1; 2; jfdctint.asm - accurate integer FDCT (64-bit AVX2) 3; 4; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB 5; Copyright (C) 2009, 2016, 2018, 2020, D. R. Commander. 6; 7; Based on the x86 SIMD extension for IJG JPEG library 8; Copyright (C) 1999-2006, MIYASAKA Masaru. 9; For conditions of distribution and use, see copyright notice in jsimdext.inc 10; 11; This file should be assembled with NASM (Netwide Assembler), 12; can *not* be assembled with Microsoft's MASM or any compatible 13; assembler (including Borland's Turbo Assembler). 14; NASM is available from http://nasm.sourceforge.net/ or 15; http://sourceforge.net/project/showfiles.php?group_id=6208 16; 17; This file contains a slower but more accurate integer implementation of the 18; forward DCT (Discrete Cosine Transform). The following code is based 19; directly on the IJG's original jfdctint.c; see the jfdctint.c for 20; more details. 21 22%include "jsimdext.inc" 23%include "jdct.inc" 24 25; -------------------------------------------------------------------------- 26 27%define CONST_BITS 13 28%define PASS1_BITS 2 29 30%define DESCALE_P1 (CONST_BITS - PASS1_BITS) 31%define DESCALE_P2 (CONST_BITS + PASS1_BITS) 32 33%if CONST_BITS == 13 34F_0_298 equ 2446 ; FIX(0.298631336) 35F_0_390 equ 3196 ; FIX(0.390180644) 36F_0_541 equ 4433 ; FIX(0.541196100) 37F_0_765 equ 6270 ; FIX(0.765366865) 38F_0_899 equ 7373 ; FIX(0.899976223) 39F_1_175 equ 9633 ; FIX(1.175875602) 40F_1_501 equ 12299 ; FIX(1.501321110) 41F_1_847 equ 15137 ; FIX(1.847759065) 42F_1_961 equ 16069 ; FIX(1.961570560) 43F_2_053 equ 16819 ; FIX(2.053119869) 44F_2_562 equ 20995 ; FIX(2.562915447) 45F_3_072 equ 25172 ; FIX(3.072711026) 46%else 47; NASM cannot do compile-time arithmetic on floating-point constants. 48%define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n)) 49F_0_298 equ DESCALE( 320652955, 30 - CONST_BITS) ; FIX(0.298631336) 50F_0_390 equ DESCALE( 418953276, 30 - CONST_BITS) ; FIX(0.390180644) 51F_0_541 equ DESCALE( 581104887, 30 - CONST_BITS) ; FIX(0.541196100) 52F_0_765 equ DESCALE( 821806413, 30 - CONST_BITS) ; FIX(0.765366865) 53F_0_899 equ DESCALE( 966342111, 30 - CONST_BITS) ; FIX(0.899976223) 54F_1_175 equ DESCALE(1262586813, 30 - CONST_BITS) ; FIX(1.175875602) 55F_1_501 equ DESCALE(1612031267, 30 - CONST_BITS) ; FIX(1.501321110) 56F_1_847 equ DESCALE(1984016188, 30 - CONST_BITS) ; FIX(1.847759065) 57F_1_961 equ DESCALE(2106220350, 30 - CONST_BITS) ; FIX(1.961570560) 58F_2_053 equ DESCALE(2204520673, 30 - CONST_BITS) ; FIX(2.053119869) 59F_2_562 equ DESCALE(2751909506, 30 - CONST_BITS) ; FIX(2.562915447) 60F_3_072 equ DESCALE(3299298341, 30 - CONST_BITS) ; FIX(3.072711026) 61%endif 62 63; -------------------------------------------------------------------------- 64; In-place 8x8x16-bit matrix transpose using AVX2 instructions 65; %1-%4: Input/output registers 66; %5-%8: Temp registers 67 68%macro dotranspose 8 69 ; %1=(00 01 02 03 04 05 06 07 40 41 42 43 