1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/strings/charconv.h"
16 
17 #include <cstdlib>
18 #include <string>
19 
20 #include "gmock/gmock.h"
21 #include "gtest/gtest.h"
22 #include "absl/strings/internal/pow10_helper.h"
23 #include "absl/strings/str_cat.h"
24 #include "absl/strings/str_format.h"
25 
26 #ifdef _MSC_FULL_VER
27 #define ABSL_COMPILER_DOES_EXACT_ROUNDING 0
28 #define ABSL_STRTOD_HANDLES_NAN_CORRECTLY 0
29 #else
30 #define ABSL_COMPILER_DOES_EXACT_ROUNDING 1
31 #define ABSL_STRTOD_HANDLES_NAN_CORRECTLY 1
32 #endif
33 
34 namespace {
35 
36 using absl::strings_internal::Pow10;
37 
38 #if ABSL_COMPILER_DOES_EXACT_ROUNDING
39 
40 // Tests that the given string is accepted by absl::from_chars, and that it
41 // converts exactly equal to the given number.
TestDoubleParse(absl::string_view str,double expected_number)42 void TestDoubleParse(absl::string_view str, double expected_number) {
43   SCOPED_TRACE(str);
44   double actual_number = 0.0;
45   absl::from_chars_result result =
46       absl::from_chars(str.data(), str.data() + str.length(), actual_number);
47   EXPECT_EQ(result.ec, std::errc());
48   EXPECT_EQ(result.ptr, str.data() + str.length());
49   EXPECT_EQ(actual_number, expected_number);
50 }
51 
TestFloatParse(absl::string_view str,float expected_number)52 void TestFloatParse(absl::string_view str, float expected_number) {
53   SCOPED_TRACE(str);
54   float actual_number = 0.0;
55   absl::from_chars_result result =
56       absl::from_chars(str.data(), str.data() + str.length(), actual_number);
57   EXPECT_EQ(result.ec, std::errc());
58   EXPECT_EQ(result.ptr, str.data() + str.length());
59   EXPECT_EQ(actual_number, expected_number);
60 }
61 
62 // Tests that the given double or single precision floating point literal is
63 // parsed correctly by absl::from_chars.
64 //
65 // These convenience macros assume that the C++ compiler being used also does
66 // fully correct decimal-to-binary conversions.
67 #define FROM_CHARS_TEST_DOUBLE(number)     \
68   {                                        \
69     TestDoubleParse(#number, number);      \
70     TestDoubleParse("-" #number, -number); \
71   }
72 
73 #define FROM_CHARS_TEST_FLOAT(number)        \
74   {                                          \
75     TestFloatParse(#number, number##f);      \
76     TestFloatParse("-" #number, -number##f); \
77   }
78 
TEST(FromChars,NearRoundingCases)79 TEST(FromChars, NearRoundingCases) {
80   // Cases from "A Program for Testing IEEE Decimal-Binary Conversion"
81   // by Vern Paxson.
82 
83   // Forms that should round towards zero.  (These are the hardest cases for
84   // each decimal mantissa size.)
