1 /*
2  *  Created by Martin on 15/06/2019.
3  *  Adapted from donated nonius code.
4  *
5  *  Distributed under the Boost Software License, Version 1.0. (See accompanying
6  *  file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
7  */
8 
9 // Statistical analysis tools
10 
11 #if defined(CATCH_CONFIG_ENABLE_BENCHMARKING)
12 
13 #include "catch_stats.hpp"
14 
15 #include "../../catch_compiler_capabilities.h"
16 
17 #include <cassert>
18 #include <random>
19 
20 
21 #if defined(CATCH_CONFIG_USE_ASYNC)
22 #include <future>
23 #endif
24 
25 namespace {
erf_inv(double x)26     double erf_inv(double x) {
27         // Code accompanying the article "Approximating the erfinv function" in GPU Computing Gems, Volume 2
28         double w, p;
29 
30         w = -log((1.0 - x) * (1.0 + x));
31 
32         if (w < 6.250000) {
33             w = w - 3.125000;
34             p = -3.6444120640178196996e-21;
35             p = -1.685059138182016589e-19 + p * w;
36             p = 1.2858480715256400167e-18 + p * w;
37             p = 1.115787767802518096e-17 + p * w;
38             p = -1.333171662854620906e-16 + p * w;
39             p = 2.0972767875968561637e-17 + p * w;
40             p = 6.6376381343583238325e-15 + p * w;
41             p = -4.0545662729752068639e-14 + p * w;
42             p = -8.1519341976054721522e-14 + p * w;
43             p = 2.6335093153082322977e-12 + p * w;
44             p = -1.2975133253453532498e-11 + p * w;
45             p = -5.4154120542946279317e-11 + p * w;
46             p = 1.051212273321532285e-09 + p * w;
47             p = -4.1126339803469836976e-09 + p * w;
48             p = -2.9070369957882005086e-08 + p * w;
49             p = 4.2347877827932403518e-07 + p * w;
50             p = -1.3654692000834678645e-06 + p * w;
51             p = -1.3882523362786468719e-05 + p * w;
52             p = 0.0001867342080340571352 + p * w;
53             p = -0.00074070253416626697512 + p * w;
54             p = -0.0060336708714301490533 + p * w;
55             p = 0.24015818242558961693 + p * w;
56             p = 1.6536545626831027356 + p * w;
57         } else if (w < 16.000000) {
58             w = sqrt(w) - 3.250000;
59             p = 2.2137376921775787049e-09;
60             p = 9.0756561938885390979e-08 + p * w;
61             p = -2.7517406297064545428e-07 + p * w;
62             p = 1.8239629214389227755e-08 + p * w;
63             p = 1.5027403968909827627e-06 + p * w;
64             p = -4.013867526981545969e-06 + p * w;
65             p = 2.9234449089955446044e-06 + p * w;
66             p = 1.2475304481671778723e-05 + p * w;
67             p = -4.7318229009055733981e-05 + p * w;
68             p = 6.8284851459573175448e-05 + p * w;
69             p = 2.4031110387097893999e-05 + p * w;
70             p = -0.0003550375203628474796 + p * w;
71             p = 0.00095328937973738049703 + p * w;
72             p = -0.0016882755560235047313 + p * w;
73             p = 0.0024914420961078508066 + p * w;
74             p = -0.0037512085075692412107 + p * w;
75             p = 0.005370914553590063617 + p * w;
76             p = 1.0052589676941592334 + p * w;
77             p = 3.0838856104922207635 + p * w;
78         } else {
79             w = sqrt(w) - 5.000000;
80             p = -2.7109920616438573243e-11;
81             p = -2.5556418169965252055e-10 + p * w;
82             p = 1.5076572693500548083e-09 + p * w;
83             p = -3.7894654401267369937e-09 + p * w;
84             p = 7.6157012080783393804e-09 + p * w;
85             p = -1.4960026627149240478e-08 + p * w;
86             p = 2.9147953450901080826e-08 + p * w;
87             p = -6.7711997758452339498e-08 + p * w;
88             p = 2.2900482228026654717e-07 + p * w;
89             p = -9.9298272942317002539e-07 + p * w;
90             p = 4.5260625972231537039e-06 + p * w;
91             p = -1.9681778105531670567e-05 + p * w;
92             p = 7.5995277030017761139e-05 + p * w;
93             p = -0.00021503011930044477347 + p * w;
94             p = -0.00013871931833623122026 + p * w;
95             p = 1.0103004648645343977 + p * w;
96             p = 4.8499064014085844221 + p * w;
97         }
98         return p * x;
99     }
100 
standard_deviation(std::vector<double>::iterator first,std::vector<double>::iterator last)101     double standard_deviation(std::vector<double>::iterator first, std::vector<double>::iterator last) {
102         auto m = Catch::Benchmark::Detail::mean(first, last);
103         double variance = std::accumulate(first, last, 0., [m](double a, double b) {
104             double diff = b - m;
105             return a + diff * diff;
106             }) / (last - first);
107             return std::sqrt(variance);
108     }
109 
110 }
111 
112 namespace Catch {
113     namespace Benchmark {
114         namespace Detail {
115 
weighted_average_quantile(int k,int q,std::vector<double>::iterator first,std::vector<double>::iterator last)116             double weighted_average_quantile(int k, int q, std::vector<double>::iterator first, std::vector<double>::iterator last) {
