1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 2 "http://www.w3.org/TR/html4/strict.dtd"> 3<html> 4<head> 5 <title>Checker Developer Manual</title> 6 <link type="text/css" rel="stylesheet" href="menu.css"> 7 <link type="text/css" rel="stylesheet" href="content.css"> 8 <script type="text/javascript" src="scripts/menu.js"></script> 9</head> 10<body> 11 12<div id="page"> 13<!--#include virtual="menu.html.incl"--> 14 15<div id="content"> 16 17<h3 style="color:red">This Page Is Under Construction</h3> 18 19<h1>Checker Developer Manual</h1> 20 21<p>The static analyzer engine performs path-sensitive exploration of the program and 22relies on a set of checkers to implement the logic for detecting and 23constructing specific bug reports. Anyone who is interested in implementing their own 24checker, should check out the Building a Checker in 24 Hours talk 25(<a href="http://llvm.org/devmtg/2012-11/Zaks-Rose-Checker24Hours.pdf">slides</a> 26 <a href="http://llvm.org/devmtg/2012-11/videos/Zaks-Rose-Checker24Hours.mp4">video</a>) 27and refer to this page for additional information on writing a checker. The static analyzer is a 28part of the Clang project, so consult <a href="http://clang.llvm.org/hacking.html">Hacking on Clang</a> 29and <a href="http://llvm.org/docs/ProgrammersManual.html">LLVM Programmer's Manual</a> 30for developer guidelines and send your questions and proposals to 31<a href=http://lists.llvm.org/mailman/listinfo/cfe-dev>cfe-dev mailing list</a>. 32</p> 33 34 <ul> 35 <li><a href="#start">Getting Started</a></li> 36 <li><a href="#analyzer">Static Analyzer Overview</a> 37 <ul> 38 <li><a href="#interaction">Interaction with Checkers</a></li> 39 <li><a href="#values">Representing Values</a></li> 40 </ul></li> 41 <li><a href="#idea">Idea for a Checker</a></li> 42 <li><a href="#registration">Checker Registration</a></li> 43 <li><a href="#events_callbacks">Events, Callbacks, and Checker Class Structure</a></li> 44 <li><a href="#extendingstates">Custom Program States</a></li> 45 <li><a href="#bugs">Bug Reports</a></li> 46 <li><a href="#ast">AST Visitors</a></li> 47 <li><a href="#testing">Testing</a></li> 48 <li><a href="#commands">Useful Commands/Debugging Hints</a></li> 49 <li><a href="#additioninformation">Additional Sources of Information</a></li> 50 <li><a href="#links">Useful Links</a></li> 51 </ul> 52 53<h2 id=start>Getting Started</h2> 54 <ul> 55 <li>To check out the source code and build the project, follow steps 1-4 of 56 the <a href="http://clang.llvm.org/get_started.html">Clang Getting Started</a> 57 page.</li> 58 59 <li>The analyzer source code is located under the Clang source tree: 60 <br><tt> 61 $ <b>cd llvm/tools/clang</b> 62 </tt> 63 <br>See: <tt>include/clang/StaticAnalyzer</tt>, <tt>lib/StaticAnalyzer</tt>, 64 <tt>test/Analysis</tt>.</li> 65 66 <li>The analyzer regression tests can be executed from the Clang's build 67 directory: 68 <br><tt> 69 $ <b>cd ../../../; cd build/tools/clang; TESTDIRS=Analysis make test</b> 70 </tt></li> 71 72 <li>Analyze a file with the specified checker: 73 <br><tt> 74 $ <b>clang -cc1 -analyze -analyzer-checker=core.DivideZero test.c</b> 75 </tt></li> 76 77 <li>List the available checkers: 78 <br><tt> 79 $ <b>clang -cc1 -analyzer-checker-help</b> 80 </tt></li> 81 82 <li>See the analyzer help for different output formats, fine tuning, and 83 debug options: 84 <br><tt> 85 $ <b>clang -cc1 -help | grep "analyzer"</b> 86 </tt></li> 87 88 </ul> 89 90<h2 id=analyzer>Static Analyzer Overview</h2> 91 The analyzer core performs symbolic execution of the given program. All the 92 input values are represented with symbolic values; further, the engine deduces 93 the values of all the expressions in the program based on the input symbols 94 and the path. The execution is path sensitive and every possible path through 95 the program is explored. The explored execution traces are represented with 96 <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1ExplodedGraph.html">ExplodedGraph</a> object. 97 Each node of the graph is 98 <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1ExplodedNode.html">ExplodedNode</a>, 99 which consists of a <tt>ProgramPoint</tt> and a <tt>ProgramState</tt>. 