85   FROM_CHARS_TEST_DOUBLE(5.e125);
86   FROM_CHARS_TEST_DOUBLE(69.e267);
87   FROM_CHARS_TEST_DOUBLE(999.e-026);
88   FROM_CHARS_TEST_DOUBLE(7861.e-034);
89   FROM_CHARS_TEST_DOUBLE(75569.e-254);
90   FROM_CHARS_TEST_DOUBLE(928609.e-261);
91   FROM_CHARS_TEST_DOUBLE(9210917.e080);
92   FROM_CHARS_TEST_DOUBLE(84863171.e114);
93   FROM_CHARS_TEST_DOUBLE(653777767.e273);
94   FROM_CHARS_TEST_DOUBLE(5232604057.e-298);
95   FROM_CHARS_TEST_DOUBLE(27235667517.e-109);
96   FROM_CHARS_TEST_DOUBLE(653532977297.e-123);
97   FROM_CHARS_TEST_DOUBLE(3142213164987.e-294);
98   FROM_CHARS_TEST_DOUBLE(46202199371337.e-072);
99   FROM_CHARS_TEST_DOUBLE(231010996856685.e-073);
100   FROM_CHARS_TEST_DOUBLE(9324754620109615.e212);
101   FROM_CHARS_TEST_DOUBLE(78459735791271921.e049);
102   FROM_CHARS_TEST_DOUBLE(272104041512242479.e200);
103   FROM_CHARS_TEST_DOUBLE(6802601037806061975.e198);
104   FROM_CHARS_TEST_DOUBLE(20505426358836677347.e-221);
105   FROM_CHARS_TEST_DOUBLE(836168422905420598437.e-234);
106   FROM_CHARS_TEST_DOUBLE(4891559871276714924261.e222);
107   FROM_CHARS_TEST_FLOAT(5.e-20);
108   FROM_CHARS_TEST_FLOAT(67.e14);
109   FROM_CHARS_TEST_FLOAT(985.e15);
110   FROM_CHARS_TEST_FLOAT(7693.e-42);
111   FROM_CHARS_TEST_FLOAT(55895.e-16);
112   FROM_CHARS_TEST_FLOAT(996622.e-44);
113   FROM_CHARS_TEST_FLOAT(7038531.e-32);
114   FROM_CHARS_TEST_FLOAT(60419369.e-46);
115   FROM_CHARS_TEST_FLOAT(702990899.e-20);
116   FROM_CHARS_TEST_FLOAT(6930161142.e-48);
117   FROM_CHARS_TEST_FLOAT(25933168707.e-13);
118   FROM_CHARS_TEST_FLOAT(596428896559.e20);
119 
120   // Similarly, forms that should round away from zero.
121   FROM_CHARS_TEST_DOUBLE(9.e-265);
122   FROM_CHARS_TEST_DOUBLE(85.e-037);
123   FROM_CHARS_TEST_DOUBLE(623.e100);
124   FROM_CHARS_TEST_DOUBLE(3571.e263);
125   FROM_CHARS_TEST_DOUBLE(81661.e153);
126   FROM_CHARS_TEST_DOUBLE(920657.e-023);
127   FROM_CHARS_TEST_DOUBLE(4603285.e-024);
128   FROM_CHARS_TEST_DOUBLE(87575437.e-309);
129   FROM_CHARS_TEST_DOUBLE(245540327.e122);
130   FROM_CHARS_TEST_DOUBLE(6138508175.e120);
131   FROM_CHARS_TEST_DOUBLE(83356057653.e193);
132   FROM_CHARS_TEST_DOUBLE(619534293513.e124);
133   FROM_CHARS_TEST_DOUBLE(2335141086879.e218);
134   FROM_CHARS_TEST_DOUBLE(36167929443327.e-159);
135   FROM_CHARS_TEST_DOUBLE(609610927149051.e-255);
136   FROM_CHARS_TEST_DOUBLE(3743626360493413.e-165);
137   FROM_CHARS_TEST_DOUBLE(94080055902682397.e-242);
138   FROM_CHARS_TEST_DOUBLE(899810892172646163.e283);
139   FROM_CHARS_TEST_DOUBLE(7120190517612959703.e120);
140   FROM_CHARS_TEST_DOUBLE(25188282901709339043.e-252);
141   FROM_CHARS_TEST_DOUBLE(308984926168550152811.e-052);
142   FROM_CHARS_TEST_DOUBLE(6372891218502368041059.e064);
143   FROM_CHARS_TEST_FLOAT(3.e-23);
144   FROM_CHARS_TEST_FLOAT(57.e18);
145   FROM_CHARS_TEST_FLOAT(789.e-35);
146   FROM_CHARS_TEST_FLOAT(2539.e-18);
147   FROM_CHARS_TEST_FLOAT(76173.e28);
148   FROM_CHARS_TEST_FLOAT(887745.e-11);
149   FROM_CHARS_TEST_FLOAT(5382571.e-37);
150   FROM_CHARS_TEST_FLOAT(82381273.e-35);
151   FROM_CHARS_TEST_FLOAT(750486563.e-38);
152   FROM_CHARS_TEST_FLOAT(3752432815.e-39);
153   FROM_CHARS_TEST_FLOAT(75224575729.e-45);
154   FROM_CHARS_TEST_FLOAT(459926601011.e15);
155 }
156 
157 #undef FROM_CHARS_TEST_DOUBLE
158 #undef FROM_CHARS_TEST_FLOAT
159 #endif
160 
ToFloat(absl::string_view s)161 float ToFloat(absl::string_view s) {
162   float f;
163   absl::from_chars(s.data(), s.data() + s.size(), f);
164   return f;
165 }
166 
ToDouble(absl::string_view s)167 double ToDouble(absl::string_view s) {
168   double d;
169   absl::from_chars(s.data(), s.data() + s.size(), d);
170   return d;
171 }
172 
173 // A duplication of the test cases in "NearRoundingCases" above, but with
174 // expected values expressed with integers, using ldexp/ldexpf.  These test
175 // cases will work even on compilers that do not accurately round floating point
176 // literals.
