1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: node_hash_set.h
17 // -----------------------------------------------------------------------------
18 //
19 // An `absl::node_hash_set<T>` is an unordered associative container designed to
20 // be a more efficient replacement for `std::unordered_set`. Like
21 // `unordered_set`, search, insertion, and deletion of map elements can be done
22 // as an `O(1)` operation. However, `node_hash_set` (and other unordered
23 // associative containers known as the collection of Abseil "Swiss tables")
24 // contain other optimizations that result in both memory and computation
25 // advantages.
26 //
27 // In most cases, your default choice for a hash table should be a map of type
28 // `flat_hash_map` or a set of type `flat_hash_set`. However, if you need
29 // pointer stability, a `node_hash_set` should be your preferred choice. As
30 // well, if you are migrating your code from using `std::unordered_set`, a
31 // `node_hash_set` should be an easy migration. Consider migrating to
32 // `node_hash_set` and perhaps converting to a more efficient `flat_hash_set`
33 // upon further review.
34
35 #ifndef ABSL_CONTAINER_NODE_HASH_SET_H_
36 #define ABSL_CONTAINER_NODE_HASH_SET_H_
37
38 #include <type_traits>
39
40 #include "absl/algorithm/container.h"
41 #include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export
42 #include "absl/container/internal/node_hash_policy.h"
43 #include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export
44 #include "absl/memory/memory.h"
45
46 namespace absl {
47 ABSL_NAMESPACE_BEGIN
48 namespace container_internal {
49 template <typename T>
50 struct NodeHashSetPolicy;
51 } // namespace container_internal
52
53 // -----------------------------------------------------------------------------
54 // absl::node_hash_set
55 // -----------------------------------------------------------------------------
56 //
57 // An `absl::node_hash_set<T>` is an unordered associative container which
58 // has been optimized for both speed and memory footprint in most common use
59 // cases. Its interface is similar to that of `std::unordered_set<T>` with the
60 // following notable differences:
61 //
62 // * Supports heterogeneous lookup, through `find()`, `operator[]()` and
63 // `insert()`, provided that the map is provided a compatible heterogeneous
64 // hashing function and equality operator.
65 // * Contains a `capacity()` member function indicating the number of element
66 // slots (open, deleted, and empty) within the hash set.
67 // * Returns `void` from the `erase(iterator)` overload.
68 //
69 // By default, `node_hash_set` uses the `absl::Hash` hashing framework.
70 // All fundamental and Abseil types that support the `absl::Hash` framework have
71 // a compatible equality operator for comparing insertions into `node_hash_set`.
72 // If your type is not yet supported by the `absl::Hash` framework, see
73 // absl/hash/hash.h for information on extending Abseil hashing to user-defined
74 // types.
75 //
76 // Example:
77 //
78 // // Create a node hash set of three strings
79 // absl::node_hash_map<std::string, std::string> ducks =
80 // {"huey", "dewey", "louie"};
81 //
82 // // Insert a new element into the node hash map
83 // ducks.insert("donald"};
84 //
85 // // Force a rehash of the node hash map
86 // ducks.rehash(0);
87 //
88 // // See if "dewey" is present
89 // if (ducks.contains("dewey")) {
90 // std::cout << "We found dewey!" << std::endl;
91 // }
92 template <class T, class Hash = absl::container_internal::hash_default_hash<T>,
93 class Eq = absl::container_internal::hash_default_eq<T>,
94 class Alloc = std::allocator<T>>
95 class node_hash_set
96 : public absl::container_internal::raw_hash_set<
97 absl::container_internal::NodeHashSetPolicy<T>, Hash, Eq, Alloc> {
98 using Base = typename node_hash_set::raw_hash_set;
99
100 public:
101 // Constructors and Assignment Operators
102 //
103 // A node_hash_set supports the same overload set as `std::unordered_map`
104 // for construction and assignment:
105 //
106 // * Default constructor
107 //
108 // // No allocation for the table's elements is made.