100 <p> 101 <a href="http://clang.llvm.org/doxygen/classclang_1_1ProgramPoint.html">ProgramPoint</a> 102 represents the corresponding location in the program (or the CFG). 103 <tt>ProgramPoint</tt> is also used to record additional information on 104 when/how the state was added. For example, <tt>PostPurgeDeadSymbolsKind</tt> 105 kind means that the state is the result of purging dead symbols - the 106 analyzer's equivalent of garbage collection. 107 <p> 108 <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1ProgramState.html">ProgramState</a> 109 represents abstract state of the program. It consists of: 110 <ul> 111 <li><tt>Environment</tt> - a mapping from source code expressions to symbolic 112 values 113 <li><tt>Store</tt> - a mapping from memory locations to symbolic values 114 <li><tt>GenericDataMap</tt> - constraints on symbolic values 115 </ul> 116 117 <h3 id=interaction>Interaction with Checkers</h3> 118 Checkers are not merely passive receivers of the analyzer core changes - they 119 actively participate in the <tt>ProgramState</tt> construction through the 120 <tt>GenericDataMap</tt> which can be used to store the checker-defined part 121 of the state. Each time the analyzer engine explores a new statement, it 122 notifies each checker registered to listen for that statement, giving it an 123 opportunity to either report a bug or modify the state. (As a rule of thumb, 124 the checker itself should be stateless.) The checkers are called one after another 125 in the predefined order; thus, calling all the checkers adds a chain to the 126 <tt>ExplodedGraph</tt>. 127 128 <h3 id=values>Representing Values</h3> 129 During symbolic execution, <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1SVal.html">SVal</a> 130 objects are used to represent the semantic evaluation of expressions. 131 They can represent things like concrete 132 integers, symbolic values, or memory locations (which are memory regions). 133 They are a discriminated union of "values", symbolic and otherwise. 134 If a value isn't symbolic, usually that means there is no symbolic 135 information to track. For example, if the value was an integer, such as 136 <tt>42</tt>, it would be a <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1nonloc_1_1ConcreteInt.html">ConcreteInt</a>, 137 and the checker doesn't usually need to track any state with the concrete 138 number. In some cases, <tt>SVal</tt> is not a symbol, but it really should be 139 a symbolic value. This happens when the analyzer cannot reason about something 140 (yet). An example is floating point numbers. In such cases, the 141 <tt>SVal</tt> will evaluate to <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1UnknownVal.html">UnknownVal</a>. 142 This represents a case that is outside the realm of the analyzer's reasoning 143 capabilities. <tt>SVals</tt> are value objects and their values can be viewed 144 using the <tt>.dump()</tt> method. Often they wrap persistent objects such as 145 symbols or regions. 146 <p> 147 <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1SymExpr.html">SymExpr</a> (symbol) 148 is meant to represent abstract, but named, symbolic value. Symbols represent 149 an actual (immutable) value. We might not know what its specific value is, but 150 we can associate constraints with that value as we analyze a path. For 151 example, we might record that the value of a symbol is greater than 152 <tt>0</tt>, etc. 153 <p> 154 155 <p> 156 <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1MemRegion.html">MemRegion</a> is similar to a symbol. 157 It is used to provide a lexicon of how to describe abstract memory. Regions can 158 layer on top of other regions, providing a layered approach to representing memory. 159 For example, a struct object on the stack might be represented by a <tt>VarRegion</tt>, 160 but a <tt>FieldRegion</tt> which is a subregion of the <tt>VarRegion</tt> could 161 be used to represent the memory associated with a specific field of that object. 162 So how do we represent symbolic memory regions? That's what 163 <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1SymbolicRegion.html">SymbolicRegion</a> 164 is for. It is a <tt>MemRegion</tt> that has an associated symbol. Since the 165 symbol is unique and has a unique name; that symbol names the region. 