TEST(FromChars,NearRoundingCasesExplicit)177 TEST(FromChars, NearRoundingCasesExplicit) {
178   EXPECT_EQ(ToDouble("5.e125"), ldexp(6653062250012735, 365));
179   EXPECT_EQ(ToDouble("69.e267"), ldexp(4705683757438170, 841));
180   EXPECT_EQ(ToDouble("999.e-026"), ldexp(6798841691080350, -129));
181   EXPECT_EQ(ToDouble("7861.e-034"), ldexp(8975675289889240, -153));
182   EXPECT_EQ(ToDouble("75569.e-254"), ldexp(6091718967192243, -880));
183   EXPECT_EQ(ToDouble("928609.e-261"), ldexp(7849264900213743, -900));
184   EXPECT_EQ(ToDouble("9210917.e080"), ldexp(8341110837370930, 236));
185   EXPECT_EQ(ToDouble("84863171.e114"), ldexp(4625202867375927, 353));
186   EXPECT_EQ(ToDouble("653777767.e273"), ldexp(5068902999763073, 884));
187   EXPECT_EQ(ToDouble("5232604057.e-298"), ldexp(5741343011915040, -1010));
188   EXPECT_EQ(ToDouble("27235667517.e-109"), ldexp(6707124626673586, -380));
189   EXPECT_EQ(ToDouble("653532977297.e-123"), ldexp(7078246407265384, -422));
190   EXPECT_EQ(ToDouble("3142213164987.e-294"), ldexp(8219991337640559, -988));
191   EXPECT_EQ(ToDouble("46202199371337.e-072"), ldexp(5224462102115359, -246));
192   EXPECT_EQ(ToDouble("231010996856685.e-073"), ldexp(5224462102115359, -247));
193   EXPECT_EQ(ToDouble("9324754620109615.e212"), ldexp(5539753864394442, 705));
194   EXPECT_EQ(ToDouble("78459735791271921.e049"), ldexp(8388176519442766, 166));
195   EXPECT_EQ(ToDouble("272104041512242479.e200"), ldexp(5554409530847367, 670));
196   EXPECT_EQ(ToDouble("6802601037806061975.e198"), ldexp(5554409530847367, 668));
197   EXPECT_EQ(ToDouble("20505426358836677347.e-221"),
198             ldexp(4524032052079546, -722));
199   EXPECT_EQ(ToDouble("836168422905420598437.e-234"),
200             ldexp(5070963299887562, -760));
201   EXPECT_EQ(ToDouble("4891559871276714924261.e222"),
202             ldexp(6452687840519111, 757));
203   EXPECT_EQ(ToFloat("5.e-20"), ldexpf(15474250, -88));
204   EXPECT_EQ(ToFloat("67.e14"), ldexpf(12479722, 29));
205   EXPECT_EQ(ToFloat("985.e15"), ldexpf(14333636, 36));
206   EXPECT_EQ(ToFloat("7693.e-42"), ldexpf(10979816, -150));
207   EXPECT_EQ(ToFloat("55895.e-16"), ldexpf(12888509, -61));
208   EXPECT_EQ(ToFloat("996622.e-44"), ldexpf(14224264, -150));
209   EXPECT_EQ(ToFloat("7038531.e-32"), ldexpf(11420669, -107));
210   EXPECT_EQ(ToFloat("60419369.e-46"), ldexpf(8623340, -150));
211   EXPECT_EQ(ToFloat("702990899.e-20"), ldexpf(16209866, -61));
212   EXPECT_EQ(ToFloat("6930161142.e-48"), ldexpf(9891056, -150));
213   EXPECT_EQ(ToFloat("25933168707.e-13"), ldexpf(11138211, -32));
214   EXPECT_EQ(ToFloat("596428896559.e20"), ldexpf(12333860, 82));
215 
216 
217   EXPECT_EQ(ToDouble("9.e-265"), ldexp(8168427841980010, -930));
218   EXPECT_EQ(ToDouble("85.e-037"), ldexp(6360455125664090, -169));
219   EXPECT_EQ(ToDouble("623.e100"), ldexp(6263531988747231, 289));
