1 /* Copyright (c) 2017, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 #include <openssl/rand.h>
16 
17 #include <openssl/type_check.h>
18 #include <openssl/mem.h>
19 
20 #include "internal.h"
21 #include "../cipher/internal.h"
22 
23 
24 // Section references in this file refer to SP 800-90Ar1:
25 // http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
26 
27 // See table 3.
28 static const uint64_t kMaxReseedCount = UINT64_C(1) << 48;
29 
CTR_DRBG_init(CTR_DRBG_STATE * drbg,const uint8_t entropy[CTR_DRBG_ENTROPY_LEN],const uint8_t * personalization,size_t personalization_len)30 int CTR_DRBG_init(CTR_DRBG_STATE *drbg,
31                   const uint8_t entropy[CTR_DRBG_ENTROPY_LEN],
32                   const uint8_t *personalization, size_t personalization_len) {
33   // Section 10.2.1.3.1
34   if (personalization_len > CTR_DRBG_ENTROPY_LEN) {
35     return 0;
36   }
37 
38   uint8_t seed_material[CTR_DRBG_ENTROPY_LEN];
39   OPENSSL_memcpy(seed_material, entropy, CTR_DRBG_ENTROPY_LEN);
40 
41   for (size_t i = 0; i < personalization_len; i++) {
42     seed_material[i] ^= personalization[i];
43   }
44 
45   // Section 10.2.1.2
46 
47   // kInitMask is the result of encrypting blocks with big-endian value 1, 2
48   // and 3 with the all-zero AES-256 key.
49   static const uint8_t kInitMask[CTR_DRBG_ENTROPY_LEN] = {
50       0x53, 0x0f, 0x8a, 0xfb, 0xc7, 0x45, 0x36, 0xb9, 0xa9, 0x63, 0xb4, 0xf1,
51       0xc4, 0xcb, 0x73, 0x8b, 0xce, 0xa7, 0x40, 0x3d, 0x4d, 0x60, 0x6b, 0x6e,
52       0x07, 0x4e, 0xc5, 0xd3, 0xba, 0xf3, 0x9d, 0x18, 0x72, 0x60, 0x03, 0xca,
53       0x37, 0xa6, 0x2a, 0x74, 0xd1, 0xa2, 0xf5, 0x8e, 0x75, 0x06, 0x35, 0x8e,
54   };
55 
56   for (size_t i = 0; i < sizeof(kInitMask); i++) {
57     seed_material[i] ^= kInitMask[i];
58   }
59 
60   drbg->ctr = aes_ctr_set_key(&drbg->ks, NULL, &drbg->block, seed_material, 32);
61   OPENSSL_memcpy(drbg->counter.bytes, seed_material + 32, 16);
62   drbg->reseed_counter = 1;
63 
64   return 1;
65 }
66 
67 OPENSSL_STATIC_ASSERT(CTR_DRBG_ENTROPY_LEN % AES_BLOCK_SIZE == 0,
68                       "not a multiple of AES block size");
69 
70 // ctr_inc adds |n| to the last four bytes of |drbg->counter|, treated as a
71 // big-endian number.
ctr32_add(CTR_DRBG_STATE * drbg,uint32_t n)72 static void ctr32_add(CTR_DRBG_STATE *drbg, uint32_t n) {
73   drbg->counter.words[3] =
74       CRYPTO_bswap4(CRYPTO_bswap4(drbg->counter.words[3]) + n);
75 }
76 
ctr_drbg_update(CTR_DRBG_STATE * drbg,const uint8_t * data,size_t data_len)77 static int ctr_drbg_update(CTR_DRBG_STATE *drbg, const uint8_t *data,
78                            size_t data_len) {
79   // Per section 10.2.1.2, |data_len| must be |CTR_DRBG_ENTROPY_LEN|. Here, we
80   // allow shorter inputs and right-pad them with zeros. This is equivalent to
81   // the specified algorithm but saves a copy in |CTR_DRBG_generate|.