166 167 <P> 168 Let's see how the analyzer processes the expressions in the following example: 169 <p> 170 <pre class="code_example"> 171 int foo(int x) { 172 int y = x * 2; 173 int z = x; 174 ... 175 } 176 </pre> 177 <p> 178Let's look at how <tt>x*2</tt> gets evaluated. When <tt>x</tt> is evaluated, 179we first construct an <tt>SVal</tt> that represents the lvalue of <tt>x</tt>, in 180this case it is an <tt>SVal</tt> that references the <tt>MemRegion</tt> for <tt>x</tt>. 181Afterwards, when we do the lvalue-to-rvalue conversion, we get a new <tt>SVal</tt>, 182which references the value <b>currently bound</b> to <tt>x</tt>. That value is 183symbolic; it's whatever <tt>x</tt> was bound to at the start of the function. 184Let's call that symbol <tt>$0</tt>. Similarly, we evaluate the expression for <tt>2</tt>, 185and get an <tt>SVal</tt> that references the concrete number <tt>2</tt>. When 186we evaluate <tt>x*2</tt>, we take the two <tt>SVals</tt> of the subexpressions, 187and create a new <tt>SVal</tt> that represents their multiplication (which in 188this case is a new symbolic expression, which we might call <tt>$1</tt>). When we 189evaluate the assignment to <tt>y</tt>, we again compute its lvalue (a <tt>MemRegion</tt>), 190and then bind the <tt>SVal</tt> for the RHS (which references the symbolic value <tt>$1</tt>) 191to the <tt>MemRegion</tt> in the symbolic store. 192<br> 193The second line is similar. When we evaluate <tt>x</tt> again, we do the same 194dance, and create an <tt>SVal</tt> that references the symbol <tt>$0</tt>. Note, two <tt>SVals</tt> 195might reference the same underlying values. 196 197<p> 198To summarize, MemRegions are unique names for blocks of memory. Symbols are 199unique names for abstract symbolic values. Some MemRegions represents abstract 200symbolic chunks of memory, and thus are also based on symbols. SVals are just 201references to values, and can reference either MemRegions, Symbols, or concrete 202values (e.g., the number 1). 203 204 <!-- 205 TODO: Add a picture. 206 <br> 207 Symbols<br> 208 FunctionalObjects are used throughout. 209 --> 210 211<h2 id=idea>Idea for a Checker</h2> 212 Here are several questions which you should consider when evaluating your 213 checker idea: 214 <ul> 215 <li>Can the check be effectively implemented without path-sensitive 216 analysis? See <a href="#ast">AST Visitors</a>.</li> 217 218 <li>How high the false positive rate is going to be? Looking at the occurrences 219 of the issue you want to write a checker for in the existing code bases might 220 give you some ideas. </li> 221 222 <li>How the current limitations of the analysis will effect the false alarm 223 rate? Currently, the analyzer only reasons about one procedure at a time (no 224 inter-procedural analysis). Also, it uses a simple range tracking based 225 solver to model symbolic execution.</li> 226 227 <li>Consult the <a 228 href="http://llvm.org/bugs/buglist.cgi?query_format=advanced&bug_status=NEW&bug_status=REOPENED&version=trunk&component=Static%20Analyzer&product=clang">Bugzilla database</a> 229 to get some ideas for new checkers and consider starting with improving/fixing 230 bugs in the existing checkers.</li> 231 </ul> 232 233<p>Once an idea for a checker has been chosen, there are two key decisions that 234need to be made: 235 <ul> 236 <li> Which events the checker should be tracking. This is discussed in more 237 detail in the section <a href="#events_callbacks">Events, Callbacks, and 238 Checker Class Structure</a>. 239 <li> What checker-specific data needs to be stored as part of the program 240 state (if any). This should be minimized as much as possible. More detail about 241 implementing custom program state is given in section <a 242 href="#extendingstates">Custom Program States</a>. 243 </ul> 244 245 246<h2 id=registration>Checker Registration</h2> 247 All checker implementation files are located in 248 <tt>clang/lib/StaticAnalyzer/Checkers</tt> folder. The steps below describe 249 how the checker <tt>SimpleStreamChecker</tt>, which checks for misuses of 250 stream APIs, was registered with the analyzer. 251 Similar steps should be followed for a new checker. 