220   EXPECT_EQ(ToDouble("3571.e263"), ldexp(6234526311072170, 833));
221   EXPECT_EQ(ToDouble("81661.e153"), ldexp(6696636728760206, 472));
222   EXPECT_EQ(ToDouble("920657.e-023"), ldexp(5975405561110124, -109));
223   EXPECT_EQ(ToDouble("4603285.e-024"), ldexp(5975405561110124, -110));
224   EXPECT_EQ(ToDouble("87575437.e-309"), ldexp(8452160731874668, -1053));
225   EXPECT_EQ(ToDouble("245540327.e122"), ldexp(4985336549131723, 381));
226   EXPECT_EQ(ToDouble("6138508175.e120"), ldexp(4985336549131723, 379));
227   EXPECT_EQ(ToDouble("83356057653.e193"), ldexp(5986732817132056, 625));
228   EXPECT_EQ(ToDouble("619534293513.e124"), ldexp(4798406992060657, 399));
229   EXPECT_EQ(ToDouble("2335141086879.e218"), ldexp(5419088166961646, 713));
230   EXPECT_EQ(ToDouble("36167929443327.e-159"), ldexp(8135819834632444, -536));
231   EXPECT_EQ(ToDouble("609610927149051.e-255"), ldexp(4576664294594737, -850));
232   EXPECT_EQ(ToDouble("3743626360493413.e-165"), ldexp(6898586531774201, -549));
233   EXPECT_EQ(ToDouble("94080055902682397.e-242"), ldexp(6273271706052298, -800));
234   EXPECT_EQ(ToDouble("899810892172646163.e283"), ldexp(7563892574477827, 947));
235   EXPECT_EQ(ToDouble("7120190517612959703.e120"), ldexp(5385467232557565, 409));
236   EXPECT_EQ(ToDouble("25188282901709339043.e-252"),
237             ldexp(5635662608542340, -825));
238   EXPECT_EQ(ToDouble("308984926168550152811.e-052"),
239             ldexp(5644774693823803, -157));
240   EXPECT_EQ(ToDouble("6372891218502368041059.e064"),
241             ldexp(4616868614322430, 233));
242 
243   EXPECT_EQ(ToFloat("3.e-23"), ldexpf(9507380, -98));
244   EXPECT_EQ(ToFloat("57.e18"), ldexpf(12960300, 42));
245   EXPECT_EQ(ToFloat("789.e-35"), ldexpf(10739312, -130));
246   EXPECT_EQ(ToFloat("2539.e-18"), ldexpf(11990089, -72));
247   EXPECT_EQ(ToFloat("76173.e28"), ldexpf(9845130, 86));
248   EXPECT_EQ(ToFloat("887745.e-11"), ldexpf(9760860, -40));
249   EXPECT_EQ(ToFloat("5382571.e-37"), ldexpf(11447463, -124));
250   EXPECT_EQ(ToFloat("82381273.e-35"), ldexpf(8554961, -113));
251   EXPECT_EQ(ToFloat("750486563.e-38"), ldexpf(9975678, -120));
252   EXPECT_EQ(ToFloat("3752432815.e-39"), ldexpf(9975678, -121));
253   EXPECT_EQ(ToFloat("75224575729.e-45"), ldexpf(13105970, -137));
254   EXPECT_EQ(ToFloat("459926601011.e15"), ldexpf(12466336, 65));
255 }
256 
257 // Common test logic for converting a string which lies exactly halfway between
258 // two target floats.
259 //
260 // mantissa and exponent represent the precise value between two floating point
261 // numbers, `expected_low` and `expected_high`.  The floating point
262 // representation to parse in `StrCat(mantissa, "e", exponent)`.
263 //
264 // This function checks that an input just slightly less than the exact value
265 // is rounded down to `expected_low`, and an input just slightly greater than
266 // the exact value is rounded up to `expected_high`.