44 45 46 47) 70 ; %2=(10 11 12 13 14 15 16 17 50 51 52 53 54 55 56 57) 71 ; %3=(20 21 22 23 24 25 26 27 60 61 62 63 64 65 66 67) 72 ; %4=(30 31 32 33 34 35 36 37 70 71 72 73 74 75 76 77) 73 74 vpunpcklwd %5, %1, %2 75 vpunpckhwd %6, %1, %2 76 vpunpcklwd %7, %3, %4 77 vpunpckhwd %8, %3, %4 78 ; transpose coefficients(phase 1) 79 ; %5=(00 10 01 11 02 12 03 13 40 50 41 51 42 52 43 53) 80 ; %6=(04 14 05 15 06 16 07 17 44 54 45 55 46 56 47 57) 81 ; %7=(20 30 21 31 22 32 23 33 60 70 61 71 62 72 63 73) 82 ; %8=(24 34 25 35 26 36 27 37 64 74 65 75 66 76 67 77) 83 84 vpunpckldq %1, %5, %7 85 vpunpckhdq %2, %5, %7 86 vpunpckldq %3, %6, %8 87 vpunpckhdq %4, %6, %8 88 ; transpose coefficients(phase 2) 89 ; %1=(00 10 20 30 01 11 21 31 40 50 60 70 41 51 61 71) 90 ; %2=(02 12 22 32 03 13 23 33 42 52 62 72 43 53 63 73) 91 ; %3=(04 14 24 34 05 15 25 35 44 54 64 74 45 55 65 75) 92 ; %4=(06 16 26 36 07 17 27 37 46 56 66 76 47 57 67 77) 93 94 vpermq %1, %1, 0x8D 95 vpermq %2, %2, 0x8D 96 vpermq %3, %3, 0xD8 97 vpermq %4, %4, 0xD8 98 ; transpose coefficients(phase 3) 99 ; %1=(01 11 21 31 41 51 61 71 00 10 20 30 40 50 60 70) 100 ; %2=(03 13 23 33 43 53 63 73 02 12 22 32 42 52 62 72) 101 ; %3=(04 14 24 34 44 54 64 74 05 15 25 35 45 55 65 75) 102 ; %4=(06 16 26 36 46 56 66 76 07 17 27 37 47 57 67 77) 103%endmacro 104 105; -------------------------------------------------------------------------- 106; In-place 8x8x16-bit accurate integer forward DCT using AVX2 instructions 107; %1-%4: Input/output registers 108; %5-%8: Temp registers 109; %9: Pass (1 or 2) 110 111%macro dodct 9 112 vpsubw %5, %1, %4 ; %5=data1_0-data6_7=tmp6_7 113 vpaddw %6, %1, %4 ; %6=data1_0+data6_7=tmp1_0 114 vpaddw %7, %2, %3 ; %7=data3_2+data4_5=tmp3_2 115 vpsubw %8, %2, %3 ; %8=data3_2-data4_5=tmp4_5 116 117 ; -- Even part 118 119 vperm2i128 %6, %6, %6, 0x01 ; %6=tmp0_1 120 vpaddw %1, %6, %7 ; %1=tmp0_1+tmp3_2=tmp10_11 121 vpsubw %6, %6, %7 ; %6=tmp0_1-tmp3_2=tmp13_12 122 123 vperm2i128 %7, %1, %1, 0x01 ; %7=tmp11_10 124 vpsignw %1, %1, [rel PW_1_NEG1] ; %1=tmp10_neg11 125 vpaddw %7, %7, %1 ; %7=(tmp10+tmp11)_(tmp10-tmp11) 126%if %9 == 1 127 vpsllw %1, %7, PASS1_BITS ; %1=data0_4 128%else 129 vpaddw %7, %7, [rel PW_DESCALE_P2X] 130 vpsraw %1, %7, PASS1_BITS ; %1=data0_4 131%endif 132 133 ; (Original) 134 ; z1 = (tmp12 + tmp13) * 0.541196100; 135 ; data2 = z1 + tmp13 * 0.765366865; 136 ; data6 = z1 + tmp12 * -1.847759065; 137 ; 138 ; (This implementation) 139 ; data2 = tmp13 * (0.541196100 + 0.765366865) + tmp12 * 0.541196100; 140 ; data6 = tmp13 * 0.541196100 + tmp12 * (0.541196100 - 1.847759065); 141 142 vperm2i128 %7, %6, %6, 0x01 ; %7=tmp12_13 143 vpunpcklwd %2, %6, %7 144 vpunpckhwd %6, %6, %7 145 vpmaddwd %2, %2, [rel PW_F130_F054_MF130_F054] ; %2=data2_6L 146 vpmaddwd %6, %6, [rel PW_F130_F054_MF130_F054] ; %6=data2_6H 147 148 vpaddd %2, %2, [rel PD_DESCALE_P %+ %9] 149 vpaddd %6, %6, [rel PD_DESCALE_P %+ %9] 150 vpsrad %2, %2, DESCALE_P %+ %9 151 