1#! /usr/bin/env perl
2# Copyright 2010-2018 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9#
10# ====================================================================
11# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16#
17# April 2010
18#
19# The module implements "4-bit" GCM GHASH function and underlying
20# single multiplication operation in GF(2^128). "4-bit" means that it
21# uses 256 bytes per-key table [+32 bytes shared table]. There is no
22# experimental performance data available yet. The only approximation
23# that can be made at this point is based on code size. Inner loop is
24# 32 instructions long and on single-issue core should execute in <40
25# cycles. Having verified that gcc 3.4 didn't unroll corresponding
26# loop, this assembler loop body was found to be ~3x smaller than
27# compiler-generated one...
28#
29# July 2010
30#
31# Rescheduling for dual-issue pipeline resulted in 8.5% improvement on
32# Cortex A8 core and ~25 cycles per processed byte (which was observed
33# to be ~3 times faster than gcc-generated code:-)
34#
35# February 2011
36#
37# Profiler-assisted and platform-specific optimization resulted in 7%
38# improvement on Cortex A8 core and ~23.5 cycles per byte.
39#
40# March 2011
41#
42# Add NEON implementation featuring polynomial multiplication, i.e. no
43# lookup tables involved. On Cortex A8 it was measured to process one
44# byte in 15 cycles or 55% faster than integer-only code.
45#
46# April 2014
47#
48# Switch to multiplication algorithm suggested in paper referred
49# below and combine it with reduction algorithm from x86 module.
50# Performance improvement over previous version varies from 65% on
51# Snapdragon S4 to 110% on Cortex A9. In absolute terms Cortex A8
52# processes one byte in 8.45 cycles, A9 - in 10.2, A15 - in 7.63,
53# Snapdragon S4 - in 9.33.
54#
55# Câmara, D.; Gouvêa, C. P. L.; López, J. & Dahab, R.: Fast Software
56# Polynomial Multiplication on ARM Processors using the NEON Engine.
57#
58# http://conradoplg.cryptoland.net/files/2010/12/mocrysen13.pdf
59
60# ====================================================================
61# Note about "528B" variant. In ARM case it makes lesser sense to
62# implement it for following reasons:
63#
64# - performance improvement won't be anywhere near 50%, because 128-
65#   bit shift operation is neatly fused with 128-bit xor here, and
66#   "538B" variant would eliminate only 4-5 instructions out of 32
67#   in the inner loop (meaning that estimated improvement is ~15%);
68# - ARM-based systems are often embedded ones and extra memory
69#   consumption might be unappreciated (for so little improvement);
70#
71# Byte order [in]dependence. =========================================
72#
73# Caller is expected to maintain specific *dword* order in Htable,
74# namely with *least* significant dword of 128-bit value at *lower*
75# address. This differs completely from C code and has everything to
76# do with ldm instruction and order in which dwords are "consumed" by
77# algorithm. *Byte* order within these dwords in turn is whatever
78# *native* byte order on current platform. See gcm128.c for working
79# example...
80
81# This file was patched in BoringSSL to remove the variable-time 4-bit
82# implementation.
83
84$flavour = shift;
85if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; }
86else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} }
87
88if ($flavour && $flavour ne "void") {
89    $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
90    ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
91    ( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or
92    die "can't locate arm-xlate.pl";
93
94    open OUT,"| \"$^X\" $xlate $flavour $output";
95    *STDOUT=*OUT;
96} else {
97    open OUT,">$output";
98    *STDOUT=*OUT;
99}
100
101$Xi="r0";	# argument block
102$Htbl="r1";
103$inp="r2";
104$len="r3";
105
106$code=<<___;
107#include <openssl/arm_arch.h>
108
109@ Silence ARMv8 deprecated IT instruction warnings. This file is used by both
110@ ARMv7 and ARMv8 processors and does not use ARMv8 instructions. (ARMv8 PMULL
111@ instructions are in aesv8-armx.pl.)