267 //
268 // The exact value should round to `expected_half`, which must be either
269 // `expected_low` or `expected_high`.
270 template <typename FloatType>
TestHalfwayValue(const std::string & mantissa,int exponent,FloatType expected_low,FloatType expected_high,FloatType expected_half)271 void TestHalfwayValue(const std::string& mantissa, int exponent,
272                       FloatType expected_low, FloatType expected_high,
273                       FloatType expected_half) {
274   std::string low_rep = mantissa;
275   low_rep[low_rep.size() - 1] -= 1;
276   absl::StrAppend(&low_rep, std::string(1000, '9'), "e", exponent);
277 
278   FloatType actual_low = 0;
279   absl::from_chars(low_rep.data(), low_rep.data() + low_rep.size(), actual_low);
280   EXPECT_EQ(expected_low, actual_low);
281 
282   std::string high_rep =
283       absl::StrCat(mantissa, std::string(1000, '0'), "1e", exponent);
284   FloatType actual_high = 0;
285   absl::from_chars(high_rep.data(), high_rep.data() + high_rep.size(),
286                    actual_high);
287   EXPECT_EQ(expected_high, actual_high);
288 
289   std::string halfway_rep = absl::StrCat(mantissa, "e", exponent);
290   FloatType actual_half = 0;
291   absl::from_chars(halfway_rep.data(), halfway_rep.data() + halfway_rep.size(),
292                    actual_half);
293   EXPECT_EQ(expected_half, actual_half);
294 }
295 
TEST(FromChars,DoubleRounding)296 TEST(FromChars, DoubleRounding) {
297   const double zero = 0.0;
298   const double first_subnormal = nextafter(zero, 1.0);
299   const double second_subnormal = nextafter(first_subnormal, 1.0);
300 
301   const double first_normal = DBL_MIN;
302   const double last_subnormal = nextafter(first_normal, 0.0);
303   const double second_normal = nextafter(first_normal, 1.0);
304 
305   const double last_normal = DBL_MAX;
306   const double penultimate_normal = nextafter(last_normal, 0.0);
307 
308   // Various test cases for numbers between two representable floats.  Each
309   // call to TestHalfwayValue tests a number just below and just above the
310   // halfway point, as well as the number exactly between them.
311 
312   // Test between zero and first_subnormal.  Round-to-even tie rounds down.
313   TestHalfwayValue(
314       "2."
315       "470328229206232720882843964341106861825299013071623822127928412503377536"
316       "351043759326499181808179961898982823477228588654633283551779698981993873"
317       "980053909390631503565951557022639229085839244910518443593180284993653615"
318       "250031937045767824921936562366986365848075700158576926990370631192827955"
319       "855133292783433840935197801553124659726357957462276646527282722005637400"
320       "648549997709659947045402082816622623785739345073633900796776193057750674"
321       "017632467360096895134053553745851666113422376667860416215968046191446729"
322       "184030053005753084904876539171138659164623952491262365388187963623937328"
323       "042389101867234849766823508986338858792562830275599565752445550725518931"
324       "369083625477918694866799496832404970582102851318545139621383772282614543"
325       "7693412532098591327667236328125",
326       -324, zero, first_subnormal, zero);
327 
328   // first_subnormal and second_subnormal.  Round-to-even tie rounds up.
329   TestHalfwayValue(
330       "7."
331       "410984687618698162648531893023320585475897039214871466383785237510132609"
332       "053131277979497545424539885696948470431685765963899850655339096945981621"
333       "940161728171894510697854671067917687257517734731555330779540854980960845"
334       "750095811137303474765809687100959097544227100475730780971111893578483867"
335       "565399878350301522805593404659373979179073872386829939581848166016912201"
336       "945649993128979841136206248449867871357218035220901702390328579173252022"
337       "052897402080290685402160661237554998340267130003581248647904138574340187"
338       "552090159017259254714629617513415977493871857473787096164563890871811984"
339       "127167305601704549300470526959016576377688490826798697257336652176556794"
340       "107250876433756084600398490497214911746308553955635418864151316847843631"
341       "3080237596295773983001708984375",
342       -324, first_subnormal, second_subnormal, second_subnormal);
343 
344   // last_subnormal and first_normal.  Round-to-even tie rounds up.