vpsrad %6, %6, DESCALE_P %+ %9 152 153 vpackssdw %3, %2, %6 ; %6=data2_6 154 155 ; -- Odd part 156 157 vpaddw %7, %8, %5 ; %7=tmp4_5+tmp6_7=z3_4 158 159 ; (Original) 160 ; z5 = (z3 + z4) * 1.175875602; 161 ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; 162 ; z3 += z5; z4 += z5; 163 ; 164 ; (This implementation) 165 ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; 166 ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); 167 168 vperm2i128 %2, %7, %7, 0x01 ; %2=z4_3 169 vpunpcklwd %6, %7, %2 170 vpunpckhwd %7, %7, %2 171 vpmaddwd %6, %6, [rel PW_MF078_F117_F078_F117] ; %6=z3_4L 172 vpmaddwd %7, %7, [rel PW_MF078_F117_F078_F117] ; %7=z3_4H 173 174 ; (Original) 175 ; z1 = tmp4 + tmp7; z2 = tmp5 + tmp6; 176 ; tmp4 = tmp4 * 0.298631336; tmp5 = tmp5 * 2.053119869; 177 ; tmp6 = tmp6 * 3.072711026; tmp7 = tmp7 * 1.501321110; 178 ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; 179 ; data7 = tmp4 + z1 + z3; data5 = tmp5 + z2 + z4; 180 ; data3 = tmp6 + z2 + z3; data1 = tmp7 + z1 + z4; 181 ; 182 ; (This implementation) 183 ; tmp4 = tmp4 * (0.298631336 - 0.899976223) + tmp7 * -0.899976223; 184 ; tmp5 = tmp5 * (2.053119869 - 2.562915447) + tmp6 * -2.562915447; 185 ; tmp6 = tmp5 * -2.562915447 + tmp6 * (3.072711026 - 2.562915447); 186 ; tmp7 = tmp4 * -0.899976223 + tmp7 * (1.501321110 - 0.899976223); 187 ; data7 = tmp4 + z3; data5 = tmp5 + z4; 188 ; data3 = tmp6 + z3; data1 = tmp7 + z4; 189 190 vperm2i128 %4, %5, %5, 0x01 ; %4=tmp7_6 191 vpunpcklwd %2, %8, %4 192 vpunpckhwd %4, %8, %4 193 vpmaddwd %2, %2, [rel PW_MF060_MF089_MF050_MF256] ; %2=tmp4_5L 194 vpmaddwd %4, %4, [rel PW_MF060_MF089_MF050_MF256] ; %4=tmp4_5H 195 196 vpaddd %2, %2, %6 ; %2=data7_5L 197 vpaddd %4, %4, %7 ; %4=data7_5H 198 199 vpaddd %2, %2, [rel PD_DESCALE_P %+ %9] 200 vpaddd %4, %4, [rel PD_DESCALE_P %+ %9] 201 vpsrad %2, %2, DESCALE_P %+ %9 202 vpsrad %4, %4, DESCALE_P %+ %9 203 204 vpackssdw %4, %2, %4 ; %4=data7_5 205 206 vperm2i128 %2, %8, %8, 0x01 ; %2=tmp5_4 207 vpunpcklwd %8, %5, %2 208 vpunpckhwd %5, %5, %2 209 vpmaddwd %8, %8, [rel PW_F050_MF256_F060_MF089] ; %8=tmp6_7L 210 vpmaddwd %5, %5, [rel PW_F050_MF256_F060_MF089] ; %5=tmp6_7H 211 212 vpaddd %8, %8, %6 ; %8=data3_1L 213 vpaddd %5, %5, %7 ; %5=data3_1H 214 215 vpaddd %8, %8, [rel PD_DESCALE_P %+ %9] 216 vpaddd %5, %5, [rel PD_DESCALE_P %+ %9] 217 vpsrad %8, %8, DESCALE_P %+ %9 218 vpsrad %5, %5, DESCALE_P %+ %9 219 220 vpackssdw %2, %8, %5 ; %2=data3_1 221%endmacro 222 223; -------------------------------------------------------------------------- 224 SECTION SEG_CONST 225 226 alignz 32 227 GLOBAL_DATA(jconst_fdct_islow_avx2) 228 229EXTN(jconst_fdct_islow_avx2): 230 231PW_F130_F054_MF130_F054 times 4 dw (F_0_541 + F_0_765), F_0_541 232 times 4 dw (F_0_541 - F_1_847), F_0_541 233PW_MF078_F117_F078_F117 times 4 dw (F_1_175 - F_1_961), F_1_175 234 times 4 dw (F_1_175 - F_0_390), F_1_175 235PW_MF060_MF089_MF050_MF256 times 4 dw (F_0_298 - F_0_899), -F_0_899 236 