252<ol> 253 <li>A new checker implementation file, <tt>SimpleStreamChecker.cpp</tt>, was 254 created in the directory <tt>lib/StaticAnalyzer/Checkers</tt>. 255 <li>The following registration code was added to the implementation file: 256<pre class="code_example"> 257void ento::registerSimpleStreamChecker(CheckerManager &mgr) { 258 mgr.registerChecker<SimpleStreamChecker>(); 259} 260</pre> 261<li>A package was selected for the checker and the checker was defined in the 262table of checkers at <tt>lib/StaticAnalyzer/Checkers/Checkers.td</tt>. Since all 263checkers should first be developed as "alpha", and the SimpleStreamChecker 264performs UNIX API checks, the correct package is "alpha.unix", and the following 265was added to the corresponding <tt>UnixAlpha</tt> section of <tt>Checkers.td</tt>: 266<pre class="code_example"> 267let ParentPackage = UnixAlpha in { 268... 269def SimpleStreamChecker : Checker<"SimpleStream">, 270 HelpText<"Check for misuses of stream APIs">, 271 DescFile<"SimpleStreamChecker.cpp">; 272... 273} // end "alpha.unix" 274</pre> 275 276<li>The source code file was made visible to CMake by adding it to 277<tt>lib/StaticAnalyzer/Checkers/CMakeLists.txt</tt>. 278 279</ol> 280 281After adding a new checker to the analyzer, one can verify that the new checker 282was successfully added by seeing if it appears in the list of available checkers: 283<br> <tt><b>$clang -cc1 -analyzer-checker-help</b></tt> 284 285<h2 id=events_callbacks>Events, Callbacks, and Checker Class Structure</h2> 286 287<p> All checkers inherit from the <tt><a 288href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1Checker.html"> 289Checker</a></tt> template class; the template parameter(s) describe the type of 290events that the checker is interested in processing. The various types of events 291that are available are described in the file <a 292href="http://clang.llvm.org/doxygen/CheckerDocumentation_8cpp_source.html"> 293CheckerDocumentation.cpp</a> 294 295<p> For each event type requested, a corresponding callback function must be 296defined in the checker class (<a 297href="http://clang.llvm.org/doxygen/CheckerDocumentation_8cpp_source.html"> 298CheckerDocumentation.cpp</a> shows the 299correct function name and signature for each event type). 300 301<p> As an example, consider <tt>SimpleStreamChecker</tt>. This checker needs to 302take action at the following times: 303 304<ul> 305<li>Before making a call to a function, check if the function is <tt>fclose</tt>. 306If so, check the parameter being passed. 307<li>After making a function call, check if the function is <tt>fopen</tt>. If 308so, process the return value. 309<li>When values go out of scope, check whether they are still-open file 310descriptors, and report a bug if so. In addition, remove any information about 311them from the program state in order to keep the state as small as possible. 312<li>When file pointers "escape" (are used in a way that the analyzer can no longer 313track them), mark them as such. This prevents false positives in the cases where 314the analyzer cannot be sure whether the file was closed or not. 315</ul> 316 317<p>These events that will be used for each of these actions are, respectively, <a 318href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1check_1_1PreCall.html">PreCall</a>, 319<a 320href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1check_1_1PostCall.html">PostCall</a>, 321<a 322href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1check_1_1DeadSymbols.html">DeadSymbols</a>, 323and <a 324href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1check_1_1PointerEscape.html">PointerEscape</a>. 