112.arch  armv7-a
113
114.text
115#if defined(__thumb2__) || defined(__clang__)
116.syntax	unified
117#define ldrplb  ldrbpl
118#define ldrneb  ldrbne
119#endif
120#if defined(__thumb2__)
121.thumb
122#else
123.code	32
124#endif
125___
126{
127my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3));
128my ($t0,$t1,$t2,$t3)=map("q$_",(8..12));
129my ($Hlo,$Hhi,$Hhl,$k48,$k32,$k16)=map("d$_",(26..31));
130
131sub clmul64x64 {
132my ($r,$a,$b)=@_;
133$code.=<<___;
134	vext.8		$t0#lo, $a, $a, #1	@ A1
135	vmull.p8	$t0, $t0#lo, $b		@ F = A1*B
136	vext.8		$r#lo, $b, $b, #1	@ B1
137	vmull.p8	$r, $a, $r#lo		@ E = A*B1
138	vext.8		$t1#lo, $a, $a, #2	@ A2
139	vmull.p8	$t1, $t1#lo, $b		@ H = A2*B
140	vext.8		$t3#lo, $b, $b, #2	@ B2
141	vmull.p8	$t3, $a, $t3#lo		@ G = A*B2
142	vext.8		$t2#lo, $a, $a, #3	@ A3
143	veor		$t0, $t0, $r		@ L = E + F
144	vmull.p8	$t2, $t2#lo, $b		@ J = A3*B
145	vext.8		$r#lo, $b, $b, #3	@ B3
146	veor		$t1, $t1, $t3		@ M = G + H
147	vmull.p8	$r, $a, $r#lo		@ I = A*B3
148	veor		$t0#lo, $t0#lo, $t0#hi	@ t0 = (L) (P0 + P1) << 8
149	vand		$t0#hi, $t0#hi, $k48
150	vext.8		$t3#lo, $b, $b, #4	@ B4
151	veor		$t1#lo, $t1#lo, $t1#hi	@ t1 = (M) (P2 + P3) << 16
152	vand		$t1#hi, $t1#hi, $k32
153	vmull.p8	$t3, $a, $t3#lo		@ K = A*B4
154	veor		$t2, $t2, $r		@ N = I + J
155	veor		$t0#lo, $t0#lo, $t0#hi
156	veor		$t1#lo, $t1#lo, $t1#hi
157	veor		$t2#lo, $t2#lo, $t2#hi	@ t2 = (N) (P4 + P5) << 24
158	vand		$t2#hi, $t2#hi, $k16
159	vext.8		$t0, $t0, $t0, #15
160	veor		$t3#lo, $t3#lo, $t3#hi	@ t3 = (K) (P6 + P7) << 32
161	vmov.i64	$t3#hi, #0
162	vext.8		$t1, $t1, $t1, #14
163	veor		$t2#lo, $t2#lo, $t2#hi
164	vmull.p8	$r, $a, $b		@ D = A*B
165	vext.8		$t3, $t3, $t3, #12
166	vext.8		$t2, $t2, $t2, #13
167	veor		$t0, $t0, $t1
168	veor		$t2, $t2, $t3
169	veor		$r, $r, $t0
170	veor		$r, $r, $t2
171___
172}
173
174$code.=<<___;
175#if __ARM_MAX_ARCH__>=7
176.arch	armv7-a
177.fpu	neon
178
179.global	gcm_init_neon
180.type	gcm_init_neon,%function
181.align	4
182gcm_init_neon:
183	vld1.64		$IN#hi,[r1]!		@ load H
184	vmov.i8		$t0,#0xe1
185	vld1.64		$IN#lo,[r1]
186	vshl.i64	$t0#hi,#57
187	vshr.u64	$t0#lo,#63		@ t0=0xc2....01
188	vdup.8		$t1,$IN#hi[7]
189	vshr.u64	$Hlo,$IN#lo,#63
190	vshr.s8		$t1,#7			@ broadcast carry bit
191	vshl.i64	$IN,$IN,#1
192	vand		$t0,$t0,$t1
193	vorr		$IN#hi,$Hlo		@ H<<<=1
194	veor		$IN,$IN,$t0		@ twisted H
195	vstmia		r0,{$IN}
196
197	ret					@ bx lr
198.size	gcm_init_neon,.-gcm_init_neon
199
200.global	gcm_gmult_neon
201.type	gcm_gmult_neon,%function
202.align	4
203gcm_gmult_neon:
204	vld1.64		$IN#hi,[$Xi]!		@ load Xi
205	vld1.64		$IN#lo,[$Xi]!