109 // absl::node_hash_set<std::string> set1;
110 //
111 // * Initializer List constructor
112 //
113 // absl::node_hash_set<std::string> set2 =
114 // {{"huey"}, {"dewey"}, {"louie"}};
115 //
116 // * Copy constructor
117 //
118 // absl::node_hash_set<std::string> set3(set2);
119 //
120 // * Copy assignment operator
121 //
122 // // Hash functor and Comparator are copied as well
123 // absl::node_hash_set<std::string> set4;
124 // set4 = set3;
125 //
126 // * Move constructor
127 //
128 // // Move is guaranteed efficient
129 // absl::node_hash_set<std::string> set5(std::move(set4));
130 //
131 // * Move assignment operator
132 //
133 // // May be efficient if allocators are compatible
134 // absl::node_hash_set<std::string> set6;
135 // set6 = std::move(set5);
136 //
137 // * Range constructor
138 //
139 // std::vector<std::string> v = {"a", "b"};
140 // absl::node_hash_set<std::string> set7(v.begin(), v.end());
node_hash_set()141 node_hash_set() {}
142 using Base::Base;
143
144 // node_hash_set::begin()
145 //
146 // Returns an iterator to the beginning of the `node_hash_set`.
147 using Base::begin;
148
149 // node_hash_set::cbegin()
150 //
151 // Returns a const iterator to the beginning of the `node_hash_set`.
152 using Base::cbegin;
153
154 // node_hash_set::cend()
155 //
156 // Returns a const iterator to the end of the `node_hash_set`.
157 using Base::cend;
158
159 // node_hash_set::end()
160 //
161 // Returns an iterator to the end of the `node_hash_set`.
162 using Base::end;
163
164 // node_hash_set::capacity()
165 //
166 // Returns the number of element slots (assigned, deleted, and empty)
167 // available within the `node_hash_set`.
168 //
169 // NOTE: this member function is particular to `absl::node_hash_set` and is
170 // not provided in the `std::unordered_map` API.
171 using Base::capacity;
172
173 // node_hash_set::empty()
174 //
175 // Returns whether or not the `node_hash_set` is empty.
176 using Base::empty;
177
178 // node_hash_set::max_size()
179 //
180 // Returns the largest theoretical possible number of elements within a
181 // `node_hash_set` under current memory constraints. This value can be thought
182 // of the largest value of `std::distance(begin(), end())` for a
183 // `node_hash_set<T>`.
184 using Base::max_size;
185
186 // node_hash_set::size()
187 //
188 // Returns the number of elements currently within the `node_hash_set`.
189 using Base::size;
190
191 // node_hash_set::clear()
192 //
193 // Removes all elements from the `node_hash_set`. Invalidates any references,
194 // pointers, or iterators referring to contained elements.
195 //
196 // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
197 // the underlying buffer call `erase(begin(), end())`.
198 using Base::clear;
199
200 // node_hash_set::erase()
201 //
202 // Erases elements within the `node_hash_set`. Erasing does not trigger a
203 // rehash. Overloads are listed below.
204 //
205 // void erase(const_iterator pos):
206 //
207 // Erases the element at `position` of the `node_hash_set`, returning
208 // `void`.
209 //
210 // NOTE: this return behavior is different than that of STL containers in
211 // general and `std::unordered_map` in particular.
212 //
213 // iterator erase(const_iterator first, const_iterator last):
214 //
215 // Erases the elements in the open interval [`first`, `last`), returning an
216 // iterator pointing to `last`.
217 //
218 // size_type erase(const key_type& key):
219 //
220 // Erases the element with the matching key, if it exists, returning the
221 // number of elements erased (0 or 1).
222 using Base::erase;
223
224 // node_hash_set::insert()
225 //
226 // Inserts an element of the specified value into the `node_hash_set`,
227 // returning an iterator pointing to the newly inserted element, provided that
228 // an element with the given key does not already exist. If rehashing occurs
229 // due to the insertion, all iterators are invalidated. Overloads are listed
230 // below.
231 //
232 // std::pair<iterator,bool> insert(const T& value):
233 //
234 // Inserts a value into the `node_hash_set`. Returns a pair consisting of an
235 // iterator to the inserted element (or to the element that prevented the
236 // insertion) and a bool denoting whether the insertion took place.
237 //
238 // std::pair<iterator,bool> insert(T&& value):
239 //
240 // Inserts a moveable value into the `node_hash_set`. Returns a pair
241 // consisting of an iterator to the inserted element (or to the element that
242 // prevented the insertion) and a bool denoting whether the insertion took
243 // place.
244 //
245 // iterator insert(const_iterator hint, const T& value):
246 // iterator insert(const_iterator hint, T&& value):
247 //
248 // Inserts a value, using the position of `hint` as a non-binding suggestion
249 // for where to begin the insertion search. Returns an iterator to the
250 // inserted element, or to the existing element that prevented the
251 // insertion.
252 //
253 // void insert(InputIterator first, InputIterator last):
254 //
255 // Inserts a range of values [`first`, `last`).
256 //
257 // NOTE: Although the STL does not specify which element may be inserted if
258 // multiple keys compare equivalently, for `node_hash_set` we guarantee the
259 // first match is inserted.
