set<std::string> set6;
135 // set6 = std::move(set5);
136 //
137 // * Range constructor
138 //
139 // std::vector<std::string> v = {"a", "b"};
140 // absl::node_hash_set<std::string> set7(v.begin(), v.end());
node_hash_set()141 node_hash_set() {}
142 using Base::Base;
143
144 // node_hash_set::begin()
145 //
146 // Returns an iterator to the beginning of the `node_hash_set`.
147 using Base::begin;
148
149 // node_hash_set::cbegin()
150 //
151 // Returns a const iterator to the beginning of the `node_hash_set`.
152 using Base::cbegin;
153
154 // node_hash_set::cend()
155 //
156 // Returns a const iterator to the end of the `node_hash_set`.
157 using Base::cend;
158
159 // node_hash_set::end()
160 //
161 // Returns an iterator to the end of the `node_hash_set`.
162 using Base::end;
163
164 // node_hash_set::capacity()
165 //
166 // Returns the number of element slots (assigned, deleted, and empty)
167 // available within the `node_hash_set`.
168 //
169 // NOTE: this member function is particular to `absl::node_hash_set` and is
170 // not provided in the `std::unordered_map` API.
171 using Base::capacity;
172
173 // node_hash_set::empty()
174 //
175 // Returns whether or not the `node_hash_set` is empty.
176 using Base::empty;
177
178 // node_hash_set::max_size()
179 //
180 // Returns the largest theoretical possible number of elements within a
181 // `node_hash_set` under current memory constraints. This value can be thought
182 // of the largest value of `std::distance(begin(), end())` for a
183 // `node_hash_set<T>`.
184 using Base::max_size;
185
186 // node_hash_set::size()
187 //
188 // Returns the number of elements currently within the `node_hash_set`.
189 using Base::size;
190
191 // node_hash_set::clear()
192 //
193 // Removes all elements from the `node_hash_set`. Invalidates any references,
194 // pointers, or iterators referring to contained elements.
195 //
196 // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
197 // the underlying buffer call `erase(begin(), end())`.
198 using Base::clear;
199
200 // node_hash_set::erase()
201 //
202 // Erases elements within the `node_hash_set`. Erasing does not trigger a
203 // rehash. Overloads are listed below.
204 //
205 // void erase(const_iterator pos):
206 //
207 // Erases the element at `position` of the `node_hash_set`, returning
208 // `void`.
209 //
210 // NOTE: this return behavior is different than that of STL containers in
211 // general and `std::unordered_map` in particular.
212 //
213 // iterator erase(const_iterator first, const_iterator last):
214 //
215 // Erases the elements in the open interval [`first`, `last`), returning an
216 // iterator pointing to `last`.
217 //
218 // size_type erase(const key_type& key):
219 //
220 // Erases the element with the matching key, if it exists.
221 using Base::erase;
222
223 // node_hash_set::insert()
224 //
225 // Inserts an element of the specified value into the `node_hash_set`,
226 // returning an iterator pointing to the newly inserted element, provided that
227 // an element with the given key does not already exist. If rehashing occurs
228 // due to the insertion, all iterators are invalidated. Overloads are listed
229 // below.
230 //
231 // std::pair<iterator,bool> insert(const T& value):
232 //
233 // Inserts a value into the `node_hash_set`. Returns a pair consisting of an
234 // iterator to the inserted element (or to the element that prevented the
235 // insertion) and a bool denoting whether the insertion took place.
236 //
237 // std::pair<iterator,bool> insert(T&& value):
238 //
239 // Inserts a moveable value into the `node_hash_set`. Returns a pair
240 // consisting of an iterator to the inserted element (or to the element that
241 // prevented the insertion) and a bool denoting whether the insertion took
242 // place.
243 //
244 // iterator insert(const_iterator hint, const T& value):
245 // iterator insert(const_iterator hint, T&& value):
246 //
247 // Inserts a value, using the position of `hint` as a non-binding suggestion
248 // for where to begin the insertion search. Returns an iterator to the
249 // inserted element, or to the existing element that prevented the
250 // insertion.
251 //
252 // void insert(InputIterator first, InputIterator last):
253 //
254 // Inserts a range of values [`first`, `last`).
255 //
256 // NOTE: Although the STL does not specify which element may be inserted if
257 // multiple keys compare equivalently, for `node_hash_set` we guarantee the
258 // first match is inserted.
259 //
260 // void insert(std::initializer_list<T> ilist):
261 //
262 // Inserts the elements within the initializer list `ilist`.
