1 // Copyright (c) 2018 Google LLC
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef SOURCE_UTIL_SMALL_VECTOR_H_
16 #define SOURCE_UTIL_SMALL_VECTOR_H_
17 
18 #include <cassert>
19 #include <iostream>
20 #include <memory>
21 #include <utility>
22 #include <vector>
23 
24 #include "source/util/make_unique.h"
25 
26 namespace spvtools {
27 namespace utils {
28 
29 // The |SmallVector| class is intended to be a drop-in replacement for
30 // |std::vector|.  The difference is in the implementation. A |SmallVector| is
31 // optimized for when the number of elements in the vector are small.  Small is
32 // defined by the template parameter |small_size|.
33 //
34 // Note that |SmallVector| is not always faster than an |std::vector|, so you
35 // should experiment with different values for |small_size| and compare to
36 // using and |std::vector|.
37 //
38 // TODO: I have implemented the public member functions from |std::vector| that
39 // I needed.  If others are needed they should be implemented. Do not implement
40 // public member functions that are not defined by std::vector.
41 template <class T, size_t small_size>
42 class SmallVector {
43  public:
44   using iterator = T*;
45   using const_iterator = const T*;
46 
SmallVector()47   SmallVector()
48       : size_(0),
49         small_data_(reinterpret_cast<T*>(buffer)),
50         large_data_(nullptr) {}
51 
SmallVector(const SmallVector & that)52   SmallVector(const SmallVector& that) : SmallVector() { *this = that; }
53 
SmallVector(SmallVector && that)54   SmallVector(SmallVector&& that) : SmallVector() { *this = std::move(that); }
55 
SmallVector(const std::vector<T> & vec)56   SmallVector(const std::vector<T>& vec) : SmallVector() {
57     if (vec.size() > small_size) {
58       large_data_ = MakeUnique<std::vector<T>>(vec);
59     } else {
60       size_ = vec.size();
61       for (uint32_t i = 0; i < size_; i++) {
62         new (small_data_ + i) T(vec[i]);
63       }
64     }
65   }
66 
SmallVector(std::vector<T> && vec)67   SmallVector(std::vector<T>&& vec) : SmallVector() {
68     if (vec.size() > small_size) {
69       large_data_ = MakeUnique<std::vector<T>>(std::move(vec));
70     } else {
71       size_ = vec.size();
72       for (uint32_t i = 0; i < size_; i++) {
73         new (small_data_ + i) T(std::move(vec[i]));
74       }
75     }
76     vec.clear();
77   }
78 
SmallVector(std::initializer_list<T> init_list)79   SmallVector(std::initializer_list<T> init_list) : SmallVector() {
80     if (init_list.size() < small_size) {
81       for (auto it = init_list.begin(); it != init_list.end(); ++it) {
82         new (small_data_ + (size_++)) T(std::move(*it));
83       }
84     } else {
85       large_data_ = MakeUnique<std::vector<T>>(std::move(init_list));
86     }
87   }
88 
SmallVector(size_t s,const T & v)89   SmallVector(size_t s, const T& v) : SmallVector() { resize(s, v); }
90 
~SmallVector()91   virtual ~SmallVector() {
92     for (T* p = small_data_; p < small_data_ + size_; ++p) {
93       p->~T();
94     }
95   }
96 
97   SmallVector& operator=(const SmallVector& that) {
98     assert(small_data_);
99     if (that.large_data_) {
100       if (large_data_) {
101         *large_data_ = *that.large_data_;
102       } else {
103         large_data_ = MakeUnique<std::vector<T>>(*that.large_data_);
104       }
105     } else {
106       large_data_.reset(nullptr);
107       size_t i = 0;
108       // Do a copy for any element in |this| that is already constructed.
109       for (; i < size_ && i < that.size_; ++i) {
110         small_data_[i] = that.small_data_[i];
111       }
112 
113       if (i >= that.size_) {
114         // If the size of |this| becomes smaller after the assignment, then
115         // destroy any extra elements.
116         for (; i < size_; ++i) {
117           small_data_[i].~T();
118         }
119       } else {
120         // If the size of |this| becomes larger after the assignement, copy
121         // construct the new elements that are needed.
122         for (; i < that.size_; ++i) {
123           new (small_data_ + i) T(that.small_data_[i]);
124         }
125       }
126       size_ = that.size_;
127     }
128     return *this;
129   }
130 
131   SmallVector& operator=(SmallVector&& that) {
132     if (that.large_data_) {
133       large_data_.reset(that.large_data_.release());
134     } else {
135       large_data_.reset(nullptr);
136       size_t i = 0;
137       // Do a move for any element in |this| that is already constructed.
138       for (; i < size_ && i < that.size_; ++i) {
139         small_data_[i] = std::move(that.small_data_[i]);
140       }
141 
142       if (i >= that.size_) {
143         // If the size of |this| becomes smaller after the assignment, then
144         // destroy any extra elements.