325The high-level structure of the checker's class is thus: 326 327<pre class="code_example"> 328class SimpleStreamChecker : public Checker<check::PreCall, 329 check::PostCall, 330 check::DeadSymbols, 331 check::PointerEscape> { 332public: 333 334 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 335 336 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 337 338 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 339 340 ProgramStateRef checkPointerEscape(ProgramStateRef State, 341 const InvalidatedSymbols &Escaped, 342 const CallEvent *Call, 343 PointerEscapeKind Kind) const; 344}; 345</pre> 346 347<h2 id=extendingstates>Custom Program States</h2> 348 349<p> Checkers often need to keep track of information specific to the checks they 350perform. However, since checkers have no guarantee about the order in which the 351program will be explored, or even that all possible paths will be explored, this 352state information cannot be kept within individual checkers. Therefore, if 353checkers need to store custom information, they need to add new categories of 354data to the <tt>ProgramState</tt>. The preferred way to do so is to use one of 355several macros designed for this purpose. They are: 356 357<ul> 358<li><a 359href="http://clang.llvm.org/doxygen/ProgramStateTrait_8h.html#ae4cddb54383cd702a045d7c61b009147">REGISTER_TRAIT_WITH_PROGRAMSTATE</a>: 360Used when the state information is a single value. The methods available for 361state types declared with this macro are <tt>get</tt>, <tt>set</tt>, and 362<tt>remove</tt>. 363<li><a 364href="http://clang.llvm.org/doxygen/CheckerContext_8h.html#aa27656fa0ce65b0d9ba12eb3c02e8be9">REGISTER_LIST_WITH_PROGRAMSTATE</a>: 365Used when the state information is a list of values. The methods available for 366state types declared with this macro are <tt>add</tt>, <tt>get</tt>, 367<tt>remove</tt>, and <tt>contains</tt>. 368<li><a 369href="http://clang.llvm.org/doxygen/CheckerContext_8h.html#ad90f9387b94b344eaaf499afec05f4d1">REGISTER_SET_WITH_PROGRAMSTATE</a>: 370Used when the state information is a set of values. The methods available for 371state types declared with this macro are <tt>add</tt>, <tt>get</tt>, 372<tt>remove</tt>, and <tt>contains</tt>. 373<li><a 374href="http://clang.llvm.org/doxygen/CheckerContext_8h.html#a6d1893bb8c18543337b6c363c1319fcf">REGISTER_MAP_WITH_PROGRAMSTATE</a>: 375Used when the state information is a map from a key to a value. The methods 376available for state types declared with this macro are <tt>add</tt>, 377<tt>set</tt>, <tt>get</tt>, <tt>remove</tt>, and <tt>contains</tt>. 378</ul> 379 380<p>All of these macros take as parameters the name to be used for the custom 381category of state information and the data type(s) to be used for storage. The 382data type(s) specified will become the parameter type and/or return type of the 383methods that manipulate the new category of state information. Each of these 384methods are templated with the name of the custom data type. 385 386<p>For example, a common case is the need to track data associated with a 387symbolic expression; a map type is the most logical way to implement this. The 388key for this map will be a pointer to a symbolic expression 389(<tt>SymbolRef</tt>). If the data type to be associated with the symbolic 390expression is an integer, then the custom category of state information would be 391declared as 392 393<pre class="code_example"> 394REGISTER_MAP_WITH_PROGRAMSTATE(ExampleDataType, SymbolRef, int) 395</pre> 396 397The data would be accessed with the function 398 399<pre class="code_example"> 400ProgramStateRef state; 401SymbolRef Sym; 402... 403int currentlValue = state->get<ExampleDataType>(Sym); 404</pre> 405 406and set with the function 407 408<pre class="code_example"> 409ProgramStateRef state; 410SymbolRef Sym; 411int newValue; 412... 413ProgramStateRef newState = state->set<ExampleDataType>(Sym, newValue); 414</pre> 415 416<p>In addition, the macros define a data type used for storing the data of the 417new data category; the name of this type is the name of the data category with 418"Ty" appended. For <tt>REGISTER_TRAIT_WITH_PROGRAMSTATE</tt>, this will simply 419be passed data type; for the other three macros, this will be a specialized 420version of the <a 421href="http://llvm.org/doxygen/classllvm_1_1ImmutableList.html">llvm::ImmutableList</a>, 422<a 423href="http://llvm.org/doxygen/classllvm_1_1ImmutableSet.html">llvm::ImmutableSet</a>, 424or <a 425href="http://llvm.org/doxygen/classllvm_1_1ImmutableMap.html">llvm::ImmutableMap</a> 426templated class. For the <tt>ExampleDataType</tt> example above, the type 427created would be equivalent to writing the declaration: 428 429<pre class="code_example"> 430typedef