263 //
264 // NOTE: Although the STL does not specify which element may be inserted if
265 // multiple keys compare equivalently within the initializer list, for
266 // `node_hash_set` we guarantee the first match is inserted.
267 using Base::insert;
268
269 // node_hash_set::emplace()
270 //
271 // Inserts an element of the specified value by constructing it in-place
272 // within the `node_hash_set`, provided that no element with the given key
273 // already exists.
274 //
275 // The element may be constructed even if there already is an element with the
276 // key in the container, in which case the newly constructed element will be
277 // destroyed immediately.
278 //
279 // If rehashing occurs due to the insertion, all iterators are invalidated.
280 using Base::emplace;
281
282 // node_hash_set::emplace_hint()
283 //
284 // Inserts an element of the specified value by constructing it in-place
285 // within the `node_hash_set`, using the position of `hint` as a non-binding
286 // suggestion for where to begin the insertion search, and only inserts
287 // provided that no element with the given key already exists.
288 //
289 // The element may be constructed even if there already is an element with the
290 // key in the container, in which case the newly constructed element will be
291 // destroyed immediately.
292 //
293 // If rehashing occurs due to the insertion, all iterators are invalidated.
294 using Base::emplace_hint;
295
296 // node_hash_set::extract()
297 //
298 // Extracts the indicated element, erasing it in the process, and returns it
299 // as a C++17-compatible node handle. Overloads are listed below.
300 //
301 // node_type extract(const_iterator position):
302 //
303 // Extracts the element at the indicated position and returns a node handle
304 // owning that extracted data.
305 //
306 // node_type extract(const key_type& x):
307 //
308 // Extracts the element with the key matching the passed key value and
309 // returns a node handle owning that extracted data. If the `node_hash_set`
310 // does not contain an element with a matching key, this function returns an
311 // empty node handle.
312 using Base::extract;
313
314 // node_hash_set::merge()
315 //
316 // Extracts elements from a given `source` flat hash map into this
317 // `node_hash_set`. If the destination `node_hash_set` already contains an
318 // element with an equivalent key, that element is not extracted.
319 using Base::merge;
320
321 // node_hash_set::swap(node_hash_set& other)
322 //
323 // Exchanges the contents of this `node_hash_set` with those of the `other`
324 // flat hash map, avoiding invocation of any move, copy, or swap operations on
325 // individual elements.
326 //
327 // All iterators and references on the `node_hash_set` remain valid, excepting
328 // for the past-the-end iterator, which is invalidated.
329 //
330 // `swap()` requires that the flat hash set's hashing and key equivalence
331 // functions be Swappable, and are exchaged using unqualified calls to
332 // non-member `swap()`. If the map's allocator has
333 // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
334 // set to `true`, the allocators are also exchanged using an unqualified call
335 // to non-member `swap()`; otherwise, the allocators are not swapped.
336 using Base::swap;
337
338 // node_hash_set::rehash(count)
339 //
340 // Rehashes the `node_hash_set`, setting the number of slots to be at least
341 // the passed value. If the new number of slots increases the load factor more
342 // than the current maximum load factor
343 // (`count` < `size()` / `max_load_factor()`), then the new number of slots
344 // will be at least `size()` / `max_load_factor()`.
345 //
346 // To force a rehash, pass rehash(0).
347 //
348 // NOTE: unlike behavior in `std::unordered_set`, references are also
349 // invalidated upon a `rehash()`.
350 using Base::rehash;
351
352 // node_hash_set::reserve(count)
353 //
354 // Sets the number of slots in the `node_hash_set` to the number needed to
355 // accommodate at least `count` total elements without exceeding the current
356 // maximum load factor, and may rehash the container if needed.
357 using Base::reserve;
358
359 // node_hash_set::contains()
360 //
361 // Determines whether an element comparing equal to the given `key` exists
362 // within the `node_hash_set`, returning `true` if so or `false` otherwise.
363 using Base::contains;
364
365 // node_hash_set::count(const Key& key) const
366 //
367 // Returns the number of elements comparing equal to the given `key` within
368 // the `node_hash_set`. note that this function will return either `1` or `0`
369 // since duplicate elements are not allowed within a `node_hash_set`.
370 using Base::count;
371
372 // node_hash_set::equal_range()
373 //
374 // Returns a closed range [first, last], defined by a `std::pair` of two
375 // iterators, containing all elements with the passed key in the
376 // `node_hash_set`.
377 using Base::equal_range;
378
379 // node_hash_set::find()
380 //
381 // Finds an element with the passed `key` within the `node_hash_set`.