260 //
261 // void insert(std::initializer_list<T> ilist):
262 //
263 // Inserts the elements within the initializer list `ilist`.
264 //
265 // NOTE: Although the STL does not specify which element may be inserted if
266 // multiple keys compare equivalently within the initializer list, for
267 // `node_hash_set` we guarantee the first match is inserted.
268 using Base::insert;
269
270 // node_hash_set::emplace()
271 //
272 // Inserts an element of the specified value by constructing it in-place
273 // within the `node_hash_set`, provided that no element with the given key
274 // already exists.
275 //
276 // The element may be constructed even if there already is an element with the
277 // key in the container, in which case the newly constructed element will be
278 // destroyed immediately.
279 //
280 // If rehashing occurs due to the insertion, all iterators are invalidated.
281 using Base::emplace;
282
283 // node_hash_set::emplace_hint()
284 //
285 // Inserts an element of the specified value by constructing it in-place
286 // within the `node_hash_set`, using the position of `hint` as a non-binding
287 // suggestion for where to begin the insertion search, and only inserts
288 // provided that no element with the given key already exists.
289 //
290 // The element may be constructed even if there already is an element with the
291 // key in the container, in which case the newly constructed element will be
292 // destroyed immediately.
293 //
294 // If rehashing occurs due to the insertion, all iterators are invalidated.
295 using Base::emplace_hint;
296
297 // node_hash_set::extract()
298 //
299 // Extracts the indicated element, erasing it in the process, and returns it
300 // as a C++17-compatible node handle. Overloads are listed below.
301 //
302 // node_type extract(const_iterator position):
303 //
304 // Extracts the element at the indicated position and returns a node handle
305 // owning that extracted data.
306 //
307 // node_type extract(const key_type& x):
308 //
309 // Extracts the element with the key matching the passed key value and
310 // returns a node handle owning that extracted data. If the `node_hash_set`
311 // does not contain an element with a matching key, this function returns an
312 // empty node handle.
313 using Base::extract;
314
315 // node_hash_set::merge()
316 //
317 // Extracts elements from a given `source` flat hash map into this
318 // `node_hash_set`. If the destination `node_hash_set` already contains an
319 // element with an equivalent key, that element is not extracted.
320 using Base::merge;
321
322 // node_hash_set::swap(node_hash_set& other)
323 //
324 // Exchanges the contents of this `node_hash_set` with those of the `other`
325 // flat hash map, avoiding invocation of any move, copy, or swap operations on
326 // individual elements.
327 //
328 // All iterators and references on the `node_hash_set` remain valid, excepting
329 // for the past-the-end iterator, which is invalidated.
330 //
331 // `swap()` requires that the flat hash set's hashing and key equivalence
332 // functions be Swappable, and are exchaged using unqualified calls to
333 // non-member `swap()`. If the map's allocator has
334 // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
335 // set to `true`, the allocators are also exchanged using an unqualified call
336 // to non-member `swap()`; otherwise, the allocators are not swapped.
337 using Base::swap;
338
339 // node_hash_set::rehash(count)
340 //
341 // Rehashes the `node_hash_set`, setting the number of slots to be at least
342 // the passed value. If the new number of slots increases the load factor more
343 // than the current maximum load factor
344 // (`count` < `size()` / `max_load_factor()`), then the new number of slots
345 // will be at least `size()` / `max_load_factor()`.
346 //
347 // To force a rehash, pass rehash(0).
348 //
349 // NOTE: unlike behavior in `std::unordered_set`, references are also
350 // invalidated upon a `rehash()`.
351 using Base::rehash;
352
353 // node_hash_set::reserve(count)
354 //
355 // Sets the number of slots in the `node_hash_set` to the number needed to
356 // accommodate at least `count` total elements without exceeding the current
357 // maximum load factor, and may rehash the container if needed.
358 using Base::reserve;
359
360 // node_hash_set::contains()
361 //
362 // Determines whether an element comparing equal to the given `key` exists
363 // within the `node_hash_set`, returning `true` if so or `false` otherwise.
364 using Base::contains;
365
366 // node_hash_set::count(const Key& key) const
367 //
368 // Returns the number of elements comparing equal to the given `key` within
369 // the `node_hash_set`. note that this function will return either `1` or `0`
370 // since duplicate elements are not allowed within a `node_hash_set`.
371 using Base::count;
372
373 // node_hash_set::equal_range()
374 //
375 // Returns a closed range [first, last], defined by a `std::pair` of two
376 // iterators, containing all elements with the passed key in the
377 // `node_hash_set`.