117                 auto count = last - first;
118                 double idx = (count - 1) * k / static_cast<double>(q);
119                 int j = static_cast<int>(idx);
120                 double g = idx - j;
121                 std::nth_element(first, first + j, last);
122                 auto xj = first[j];
123                 if (g == 0) return xj;
124 
125                 auto xj1 = *std::min_element(first + (j + 1), last);
126                 return xj + g * (xj1 - xj);
127             }
128 
129 
erfc_inv(double x)130             double erfc_inv(double x) {
131                 return erf_inv(1.0 - x);
132             }
133 
normal_quantile(double p)134             double normal_quantile(double p) {
135                 static const double ROOT_TWO = std::sqrt(2.0);
136 
137                 double result = 0.0;
138                 assert(p >= 0 && p <= 1);
139                 if (p < 0 || p > 1) {
140                     return result;
141                 }
142 
143                 result = -erfc_inv(2.0 * p);
144                 // result *= normal distribution standard deviation (1.0) * sqrt(2)
145                 result *= /*sd * */ ROOT_TWO;
146                 // result += normal disttribution mean (0)
147                 return result;
148             }
149 
150 
outlier_variance(Estimate<double> mean,Estimate<double> stddev,int n)151             double outlier_variance(Estimate<double> mean, Estimate<double> stddev, int n) {
152                 double sb = stddev.point;
153                 double mn = mean.point / n;
154                 double mg_min = mn / 2.;
155                 double sg = std::min(mg_min / 4., sb / std::sqrt(n));
156                 double sg2 = sg * sg;
157                 double sb2 = sb * sb;
158 
159                 auto c_max = [n, mn, sb2, sg2](double x) -> double {
160                     double k = mn - x;
161                     double d = k * k;
162                     double nd = n * d;
163                     double k0 = -n * nd;
164                     double k1 = sb2 - n * sg2 + nd;
165                     double det = k1 * k1 - 4 * sg2 * k0;
166                     return (int)(-2. * k0 / (k1 + std::sqrt(det)));
167                 };
168 
169                 auto var_out = [n, sb2, sg2](double c) {
170                     double nc = n - c;
171                     return (nc / n) * (sb2 - nc * sg2);
172                 };
173 
174                 return std::min(var_out(1), var_out(std::min(c_max(0.), c_max(mg_min)))) / sb2;
175             }
176 
177 
analyse_samples(double confidence_level,int n_resamples,std::vector<double>::iterator first,std::vector<double>::iterator last)178             bootstrap_analysis analyse_samples(double confidence_level, int n_resamples, std::vector<double>::iterator first, std::vector<double>::iterator last) {
179                 CATCH_INTERNAL_START_WARNINGS_SUPPRESSION
180                 CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS
181                 static std::random_device entropy;
182                 CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION
183 
184                 auto n = static_cast<int>(last - first); // seriously, one can't use integral types without hell in C++
185 
186                 auto mean = &Detail::mean<std::vector<double>::iterator>;
187                 auto stddev = &standard_deviation;
188 
189 #if defined(CATCH_CONFIG_USE_ASYNC)
190                 auto Estimate = [=](double(*f)(std::vector<double>::iterator, std::vector<double>::iterator)) {
191                     auto seed = entropy();
192                     return std::async(std::launch::async, [=] {
193                         std::mt19937 rng(seed);
194                         auto resampled = resample(rng, n_resamples, first, last, f);
195                         return bootstrap(confidence_level, first, last, resampled, f);
196                     });
197                 };
198 
199                 auto mean_future = Estimate(mean);
200                 auto stddev_future = Estimate(stddev);
201 
202                 auto mean_estimate = mean_future.get();
203                 auto stddev_estimate = stddev_future.get();
204 #else
205                 auto Estimate = [=](double(*f)(std::vector<double>::iterator, std::vector<double>::iterator)) {
206                     auto seed = entropy();
207                     std::mt19937 rng(seed);
208                     auto resampled = resample(rng, n_resamples, first, last, f);
209                     return bootstrap(confidence_level, first, last, resampled, f);
210                 };
211 
212                 auto mean_estimate = Estimate(mean);
213                 auto stddev_estimate = Estimate(stddev);
214 #endif // CATCH_USE_ASYNC
215 
216                 double outlier_variance = Detail::outlier_variance(mean_estimate, stddev_estimate, n);
217 
218                 return { mean_estimate, stddev_estimate, outlier_variance };
219             }
220         } // namespace Detail
221     } // namespace Benchmark
222 } // namespace Catch
223 
224 #endif // CATCH_CONFIG_ENABLE_BENCHMARKING
225