145         for (; i < size_; ++i) {
146           small_data_[i].~T();
147         }
148       } else {
149         // If the size of |this| becomes larger after the assignement, move
150         // construct the new elements that are needed.
151         for (; i < that.size_; ++i) {
152           new (small_data_ + i) T(std::move(that.small_data_[i]));
153         }
154       }
155       size_ = that.size_;
156     }
157 
158     // Reset |that| because all of the data has been moved to |this|.
159     that.DestructSmallData();
160     return *this;
161   }
162 
163   template <class OtherVector>
164   friend bool operator==(const SmallVector& lhs, const OtherVector& rhs) {
165     if (lhs.size() != rhs.size()) {
166       return false;
167     }
168 
169     auto rit = rhs.begin();
170     for (auto lit = lhs.begin(); lit != lhs.end(); ++lit, ++rit) {
171       if (*lit != *rit) {
172         return false;
173       }
174     }
175     return true;
176   }
177 
178   friend bool operator==(const std::vector<T>& lhs, const SmallVector& rhs) {
179     return rhs == lhs;
180   }
181 
182   friend bool operator!=(const SmallVector& lhs, const std::vector<T>& rhs) {
183     return !(lhs == rhs);
184   }
185 
186   friend bool operator!=(const std::vector<T>& lhs, const SmallVector& rhs) {
187     return rhs != lhs;
188   }
189 
190   T& operator[](size_t i) {
191     if (!large_data_) {
192       return small_data_[i];
193     } else {
194       return (*large_data_)[i];
195     }
196   }
197 
198   const T& operator[](size_t i) const {
199     if (!large_data_) {
200       return small_data_[i];
201     } else {
202       return (*large_data_)[i];
203     }
204   }
205 
size()206   size_t size() const {
207     if (!large_data_) {
208       return size_;
209     } else {
210       return large_data_->size();
211     }
212   }
213 
begin()214   iterator begin() {
215     if (large_data_) {
216       return large_data_->data();
217     } else {
218       return small_data_;
219     }
220   }
221 
begin()222   const_iterator begin() const {
223     if (large_data_) {
224       return large_data_->data();
225     } else {
226       return small_data_;
227     }
228   }
229 
cbegin()230   const_iterator cbegin() const { return begin(); }
231 
end()232   iterator end() {
233     if (large_data_) {
234       return large_data_->data() + large_data_->size();
235     } else {
236       return small_data_ + size_;
237     }
238   }
239 
end()240   const_iterator end() const {
241     if (large_data_) {
242       return large_data_->data() + large_data_->size();
243     } else {
244       return small_data_ + size_;
245     }
246   }
247 
cend()248   const_iterator cend() const { return end(); }
249 
data()250   T* data() { return begin(); }
251 
data()252   const T* data() const { return cbegin(); }
253 
front()254   T& front() { return (*this)[0]; }
255 
front()256   const T& front() const { return (*this)[0]; }
257 
erase(const_iterator pos)258   iterator erase(const_iterator pos) { return erase(pos, pos + 1); }
259 
erase(const_iterator first,const_iterator last)260   iterator erase(const_iterator first, const_iterator last) {
261     if (large_data_) {
262       size_t start_index = first - large_data_->data();
263       size_t end_index = last - large_data_->data();
264       auto r = large_data_->erase(large_data_->begin() + start_index,
265                                   large_data_->begin() + end_index);
266       return large_data_->data() + (r - large_data_->begin());
267     }
268 
269     // Since C++11, std::vector has |const_iterator| for the parameters, so I
270     // follow that.  However, I need iterators to modify the current container,
271     // which is not const.  This is why I cast away the const.
272     iterator f = const_cast<iterator>(first);
273     iterator l = const_cast<iterator>(last);
274     iterator e = end();
275 
276     size_t num_of_del_elements = last - first;
277     iterator ret = f;
278     if (first == last) {
279       return ret;
280     }
281 
282     // Move |last| and any elements after it their earlier position.
283     while (l != e) {
284       *f = std::move(*l);
285       ++f;
286       ++l;
287     }
288 
289     // Destroy the elements that were supposed to be deleted.
290     while (f != l) {
291       f->~T();
292       ++f;
293     }
294 
295     // Update the size.