206	vmov.i64	$k48,#0x0000ffffffffffff
207	vldmia		$Htbl,{$Hlo-$Hhi}	@ load twisted H
208	vmov.i64	$k32,#0x00000000ffffffff
209#ifdef __ARMEL__
210	vrev64.8	$IN,$IN
211#endif
212	vmov.i64	$k16,#0x000000000000ffff
213	veor		$Hhl,$Hlo,$Hhi		@ Karatsuba pre-processing
214	mov		$len,#16
215	b		.Lgmult_neon
216.size	gcm_gmult_neon,.-gcm_gmult_neon
217
218.global	gcm_ghash_neon
219.type	gcm_ghash_neon,%function
220.align	4
221gcm_ghash_neon:
222	vld1.64		$Xl#hi,[$Xi]!		@ load Xi
223	vld1.64		$Xl#lo,[$Xi]!
224	vmov.i64	$k48,#0x0000ffffffffffff
225	vldmia		$Htbl,{$Hlo-$Hhi}	@ load twisted H
226	vmov.i64	$k32,#0x00000000ffffffff
227#ifdef __ARMEL__
228	vrev64.8	$Xl,$Xl
229#endif
230	vmov.i64	$k16,#0x000000000000ffff
231	veor		$Hhl,$Hlo,$Hhi		@ Karatsuba pre-processing
232
233.Loop_neon:
234	vld1.64		$IN#hi,[$inp]!		@ load inp
235	vld1.64		$IN#lo,[$inp]!
236#ifdef __ARMEL__
237	vrev64.8	$IN,$IN
238#endif
239	veor		$IN,$Xl			@ inp^=Xi
240.Lgmult_neon:
241___
242	&clmul64x64	($Xl,$Hlo,"$IN#lo");	# H.lo·Xi.lo
243$code.=<<___;
244	veor		$IN#lo,$IN#lo,$IN#hi	@ Karatsuba pre-processing
245___
246	&clmul64x64	($Xm,$Hhl,"$IN#lo");	# (H.lo+H.hi)·(Xi.lo+Xi.hi)
247	&clmul64x64	($Xh,$Hhi,"$IN#hi");	# H.hi·Xi.hi
248$code.=<<___;
249	veor		$Xm,$Xm,$Xl		@ Karatsuba post-processing
250	veor		$Xm,$Xm,$Xh
251	veor		$Xl#hi,$Xl#hi,$Xm#lo
252	veor		$Xh#lo,$Xh#lo,$Xm#hi	@ Xh|Xl - 256-bit result
253
254	@ equivalent of reduction_avx from ghash-x86_64.pl
255	vshl.i64	$t1,$Xl,#57		@ 1st phase
256	vshl.i64	$t2,$Xl,#62
257	veor		$t2,$t2,$t1		@
258	vshl.i64	$t1,$Xl,#63
259	veor		$t2, $t2, $t1		@
260 	veor		$Xl#hi,$Xl#hi,$t2#lo	@
261	veor		$Xh#lo,$Xh#lo,$t2#hi
262
263	vshr.u64	$t2,$Xl,#1		@ 2nd phase
264	veor		$Xh,$Xh,$Xl
265	veor		$Xl,$Xl,$t2		@
266	vshr.u64	$t2,$t2,#6
267	vshr.u64	$Xl,$Xl,#1		@
268	veor		$Xl,$Xl,$Xh		@
269	veor		$Xl,$Xl,$t2		@
270
271	subs		$len,#16
272	bne		.Loop_neon
273
274#ifdef __ARMEL__
275	vrev64.8	$Xl,$Xl
276#endif
277	sub		$Xi,#16
278	vst1.64		$Xl#hi,[$Xi]!		@ write out Xi
279	vst1.64		$Xl#lo,[$Xi]
280
281	ret					@ bx lr
282.size	gcm_ghash_neon,.-gcm_ghash_neon
283#endif
284___
285}
286$code.=<<___;
287.asciz  "GHASH for ARMv4/NEON, CRYPTOGAMS by <appro\@openssl.org>"
288.align  2
289___
290
291foreach (split("\n",$code)) {
292	s/\`([^\`]*)\`/eval $1/geo;
293
294	s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo	or
295	s/\bret\b/bx	lr/go		or
296	s/\bbx\s+lr\b/.word\t0xe12fff1e/go;    # make it possible to compile with -march=armv4
297
298	print $_,"\n";
299}
300close STDOUT or die "error closing STDOUT"; # enforce flush
301