1 //===-- muldc3_test.c - Test __muldc3 -------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file tests __muldc3 for the compiler_rt library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "int_lib.h"
15 #include <math.h>
16 #include <complex.h>
17 #include <stdio.h>
18 
19 // Returns: the product of a + ib and c + id
20 
21 COMPILER_RT_ABI double _Complex
22 __muldc3(double __a, double __b, double __c, double __d);
23 
24 enum {zero, non_zero, inf, NaN, non_zero_nan};
25 
26 int
classify(double _Complex x)27 classify(double _Complex x)
28 {
29     if (x == 0)
30         return zero;
31     if (isinf(creal(x)) || isinf(cimag(x)))
32         return inf;
33     if (isnan(creal(x)) && isnan(cimag(x)))
34         return NaN;
35     if (isnan(creal(x)))
36     {
37         if (cimag(x) == 0)
38             return NaN;
39         return non_zero_nan;
40     }
41     if (isnan(cimag(x)))
42     {
43         if (creal(x) == 0)
44             return NaN;
45         return non_zero_nan;
46     }
47     return non_zero;
48 }
49 
test__muldc3(double a,double b,double c,double d)50 int test__muldc3(double a, double b, double c, double d)
51 {
52     double _Complex r = __muldc3(a, b, c, d);
53 //     printf("test__muldc3(%f, %f, %f, %f) = %f + I%f\n",
54 //             a, b, c, d, creal(r), cimag(r));
55 	double _Complex dividend;
56 	double _Complex divisor;
57 
58 	__real__ dividend = a;
59 	__imag__ dividend = b;
60 	__real__ divisor = c;
61 	__imag__ divisor = d;
62 
63     switch (classify(dividend))
64     {
65     case zero:
66         switch (classify(divisor))
67         {
68         case zero:
69             if (classify(r) != zero)
70                 return 1;
71             break;
72         case non_zero:
73             if (classify(r) != zero)
74                 return 1;
75             break;
76         case inf:
77             if (classify(r) != NaN)
78                 return 1;
79             break;
80         case NaN:
81             if (classify(r) != NaN)
82                 return 1;
83             break;
84         case non_zero_nan:
85             if (classify(r) != NaN)
86                 return 1;
87             break;
88         }
89         break;
90     case non_zero:
91         switch (classify(divisor))
92         {
93         case zero:
94             if (classify(r) != zero)
95                 return 1;
96             break;
97         case non_zero:
98             if (classify(r) != non_zero)
99                 return 1;
100             if (r != a * c - b * d + _Complex_I*(a * d + b * c))
101                 return 1;
102             break;
103         case inf:
104             if (classify(r) != inf)
105                 return 1;
106             break;
107         case NaN:
108             if (classify(r) != NaN)
109                 return 1;
110             break;
111         case non_zero_nan:
112             if (classify(r) != NaN)
113                 return 1;
114             break;
115         }
116         break;
117     case inf:
118         switch (classify(divisor))
119         {
120         case zero:
121             if (classify(r) != NaN)
122                 return 1;
123             break;
124         case non_zero:
125             if (classify(r) != inf)
126                 return 1;
127             break;
128         case inf:
129             if (classify(r) != inf)
130                 return 1;
131             break;
132         case NaN:
133             if (classify(r) != NaN)
134                 return 1;
135             break;
136         case non_zero_nan:
137             if (classify(r) != inf)
138                 return 1;
139             break;
140         }
141         break;
142     case NaN:
143         switch (classify(divisor))
144         {
145         case zero:
146             if (classify(r) != NaN)
147                 return 1;
148             break;
149         case non_zero:
150             if (classify(r) != NaN)
151                 return 1;
152             break;
153         case inf:
154             if (classify(r) != NaN)
155                 return 1;
156             break;
157         case NaN:
158             if (classify(r) != NaN)
159                 return 1;
160             break;
161         case non_zero_nan:
162             if (classify(r) != NaN)
163                 return 1;
164             break;
165         }
166         break;
167     case non_zero_nan:
168         switch (classify(divisor))
169         {
170         case zero:
171             if (classify(r) != NaN)
172                 return 1;
173             break;
174         case non_zero:
175             if (classify(r) != NaN)
176                 return 1;
177             break;
178         case inf:
179             if (classify(r) != inf)
180                 return 1;
181             break;
182         case NaN:
183             if (classify(r) != NaN)
184                 return 1;
185             break;
186         case non_zero_nan:
187             if (classify(r) != NaN)
188                 return 1;
189             break;
190         }
191         break;
192     }
193 
194     return 0;
195 }
196 
197 double x[][2] =
198 {
199     { 1.e-6,  1.e-6},
200     {-1.e-6,  1.e-6},
201     {-1.e-6, -1.e-6},
202     { 1.e-6, -1.e-6},
203 
204     { 1.e+6,  1.e-6},
205     {-1.e+6,  1.e-6},
206     {-1.e+6, -1.e-6},
207     { 1.e+6, -1.e-6},
208 
209     { 1.e-6,  1.e+6},
210     {-1.e-6,  1.e+6},
211     {-1.e-6, -1.e+6},
212     { 1.e-6, -1.e+6},
213 
214     { 1.e+6,  1.e+6},
215     {-1.e+6,  1.e+6},
216     {-1.e+6, -1.e+6},
217     { 1.e+6, -1.e+6},
218 
219     {NAN, NAN},
220     {-INFINITY, NAN},
221     {-2, NAN},
222     {-1, NAN},
223     {-0.5, NAN},
224     {-0., NAN},
225     {+0., NAN},
226     {0.5, NAN},
227     {1, NAN},
228     {2, NAN},
229     {INFINITY, NAN},
230 
231     {NAN, -INFINITY},
232     {-INFINITY, -INFINITY},
233     {-2, -INFINITY},
234     {-1, -INFINITY},
235     {-0.5, -INFINITY},
236     {-0., -INFINITY},
237     {+0., -INFINITY},
238     {0.5, -INFINITY},
239     {1, -INFINITY},
240     {2, -INFINITY},
241     {INFINITY, -INFINITY},
242 
243     {NAN, -2},
244     {-INFINITY, -2},
245     {-2, -2},
246     {-1, -2},
247     {-0.5, -2},
248     {-0., -2},
249     {+0., -2},
250     {0.5, -2},
251     {1, -2},
252     {2, -2},
253     {INFINITY, -2},
254 
255     {NAN, -1},
256     {-INFINITY, -1},
257     {-2, -1},
258     {-1, -1},
259     {-0.5, -1},
260     {-0., -1},
261     {+0., -1},
262     {0.5, -1},
263     {1, -1},
264     {2, -1},
265     {INFINITY, -1},
266 
267     {NAN, -0.5},
268     {-INFINITY, -0.5},
269     {-2, -0.5},
270     {-1, -0.5},
271     {-0.5, -0.5},
272     {-0., -0.5},
273     {+0., -0.5},
274     {0.5, -0.5},
275     {1, -0.5},
276     {2, -0.5},
277     {INFINITY, -0.5},
278 
279     {NAN, -0.},
280     {-INFINITY, -0.},
281     {-2, -0.},
282     {-1, -0.},
283     {-0.5, -0.},
284     {-0., -0.},
285     {+0., -0.},
286     {0.5, -0.},
287     {1, -0.},
288     {2, -0.},
289     {INFINITY, -0.},
290 
291     {NAN, 0.},
292     {-INFINITY, 0.},
293     {-2, 0.},
294     {-1, 0.},
295     {-0.5, 0.},
296     {-0., 0.},
297     {+0., 0.},
298     {0.5, 0.},
299     {1, 0.},
300     {2, 0.},
301     {INFINITY, 0.},
302 
303     {NAN, 0.5},
304     {-INFINITY, 0.5},
305     {-2, 0.5},
306     {-1, 0.5},
307     {-0.5, 0.5},
308     {-0., 0.5},
309     {+0., 0.5},
310     {0.5, 0.5},
311     {1, 0.5},
312     {2, 0.5},
313     {INFINITY, 0.5},
314 
315     {NAN, 1},
316     {-INFINITY, 1},
317     {-2, 1},
318     {-1, 1},
319     {-0.5, 1},
320     {-0., 1},
321     {+0., 1},
322     {0.5, 1},
323     {1, 1},
324     {2, 1},
325     {INFINITY, 1},
326 
327     {NAN, 2},
328     {-INFINITY, 2},
329     {-2, 2},
330     {-1, 2},
331     {-0.5, 2},
332     {-0., 2},
333     {+0., 2},
334     {0.5, 2},
335     {1, 2},
336     {2, 2},
337     {INFINITY, 2},
338 
339     {NAN, INFINITY},
340     {-INFINITY, INFINITY},
341     {-2, INFINITY},
342     {-1, INFINITY},
343     {-0.5, INFINITY},
344     {-0., INFINITY},
345     {+0., INFINITY},
346     {0.5, INFINITY},
347     {1, INFINITY},
348     {2, INFINITY},
349     {INFINITY, INFINITY}
350 
351 };
352 
main()353 int main()
354 {
355     const unsigned N = sizeof(x) / sizeof(x[0]);
356     unsigned i, j;
357     for (i = 0; i < N; ++i)
358     {
359         for (j = 0; j < N; ++j)
360         {
361             if (test__muldc3(x[i][0], x[i][1], x[j][0], x[j][1]))
362                 return 1;
363         }
364     }
365 
366     return 0;
367 }
368