llvm::ImmutableMap<SymbolRef, int> ExampleDataTypeTy; 431</pre> 432 433<p>These macros will cover a majority of use cases; however, they still have a 434few limitations. They cannot be used inside namespaces (since they expand to 435contain top-level namespace references), and the data types that they define 436cannot be referenced from more than one file. 437 438<p>Note that <tt>ProgramStates</tt> are immutable; instead of modifying an existing 439one, functions that modify the state will return a copy of the previous state 440with the change applied. This updated state must be then provided to the 441analyzer core by calling the <tt>CheckerContext::addTransition</tt> function. 442<h2 id=bugs>Bug Reports</h2> 443 444 445<p> When a checker detects a mistake in the analyzed code, it needs a way to 446report it to the analyzer core so that it can be displayed. The two classes used 447to construct this report are <tt><a 448href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1BugType.html">BugType</a></tt> 449and <tt><a 450href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1BugReport.html"> 451BugReport</a></tt>. 452 453<p> 454<tt>BugType</tt>, as the name would suggest, represents a type of bug. The 455constructor for <tt>BugType</tt> takes two parameters: The name of the bug 456type, and the name of the category of the bug. These are used (e.g.) in the 457summary page generated by the scan-build tool. 458 459<P> 460 The <tt>BugReport</tt> class represents a specific occurrence of a bug. In 461 the most common case, three parameters are used to form a <tt>BugReport</tt>: 462<ol> 463<li>The type of bug, specified as an instance of the <tt>BugType</tt> class. 464<li>A short descriptive string. This is placed at the location of the bug in 465the detailed line-by-line output generated by scan-build. 466<li>The context in which the bug occurred. This includes both the location of 467the bug in the program and the program's state when the location is reached. These are 468both encapsulated in an <tt>ExplodedNode</tt>. 469</ol> 470 471<p>In order to obtain the correct <tt>ExplodedNode</tt>, a decision must be made 472as to whether or not analysis can continue along the current path. This decision 473is based on whether the detected bug is one that would prevent the program under 474analysis from continuing. For example, leaking of a resource should not stop 475analysis, as the program can continue to run after the leak. Dereferencing a 476null pointer, on the other hand, should stop analysis, as there is no way for 477the program to meaningfully continue after such an error. 478 479<p>If analysis can continue, then the most recent <tt>ExplodedNode</tt> 480generated by the checker can be passed to the <tt>BugReport</tt> constructor 481without additional modification. This <tt>ExplodedNode</tt> will be the one 482returned by the most recent call to <a 483href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1CheckerContext.html#a264f48d97809707049689c37aa35af78">CheckerContext::addTransition</a>. 484If no transition has been performed during the current callback, the checker should call <a 485href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1CheckerContext.html#a264f48d97809707049689c37aa35af78">CheckerContext::addTransition()</a> 486and use the returned node for bug reporting. 487 488<p>If analysis can not continue, then the current state should be transitioned 489into a so-called <i>sink node</i>, a node from which no further analysis will be 490performed. This is done by calling the <a 491href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1CheckerContext.html#adeea33a5a2bed190210c4a2bb807a6f0"> 492CheckerContext::generateSink</a> function; this function is the same as the 493<tt>addTransition</tt> function, but marks the state as a sink node. Like 494<tt>addTransition</tt>, this returns an <tt>ExplodedNode</tt> with the updated 495state, which can then be passed to the <tt>BugReport</tt> constructor. 496 497<p> 498After a <tt>BugReport</tt> is created, it should be passed to the analyzer core 499by calling <a href = "http://clang.llvm.org/doxygen/classclang_1_1ento_1_1CheckerContext.html#ae7738af2cbfd1d713edec33d3203dff5">CheckerContext::emitReport</a>. 