378 using Base::equal_range;
379
380 // node_hash_set::find()
381 //
382 // Finds an element with the passed `key` within the `node_hash_set`.
383 using Base::find;
384
385 // node_hash_set::bucket_count()
386 //
387 // Returns the number of "buckets" within the `node_hash_set`. Note that
388 // because a flat hash map contains all elements within its internal storage,
389 // this value simply equals the current capacity of the `node_hash_set`.
390 using Base::bucket_count;
391
392 // node_hash_set::load_factor()
393 //
394 // Returns the current load factor of the `node_hash_set` (the average number
395 // of slots occupied with a value within the hash map).
396 using Base::load_factor;
397
398 // node_hash_set::max_load_factor()
399 //
400 // Manages the maximum load factor of the `node_hash_set`. Overloads are
401 // listed below.
402 //
403 // float node_hash_set::max_load_factor()
404 //
405 // Returns the current maximum load factor of the `node_hash_set`.
406 //
407 // void node_hash_set::max_load_factor(float ml)
408 //
409 // Sets the maximum load factor of the `node_hash_set` to the passed value.
410 //
411 // NOTE: This overload is provided only for API compatibility with the STL;
412 // `node_hash_set` will ignore any set load factor and manage its rehashing
413 // internally as an implementation detail.
414 using Base::max_load_factor;
415
416 // node_hash_set::get_allocator()
417 //
418 // Returns the allocator function associated with this `node_hash_set`.
419 using Base::get_allocator;
420
421 // node_hash_set::hash_function()
422 //
423 // Returns the hashing function used to hash the keys within this
424 // `node_hash_set`.
425 using Base::hash_function;
426
427 // node_hash_set::key_eq()
428 //
429 // Returns the function used for comparing keys equality.
430 using Base::key_eq;
431 };
432
433 // erase_if(node_hash_set<>, Pred)
434 //
435 // Erases all elements that satisfy the predicate `pred` from the container `c`.
436 template <typename T, typename H, typename E, typename A, typename Predicate>
erase_if(node_hash_set<T,H,E,A> & c,Predicate pred)437 void erase_if(node_hash_set<T, H, E, A>& c, Predicate pred) {
438 container_internal::EraseIf(pred, &c);
439 }
440
441 namespace container_internal {
442
443 template <class T>
444 struct NodeHashSetPolicy
445 : absl::container_internal::node_hash_policy<T&, NodeHashSetPolicy<T>> {
446 using key_type = T;
447 using init_type = T;
448 using constant_iterators = std::true_type;
449
450 template <class Allocator, class... Args>
new_elementNodeHashSetPolicy451 static T* new_element(Allocator* alloc, Args&&... args) {
452 using ValueAlloc =
453 typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
454 ValueAlloc value_alloc(*alloc);
455 T* res = absl::allocator_traits<ValueAlloc>::allocate(value_alloc, 1);
456 absl::allocator_traits<ValueAlloc>::construct(value_alloc, res,
457 std::forward<Args>(args)...);
458 return res;
459 }
460
461 template <class Allocator>
delete_elementNodeHashSetPolicy462 static void delete_element(Allocator* alloc, T* elem) {
463 using ValueAlloc =
464 typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
465 ValueAlloc value_alloc(*alloc);
466 absl::allocator_traits<ValueAlloc>::destroy(value_alloc, elem);
467 absl::allocator_traits<ValueAlloc>::deallocate(value_alloc, elem, 1);
468 }
469
470 template <class F, class... Args>
decltypeNodeHashSetPolicy471 static decltype(absl::container_internal::DecomposeValue(
472 std::declval<F>(), std::declval<Args>()...))
473 apply(F&& f, Args&&... args) {
474 return absl::container_internal::DecomposeValue(
475 std::forward<F>(f), std::forward<Args>(args)...);
476 }
477
element_space_usedNodeHashSetPolicy478 static size_t element_space_used(const T*) { return sizeof(T); }
479 };
480 } // namespace container_internal
481
482 namespace container_algorithm_internal {
483
484 // Specialization of trait in absl/algorithm/container.h
485 template <class Key, class Hash, class KeyEqual, class Allocator>
486 struct IsUnorderedContainer<absl::node_hash_set<Key, Hash, KeyEqual, Allocator>>
487 : std::true_type {};
488
489 } // namespace container_algorithm_internal
490 ABSL_NAMESPACE_END
491 } // namespace absl
492
493 #endif // ABSL_CONTAINER_NODE_HASH_SET_H_
494