times 4 dw (F_2_053 - F_2_562), -F_2_562 237PW_F050_MF256_F060_MF089 times 4 dw (F_3_072 - F_2_562), -F_2_562 238 times 4 dw (F_1_501 - F_0_899), -F_0_899 239PD_DESCALE_P1 times 8 dd 1 << (DESCALE_P1 - 1) 240PD_DESCALE_P2 times 8 dd 1 << (DESCALE_P2 - 1) 241PW_DESCALE_P2X times 16 dw 1 << (PASS1_BITS - 1) 242PW_1_NEG1 times 8 dw 1 243 times 8 dw -1 244 245 alignz 32 246 247; -------------------------------------------------------------------------- 248 SECTION SEG_TEXT 249 BITS 64 250; 251; Perform the forward DCT on one block of samples. 252; 253; GLOBAL(void) 254; jsimd_fdct_islow_avx2(DCTELEM *data) 255; 256 257; r10 = DCTELEM *data 258 259 align 32 260 GLOBAL_FUNCTION(jsimd_fdct_islow_avx2) 261 262EXTN(jsimd_fdct_islow_avx2): 263 push rbp 264 mov rax, rsp 265 mov rbp, rsp 266 collect_args 1 267 268 ; ---- Pass 1: process rows. 269 270 vmovdqu ymm4, YMMWORD [YMMBLOCK(0,0,r10,SIZEOF_DCTELEM)] 271 vmovdqu ymm5, YMMWORD [YMMBLOCK(2,0,r10,SIZEOF_DCTELEM)] 272 vmovdqu ymm6, YMMWORD [YMMBLOCK(4,0,r10,SIZEOF_DCTELEM)] 273 vmovdqu ymm7, YMMWORD [YMMBLOCK(6,0,r10,SIZEOF_DCTELEM)] 274 ; ymm4=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17) 275 ; ymm5=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37) 276 ; ymm6=(40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57) 277 ; ymm7=(60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77) 278 279 vperm2i128 ymm0, ymm4, ymm6, 0x20 280 vperm2i128 ymm1, ymm4, ymm6, 0x31 281 vperm2i128 ymm2, ymm5, ymm7, 0x20 282 vperm2i128 ymm3, ymm5, ymm7, 0x31 283 ; ymm0=(00 01 02 03 04 05 06 07 40 41 42 43 44 45 46 47) 284 ; ymm1=(10 11 12 13 14 15 16 17 50 51 52 53 54 55 56 57) 285 ; ymm2=(20 21 22 23 24 25 26 27 60 61 62 63 64 65 66 67) 286 ; ymm3=(30 31 32 33 34 35 36 37 70 71 72 73 74 75 76 77) 287 288 dotranspose ymm0, ymm1, ymm2, ymm3, ymm4, ymm5, ymm6, ymm7 289 290 dodct ymm0, ymm1, ymm2, ymm3, ymm4, ymm5, ymm6, ymm7, 1 291 ; ymm0=data0_4, ymm1=data3_1, ymm2=data2_6, ymm3=data7_5 292 293 ; ---- Pass 2: process columns. 294 295 vperm2i128 ymm4, ymm1, ymm3, 0x20 ; ymm4=data3_7 296 vperm2i128 ymm1, ymm1, ymm3, 0x31 ; ymm1=data1_5 297 298 dotranspose ymm0, ymm1, ymm2, ymm4, ymm3, ymm5, ymm6, ymm7 299 300 dodct ymm0, ymm1, ymm2, ymm4, ymm3, ymm5, ymm6, ymm7, 2 301 ; ymm0=data0_4, ymm1=data3_1, ymm2=data2_6, ymm4=data7_5 302 303 vperm2i128 ymm3, ymm0, ymm1, 0x30 ; ymm3=data0_1 304 vperm2i128 ymm5, ymm2, ymm1, 0x20 ; ymm5=data2_3 305 vperm2i128 ymm6, ymm0, ymm4, 0x31 ; ymm6=data4_5 306 vperm2i128 ymm7, ymm2, ymm4, 0x21 ; ymm7=data6_7 307 308 vmovdqu YMMWORD [YMMBLOCK(0,0,r10,SIZEOF_DCTELEM)], ymm3 309 vmovdqu YMMWORD [YMMBLOCK(2,0,r10,SIZEOF_DCTELEM)], ymm5 310 vmovdqu YMMWORD [YMMBLOCK(4,0,r10,SIZEOF_DCTELEM)], ymm6 311 vmovdqu YMMWORD [YMMBLOCK(6,0,r10,SIZEOF_DCTELEM)], ymm7 312 313 vzeroupper 314 uncollect_args 1 315 pop rbp 316 ret 317 318; For some reason, the OS X linker does not honor the request to align the 319; segment unless we do this. 320 align 32 321