82   if (data_len > CTR_DRBG_ENTROPY_LEN) {
83     return 0;
84   }
85 
86   uint8_t temp[CTR_DRBG_ENTROPY_LEN];
87   for (size_t i = 0; i < CTR_DRBG_ENTROPY_LEN; i += AES_BLOCK_SIZE) {
88     ctr32_add(drbg, 1);
89     drbg->block(drbg->counter.bytes, temp + i, &drbg->ks);
90   }
91 
92   for (size_t i = 0; i < data_len; i++) {
93     temp[i] ^= data[i];
94   }
95 
96   drbg->ctr = aes_ctr_set_key(&drbg->ks, NULL, &drbg->block, temp, 32);
97   OPENSSL_memcpy(drbg->counter.bytes, temp + 32, 16);
98 
99   return 1;
100 }
101 
CTR_DRBG_reseed(CTR_DRBG_STATE * drbg,const uint8_t entropy[CTR_DRBG_ENTROPY_LEN],const uint8_t * additional_data,size_t additional_data_len)102 int CTR_DRBG_reseed(CTR_DRBG_STATE *drbg,
103                     const uint8_t entropy[CTR_DRBG_ENTROPY_LEN],
104                     const uint8_t *additional_data,
105                     size_t additional_data_len) {
106   // Section 10.2.1.4
107   uint8_t entropy_copy[CTR_DRBG_ENTROPY_LEN];
108 
109   if (additional_data_len > 0) {
110     if (additional_data_len > CTR_DRBG_ENTROPY_LEN) {
111       return 0;
112     }
113 
114     OPENSSL_memcpy(entropy_copy, entropy, CTR_DRBG_ENTROPY_LEN);
115     for (size_t i = 0; i < additional_data_len; i++) {
116       entropy_copy[i] ^= additional_data[i];
117     }
118 
119     entropy = entropy_copy;
120   }
121 
122   if (!ctr_drbg_update(drbg, entropy, CTR_DRBG_ENTROPY_LEN)) {
123     return 0;
124   }
125 
126   drbg->reseed_counter = 1;
127 
128   return 1;
129 }
130 
CTR_DRBG_generate(CTR_DRBG_STATE * drbg,uint8_t * out,size_t out_len,const uint8_t * additional_data,size_t additional_data_len)131 int CTR_DRBG_generate(CTR_DRBG_STATE *drbg, uint8_t *out, size_t out_len,
132                       const uint8_t *additional_data,
133                       size_t additional_data_len) {
134   // See 9.3.1
135   if (out_len > CTR_DRBG_MAX_GENERATE_LENGTH) {
136     return 0;
137   }
138 
139   // See 10.2.1.5.1
140   if (drbg->reseed_counter > kMaxReseedCount) {
141     return 0;
142   }
143 
144   if (additional_data_len != 0 &&
145       !ctr_drbg_update(drbg, additional_data, additional_data_len)) {
146     return 0;
147   }
148 
149   // kChunkSize is used to interact better with the cache. Since the AES-CTR
150   // code assumes that it's encrypting rather than just writing keystream, the
151   // buffer has to be zeroed first. Without chunking, large reads would zero
152   // the whole buffer, flushing the L1 cache, and then do another pass (missing
153   // the cache every time) to “encrypt” it. The code can avoid this by
154   // chunking.
155   static const size_t kChunkSize = 8 * 1024;
156 
157   while (out_len >= AES_BLOCK_SIZE) {
158     size_t todo = kChunkSize;
159     if (todo > out_len) {
160       todo = out_len;
161     }
162 
163     todo &= ~(AES_BLOCK_SIZE-1);
164     const size_t num_blocks = todo / AES_BLOCK_SIZE;
165 
166     if (drbg->ctr) {
167       OPENSSL_memset(out, 0, todo);
168       ctr32_add(drbg, 1);
169       drbg->ctr(out, out, num_blocks, &drbg->ks, drbg->counter.bytes);
170       ctr32_add(drbg, num_blocks - 1);
171     } else {
172       for (size_t i = 0; i < todo; i += AES_BLOCK_SIZE) {
173         ctr32_add(drbg, 1);
174         drbg->block(drbg->counter.bytes, out + i, &drbg->ks);
175       }
176     }
177 
178     out += todo;
179     out_len -= todo;
180   }
181 
182   if (out_len > 0) {
183     uint8_t block[AES_BLOCK_SIZE];
184     ctr32_add(drbg, 1);
185     drbg->block(drbg->counter.bytes, block, &drbg->ks);
186 
187     OPENSSL_memcpy(out, block, out_len);
188   }
189 
190   // Right-padding |additional_data| in step 2.2 is handled implicitly by
191   // |ctr_drbg_update|, to save a copy.
192   if (!ctr_drbg_update(drbg, additional_data, additional_data_len)) {
193     return 0;
194   }
195 
196   drbg->reseed_counter++;
197   return 1;
198 }
199 
CTR_DRBG_clear(CTR_DRBG_STATE * drbg)200 void CTR_DRBG_clear(CTR_DRBG_STATE *drbg) {
201   OPENSSL_cleanse(drbg, sizeof(CTR_DRBG_STATE));
202 }
203