296     size_ -= num_of_del_elements;
297     return ret;
298   }
299 
push_back(const T & value)300   void push_back(const T& value) {
301     if (!large_data_ && size_ == small_size) {
302       MoveToLargeData();
303     }
304 
305     if (large_data_) {
306       large_data_->push_back(value);
307       return;
308     }
309 
310     new (small_data_ + size_) T(value);
311     ++size_;
312   }
313 
push_back(T && value)314   void push_back(T&& value) {
315     if (!large_data_ && size_ == small_size) {
316       MoveToLargeData();
317     }
318 
319     if (large_data_) {
320       large_data_->push_back(std::move(value));
321       return;
322     }
323 
324     new (small_data_ + size_) T(std::move(value));
325     ++size_;
326   }
327 
328   template <class InputIt>
insert(iterator pos,InputIt first,InputIt last)329   iterator insert(iterator pos, InputIt first, InputIt last) {
330     size_t element_idx = (pos - begin());
331     size_t num_of_new_elements = std::distance(first, last);
332     size_t new_size = size_ + num_of_new_elements;
333     if (!large_data_ && new_size > small_size) {
334       MoveToLargeData();
335     }
336 
337     if (large_data_) {
338       typename std::vector<T>::iterator new_pos =
339           large_data_->begin() + element_idx;
340       large_data_->insert(new_pos, first, last);
341       return begin() + element_idx;
342     }
343 
344     // Move |pos| and all of the elements after it over |num_of_new_elements|
345     // places.  We start at the end and work backwards, to make sure we do not
346     // overwrite data that we have not moved yet.
347     for (iterator i = begin() + new_size - 1, j = end() - 1; j >= pos;
348          --i, --j) {
349       if (i >= begin() + size_) {
350         new (i) T(std::move(*j));
351       } else {
352         *i = std::move(*j);
353       }
354     }
355 
356     // Copy the new elements into position.
357     iterator p = pos;
358     for (; first != last; ++p, ++first) {
359       if (p >= small_data_ + size_) {
360         new (p) T(*first);
361       } else {
362         *p = *first;
363       }
364     }
365 
366     // Upate the size.
367     size_ += num_of_new_elements;
368     return pos;
369   }
370 
empty()371   bool empty() const {
372     if (large_data_) {
373       return large_data_->empty();
374     }
375     return size_ == 0;
376   }
377 
clear()378   void clear() {
379     if (large_data_) {
380       large_data_->clear();
381     } else {
382       DestructSmallData();
383     }
384   }
385 
386   template <class... Args>
emplace_back(Args &&...args)387   void emplace_back(Args&&... args) {
388     if (!large_data_ && size_ == small_size) {
389       MoveToLargeData();
390     }
391 
392     if (large_data_) {
393       large_data_->emplace_back(std::forward<Args>(args)...);
394     } else {
395       new (small_data_ + size_) T(std::forward<Args>(args)...);
396       ++size_;
397     }
398   }
399 
resize(size_t new_size,const T & v)400   void resize(size_t new_size, const T& v) {
401     if (!large_data_ && new_size > small_size) {
402       MoveToLargeData();
403     }
404 
405     if (large_data_) {
406       large_data_->resize(new_size, v);
407       return;
408     }
409 
410     // If |new_size| < |size_|, then destroy the extra elements.
411     for (size_t i = new_size; i < size_; ++i) {
412       small_data_[i].~T();
413     }
414 
415     // If |new_size| > |size_|, the copy construct the new elements.
416     for (size_t i = size_; i < new_size; ++i) {
417       new (small_data_ + i) T(v);
418     }
419 
420     // Update the size.
421     size_ = new_size;
422   }
423 
424  private:
425   // Moves all of the element from |small_data_| into a new std::vector that can
426   // be access through |large_data|.
MoveToLargeData()427   void MoveToLargeData() {
428     assert(!large_data_);
429     large_data_ = MakeUnique<std::vector<T>>();
430     for (size_t i = 0; i < size_; ++i) {
431       large_data_->emplace_back(std::move(small_data_[i]));
432     }
433     DestructSmallData();
434   }
435 
436   // Destroys all of the elements in |small_data_| that have been constructed.
DestructSmallData()437   void DestructSmallData() {
438     for (size_t i = 0; i < size_; ++i) {
439       small_data_[i].~T();
440     }
441     size_ = 0;
442   }
443 
444   // The number of elements in |small_data_| that have been constructed.
445   size_t size_;
446 
447   // The pointed used to access the array of elements when the number of
448   // elements is small.
449   T* small_data_;
450 
451   // The actual data used to store the array elements.  It must never be used
452   // directly, but must only be accesed through |small_data_|.
453   typename std::aligned_storage<sizeof(T), std::alignment_of<T>::value>::type
454       buffer[small_size];
455 
456   // A pointer to a vector that is used to store the elements of the vector when
457   // this size exceeds |small_size|.  If |large_data_| is nullptr, then the data
458   // is stored in |small_data_|.  Otherwise, the data is stored in
459   // |large_data_|.
460   std::unique_ptr<std::vector<T>> large_data_;
461 };  // namespace utils
462 
463 }  // namespace utils
464 }  // namespace spvtools
465 
466 #endif  // SOURCE_UTIL_SMALL_VECTOR_H_
467