500 501<h2 id=ast>AST Visitors</h2> 502 Some checks might not require path-sensitivity to be effective. Simple AST walk 503 might be sufficient. If that is the case, consider implementing a Clang 504 compiler warning. On the other hand, a check might not be acceptable as a compiler 505 warning; for example, because of a relatively high false positive rate. In this 506 situation, AST callbacks <tt><b>checkASTDecl</b></tt> and 507 <tt><b>checkASTCodeBody</b></tt> are your best friends. 508 509<h2 id=testing>Testing</h2> 510 Every patch should be well tested with Clang regression tests. The checker tests 511 live in <tt>clang/test/Analysis</tt> folder. To run all of the analyzer tests, 512 execute the following from the <tt>clang</tt> build directory: 513 <pre class="code"> 514 $ <b>TESTDIRS=Analysis make test</b> 515 </pre> 516 517<h2 id=commands>Useful Commands/Debugging Hints</h2> 518<ul> 519<li> 520While investigating a checker-related issue, instruct the analyzer to only 521execute a single checker: 522<br><tt> 523$ <b>clang -cc1 -analyze -analyzer-checker=osx.KeychainAPI test.c</b> 524</tt> 525</li> 526<li> 527To dump AST: 528<br><tt> 529$ <b>clang -cc1 -ast-dump test.c</b> 530</tt> 531</li> 532<li> 533To view/dump CFG use <tt>debug.ViewCFG</tt> or <tt>debug.DumpCFG</tt> checkers: 534<br><tt> 535$ <b>clang -cc1 -analyze -analyzer-checker=debug.ViewCFG test.c</b> 536</tt> 537</li> 538<li> 539To see all available debug checkers: 540<br><tt> 541$ <b>clang -cc1 -analyzer-checker-help | grep "debug"</b> 542</tt> 543</li> 544<li> 545To see which function is failing while processing a large file use 546<tt>-analyzer-display-progress</tt> option. 547</li> 548<li> 549While debugging execute <tt>clang -cc1 -analyze -analyzer-checker=core</tt> 550instead of <tt>clang --analyze</tt>, as the later would call the compiler 551in a separate process. 552</li> 553<li> 554To view <tt>ExplodedGraph</tt> (the state graph explored by the analyzer) while 555debugging, goto a frame that has <tt>clang::ento::ExprEngine</tt> object and 556execute: 557<br><tt> 558(gdb) <b>p ViewGraph(0)</b> 559</tt> 560</li> 561<li> 562To see the <tt>ProgramState</tt> while debugging use the following command. 563<br><tt> 564(gdb) <b>p State->dump()</b> 565</tt> 566</li> 567<li> 568To see <tt>clang::Expr</tt> while debugging use the following command. If you 569pass in a SourceManager object, it will also dump the corresponding line in the 570source code. 571<br><tt> 572(gdb) <b>p E->dump()</b> 573</tt> 574</li> 575<li> 576To dump AST of a method that the current <tt>ExplodedNode</tt> belongs to: 577<br><tt> 578(gdb) <b>p C.getPredecessor()->getCodeDecl().getBody()->dump()</b> 579(gdb) <b>p C.getPredecessor()->getCodeDecl().getBody()->dump(getContext().getSourceManager())</b> 580</tt> 581</li> 582</ul> 583 584<h2 id=additioninformation>Additional Sources of Information</h2> 585 586Here are some additional resources that are useful when working on the Clang 587Static Analyzer: 588 589<ul> 590<li> <a href="http://clang.llvm.org/doxygen">Clang doxygen</a>. Contains 591up-to-date documentation about the APIs available in Clang. Relevant entries 592have been linked throughout this page. Also of use is the 593<a href="http://llvm.org/doxygen">LLVM doxygen</a>, when dealing with classes 594from LLVM. 595<li> The <a href="http://lists.llvm.org/mailman/listinfo/cfe-dev"> 596cfe-dev mailing list</a>. This is the primary mailing list used for 597discussion of Clang development (including static code analysis). The 598<a href="http://lists.llvm.org/pipermail/cfe-dev">archive</a> also contains 599a lot of information. 600<li> The "Building a Checker in 24 hours" presentation given at the <a 601href="http://llvm.org/devmtg/2012-11">November 2012 LLVM Developer's 602meeting</a>. Describes the construction of SimpleStreamChecker. <a 603href="http://llvm.org/devmtg/2012-11/Zaks-Rose-Checker24Hours.pdf">Slides</a> 604and <a 605href="http://llvm.org/devmtg/2012-11/videos/Zaks-Rose-Checker24Hours.mp4">video</a> 606are available. 607</ul> 608 609<h2 id=links>Useful Links</h2> 610<ul> 611<li>The list of <a href="implicit_checks.html">Implicit Checkers</a></li> 612</ul> 613 614</div> 615</div> 616</body> 617</html> 618