1 //===-- divxc3_test.c - Test __divxc3 -------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file tests __divxc3 for the compiler_rt library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #if !_ARCH_PPC
15
16 #include "int_lib.h"
17 #include <math.h>
18 #include <complex.h>
19 #include <stdio.h>
20
21 // Returns: the quotient of (a + ib) / (c + id)
22
23 COMPILER_RT_ABI long double _Complex
24 __divxc3(long double __a, long double __b, long double __c, long double __d);
25
26 enum {zero, non_zero, inf, NaN, non_zero_nan};
27
28 int
classify(long double _Complex x)29 classify(long double _Complex x)
30 {
31 if (x == 0)
32 return zero;
33 if (isinf(creall(x)) || isinf(cimagl(x)))
34 return inf;
35 if (isnan(creall(x)) && isnan(cimagl(x)))
36 return NaN;
37 if (isnan(creall(x)))
38 {
39 if (cimagl(x) == 0)
40 return NaN;
41 return non_zero_nan;
42 }
43 if (isnan(cimagl(x)))
44 {
45 if (creall(x) == 0)
46 return NaN;
47 return non_zero_nan;
48 }
49 return non_zero;
50 }
51
test__divxc3(long double a,long double b,long double c,long double d)52 int test__divxc3(long double a, long double b, long double c, long double d)
53 {
54 long double _Complex r = __divxc3(a, b, c, d);
55 // printf("test__divxc3(%Lf, %Lf, %Lf, %Lf) = %Lf + I%Lf\n",
56 // a, b, c, d, creall(r), cimagl(r));
57 long double _Complex dividend;
58 long double _Complex divisor;
59
60 __real__ dividend = a;
61 __imag__ dividend = b;
62 __real__ divisor = c;
63 __imag__ divisor = d;
64
65 switch (classify(dividend))
66 {
67 case zero:
68 switch (classify(divisor))
69 {
70 case zero:
71 if (classify(r) != NaN)
72 return 1;
73 break;
74 case non_zero:
75 if (classify(r) != zero)
76 return 1;
77 break;
78 case inf:
79 if (classify(r) != zero)
80 return 1;
81 break;
82 case NaN:
83 if (classify(r) != NaN)
84 return 1;
85 break;
86 case non_zero_nan:
87 if (classify(r) != NaN)
88 return 1;
89 break;
90 }
91 break;
92 case non_zero:
93 switch (classify(divisor))
94 {
95 case zero:
96 if (classify(r) != inf)
97 return 1;
98 break;
99 case non_zero:
100 if (classify(r) != non_zero)
101 return 1;
102 {
103 long double _Complex z = (a * c + b * d) / (c * c + d * d)
104 + (b * c - a * d) / (c * c + d * d) * _Complex_I;
105 if (cabs((r - z)/r) > 1.e-6)
106 return 1;
107 }
108 break;
109 case inf:
110 if (classify(r) != zero)
111 return 1;
112 break;
113 case NaN:
114 if (classify(r) != NaN)
115 return 1;
116 break;
117 case non_zero_nan:
118 if (classify(r) != NaN)
119 return 1;
120 break;
121 }
122 break;
123 case inf:
124 switch (classify(divisor))
125 {
126 case zero:
127 if (classify(r) != inf)
128 return 1;
129 break;
130 case non_zero:
131 if (classify(r) != inf)
132 return 1;
133 break;
134 case inf:
135 if (classify(r) != NaN)
136 return 1;
137 break;
138 case NaN:
139 if (classify(r) != NaN)
140 return 1;
141 break;
142 case non_zero_nan:
143 if (classify(r) != NaN)
144 return 1;
145 break;
146 }
147 break;
148 case NaN:
149 switch (classify(divisor))
150 {
151 case zero:
152 if (classify(r) != NaN)
153 return 1;
154 break;
155 case non_zero:
156 if (classify(r) != NaN)
157 return 1;
158 break;
159 case inf:
160 if (classify(r) != NaN)
161 return 1;
162 break;
163 case NaN:
164 if (classify(r) != NaN)
165 return 1;
166 break;
167 case non_zero_nan:
168 if (classify(r) != NaN)
169 return 1;
170 break;