382 using Base::find;
383
384 // node_hash_set::bucket_count()
385 //
386 // Returns the number of "buckets" within the `node_hash_set`. Note that
387 // because a flat hash map contains all elements within its internal storage,
388 // this value simply equals the current capacity of the `node_hash_set`.
389 using Base::bucket_count;
390
391 // node_hash_set::load_factor()
392 //
393 // Returns the current load factor of the `node_hash_set` (the average number
394 // of slots occupied with a value within the hash map).
395 using Base::load_factor;
396
397 // node_hash_set::max_load_factor()
398 //
399 // Manages the maximum load factor of the `node_hash_set`. Overloads are
400 // listed below.
401 //
402 // float node_hash_set::max_load_factor()
403 //
404 // Returns the current maximum load factor of the `node_hash_set`.
405 //
406 // void node_hash_set::max_load_factor(float ml)
407 //
408 // Sets the maximum load factor of the `node_hash_set` to the passed value.
409 //
410 // NOTE: This overload is provided only for API compatibility with the STL;
411 // `node_hash_set` will ignore any set load factor and manage its rehashing
412 // internally as an implementation detail.
413 using Base::max_load_factor;
414
415 // node_hash_set::get_allocator()
416 //
417 // Returns the allocator function associated with this `node_hash_set`.
418 using Base::get_allocator;
419
420 // node_hash_set::hash_function()
421 //
422 // Returns the hashing function used to hash the keys within this
423 // `node_hash_set`.
424 using Base::hash_function;
425
426 // node_hash_set::key_eq()
427 //
428 // Returns the function used for comparing keys equality.
429 using Base::key_eq;
430
431 ABSL_DEPRECATED("Call `hash_function()` instead.")
hash_funct()432 typename Base::hasher hash_funct() { return this->hash_function(); }
433
434 ABSL_DEPRECATED("Call `rehash()` instead.")
resize(typename Base::size_type hint)435 void resize(typename Base::size_type hint) { this->rehash(hint); }
436 };
437
438 // erase_if(node_hash_set<>, Pred)
439 //
440 // Erases all elements that satisfy the predicate `pred` from the container `c`.
441 template <typename T, typename H, typename E, typename A, typename Predicate>
erase_if(node_hash_set<T,H,E,A> & c,Predicate pred)442 void erase_if(node_hash_set<T, H, E, A>& c, Predicate pred) {
443 container_internal::EraseIf(pred, &c);
444 }
445
446 namespace container_internal {
447
448 template <class T>
449 struct NodeHashSetPolicy
450 : absl::container_internal::node_hash_policy<T&, NodeHashSetPolicy<T>> {
451 using key_type = T;
452 using init_type = T;
453 using constant_iterators = std::true_type;
454
455 template <class Allocator, class... Args>
new_elementNodeHashSetPolicy456 static T* new_element(Allocator* alloc, Args&&... args) {
457 using ValueAlloc =
458 typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
459 ValueAlloc value_alloc(*alloc);
460 T* res = absl::allocator_traits<ValueAlloc>::allocate(value_alloc, 1);
461 absl::allocator_traits<ValueAlloc>::construct(value_alloc, res,
462 std::forward<Args>(args)...);
463 return res;
464 }
465
466 template <class Allocator>
delete_elementNodeHashSetPolicy467 static void delete_element(Allocator* alloc, T* elem) {
468 using ValueAlloc =
469 typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
470 ValueAlloc value_alloc(*alloc);
471 absl::allocator_traits<ValueAlloc>::destroy(value_alloc, elem);
472 absl::allocator_traits<ValueAlloc>::deallocate(value_alloc, elem, 1);
473 }
474
475 template <class F, class... Args>
decltypeNodeHashSetPolicy476 static decltype(absl::container_internal::DecomposeValue(
477 std::declval<F>(), std::declval<Args>()...))
478 apply(F&& f, Args&&... args) {
479 return absl::container_internal::DecomposeValue(
480 std::forward<F>(f), std::forward<Args>(args)...);
481 }
482
element_space_usedNodeHashSetPolicy483 static size_t element_space_used(const T*) { return sizeof(T); }
484 };
485 } // namespace container_internal
486
487 namespace container_algorithm_internal {
488
489 // Specialization of trait in absl/algorithm/container.h
490 template <class Key, class Hash, class KeyEqual, class Allocator>
491 struct IsUnorderedContainer<absl::node_hash_set<Key, Hash, KeyEqual, Allocator>>
492 : std::true_type {};
493
494 } // namespace container_algorithm_internal
495 ABSL_NAMESPACE_END
496 } // namespace absl
497
498 #endif // ABSL_CONTAINER_NODE_HASH_SET_H_
499