171 }
172 break;
173 case non_zero_nan:
174 switch (classify(divisor))
175 {
176 case zero:
177 if (classify(r) != inf)
178 return 1;
179 break;
180 case non_zero:
181 if (classify(r) != NaN)
182 return 1;
183 break;
184 case inf:
185 if (classify(r) != NaN)
186 return 1;
187 break;
188 case NaN:
189 if (classify(r) != NaN)
190 return 1;
191 break;
192 case non_zero_nan:
193 if (classify(r) != NaN)
194 return 1;
195 break;
196 }
197 break;
198 }
199
200 return 0;
201 }
202
203 long double x[][2] =
204 {
205 { 1.e-6, 1.e-6},
206 {-1.e-6, 1.e-6},
207 {-1.e-6, -1.e-6},
208 { 1.e-6, -1.e-6},
209
210 { 1.e+6, 1.e-6},
211 {-1.e+6, 1.e-6},
212 {-1.e+6, -1.e-6},
213 { 1.e+6, -1.e-6},
214
215 { 1.e-6, 1.e+6},
216 {-1.e-6, 1.e+6},
217 {-1.e-6, -1.e+6},
218 { 1.e-6, -1.e+6},
219
220 { 1.e+6, 1.e+6},
221 {-1.e+6, 1.e+6},
222 {-1.e+6, -1.e+6},
223 { 1.e+6, -1.e+6},
224
225 {NAN, NAN},
226 {-INFINITY, NAN},
227 {-2, NAN},
228 {-1, NAN},
229 {-0.5, NAN},
230 {-0., NAN},
231 {+0., NAN},
232 {0.5, NAN},
233 {1, NAN},
234 {2, NAN},
235 {INFINITY, NAN},
236
237 {NAN, -INFINITY},
238 {-INFINITY, -INFINITY},
239 {-2, -INFINITY},
240 {-1, -INFINITY},
241 {-0.5, -INFINITY},
242 {-0., -INFINITY},
243 {+0., -INFINITY},
244 {0.5, -INFINITY},
245 {1, -INFINITY},
246 {2, -INFINITY},
247 {INFINITY, -INFINITY},
248
249 {NAN, -2},
250 {-INFINITY, -2},
251 {-2, -2},
252 {-1, -2},
253 {-0.5, -2},
254 {-0., -2},
255 {+0., -2},
256 {0.5, -2},
257 {1, -2},
258 {2, -2},
259 {INFINITY, -2},
260
261 {NAN, -1},
262 {-INFINITY, -1},
263 {-2, -1},
264 {-1, -1},
265 {-0.5, -1},
266 {-0., -1},
267 {+0., -1},
268 {0.5, -1},
269 {1, -1},
270 {2, -1},
271 {INFINITY, -1},
272
273 {NAN, -0.5},
274 {-INFINITY, -0.5},
275 {-2, -0.5},
276 {-1, -0.5},
277 {-0.5, -0.5},
278 {-0., -0.5},
279 {+0., -0.5},
280 {0.5, -0.5},
281 {1, -0.5},
282 {2, -0.5},
283 {INFINITY, -0.5},
284
285 {NAN, -0.},
286 {-INFINITY, -0.},
287 {-2, -0.},
288 {-1, -0.},
289 {-0.5, -0.},
290 {-0., -0.},
291 {+0., -0.},
292 {0.5, -0.},
293 {1, -0.},
294 {2, -0.},
295 {INFINITY, -0.},
296
297 {NAN, 0.},
298 {-INFINITY, 0.},
299 {-2, 0.},
300 {-1, 0.},
301 {-0.5, 0.},
302 {-0., 0.},
303 {+0., 0.},
304 {0.5, 0.},
305 {1, 0.},
306 {2, 0.},
307 {INFINITY, 0.},
308
309 {NAN, 0.5},
310 {-INFINITY, 0.5},
311 {-2, 0.5},
312 {-1, 0.5},
313 {-0.5, 0.5},
314 {-0., 0.5},
315 {+0., 0.5},
316 {0.5, 0.5},
317 {1, 0.5},
318 {2, 0.5},
319 {INFINITY, 0.5},
320
321 {NAN, 1},
322 {-INFINITY, 1},
323 {-2, 1},
324 {-1, 1},
325 {-0.5, 1},
326 {-0., 1},
327 {+0., 1},
328 {0.5, 1},
329 {1, 1},
330 {2, 1},
331 {INFINITY, 1},
332
333 {NAN, 2},
334 {-INFINITY, 2},
335 {-2, 2},
336 {-1, 2},
337 {-0.5, 2},
338 {-0., 2},
339 {+0., 2},
340 {0.5, 2},
341 {1, 2},
342 {2, 2},
343 {INFINITY, 2},
344
345 {NAN, INFINITY},
346 {-INFINITY, INFINITY},
347 {-2, INFINITY},
348 {-1, INFINITY},
349 {-0.5, INFINITY},
350 {-0., INFINITY},
351 {+0., INFINITY},
352 {0.5, INFINITY},
353 {1, INFINITY},
354 {2, INFINITY},
355 {INFINITY, INFINITY}
356
357 };
358
359 #endif
360
main()361 int main()
362 {
363 #if !_ARCH_PPC
364 const unsigned N = sizeof(x) / sizeof(x[0]);
365 unsigned i, j;
366 for (i = 0; i < N; ++i)
367 {
368 for (j = 0; j < N; ++j)
369 {
370 if (test__divxc3(x[i][0], x[i][1], x[j][0], x[j][1]))
371 return 1;
372 }
373 }
374
375 #else
376 printf("skipped\n");
377 #endif
378 return 0;
379 }
380