345   TestHalfwayValue(
346       "2."
347       "225073858507201136057409796709131975934819546351645648023426109724822222"
348       "021076945516529523908135087914149158913039621106870086438694594645527657"
349       "207407820621743379988141063267329253552286881372149012981122451451889849"
350       "057222307285255133155755015914397476397983411801999323962548289017107081"
351       "850690630666655994938275772572015763062690663332647565300009245888316433"
352       "037779791869612049497390377829704905051080609940730262937128958950003583"
353       "799967207254304360284078895771796150945516748243471030702609144621572289"
354       "880258182545180325707018860872113128079512233426288368622321503775666622"
355       "503982534335974568884423900265498198385487948292206894721689831099698365"
356       "846814022854243330660339850886445804001034933970427567186443383770486037"
357       "86162277173854562306587467901408672332763671875",
358       -308, last_subnormal, first_normal, first_normal);
359 
360   // first_normal and second_normal.  Round-to-even tie rounds down.
361   TestHalfwayValue(
362       "2."
363       "225073858507201630123055637955676152503612414573018013083228724049586647"
364       "606759446192036794116886953213985520549032000903434781884412325572184367"
365       "563347617020518175998922941393629966742598285899994830148971433555578567"
366       "693279306015978183162142425067962460785295885199272493577688320732492479"
367       "924816869232247165964934329258783950102250973957579510571600738343645738"
368       "494324192997092179207389919761694314131497173265255020084997973676783743"
369       "155205818804439163810572367791175177756227497413804253387084478193655533"
370       "073867420834526162513029462022730109054820067654020201547112002028139700"
371       "141575259123440177362244273712468151750189745559978653234255886219611516"
372       "335924167958029604477064946470184777360934300451421683607013647479513962"
373       "13837722826145437693412532098591327667236328125",
374       -308, first_normal, second_normal, first_normal);
375 
376   // penultimate_normal and last_normal.  Round-to-even rounds down.
377   TestHalfwayValue(
378       "1."
379       "797693134862315608353258760581052985162070023416521662616611746258695532"
380       "672923265745300992879465492467506314903358770175220871059269879629062776"
381       "047355692132901909191523941804762171253349609463563872612866401980290377"
382       "995141836029815117562837277714038305214839639239356331336428021390916694"
383       "57927874464075218944",
384       308, penultimate_normal, last_normal, penultimate_normal);
385 }
386 
387 // Same test cases as DoubleRounding, now with new and improved Much Smaller
388 // Precision!
TEST(FromChars,FloatRounding)389 TEST(FromChars, FloatRounding) {
390   const float zero = 0.0;
391   const float first_subnormal = nextafterf(zero, 1.0);
392   const float second_subnormal = nextafterf(first_subnormal, 1.0);
393 
394   const float first_normal = FLT_MIN;
395   const float last_subnormal = nextafterf(first_normal, 0.0);
396   const float second_normal = nextafterf(first_normal, 1.0);
397 
398   const float last_normal = FLT_MAX;
399   const float penultimate_normal = nextafterf(last_normal, 0.0);
400 
401   // Test between zero and first_subnormal.  Round-to-even tie rounds down.
402   TestHalfwayValue(
403       "7."
404       "006492321624085354618647916449580656401309709382578858785341419448955413"
405       "42930300743319094181060791015625",
406       -46, zero, first_subnormal, zero);
407 
408   // first_subnormal and second_subnormal.  Round-to-even tie rounds up.
409   TestHalfwayValue(
410       "2."
411       "101947696487225606385594374934874196920392912814773657635602425834686624"
412       "028790902229957282543182373046875",
413       -45, first_subnormal, second_subnormal, second_subnormal);
414 
415   // last_subnormal and first_normal.  Round-to-even tie rounds up.
416   TestHalfwayValue(
417       "1."
418       "175494280757364291727882991035766513322858992758990427682963118425003064"
419       "9651730385585324256680905818939208984375",
420       -38, last_subnormal, first_normal, first_normal);
421 
422   // first_normal and second_normal.  Round-to-even tie rounds down.
423   TestHalfwayValue(
424       "1."
425       "175494420887210724209590083408724842314472120785184615334540294131831453"
426       "9442813071445925743319094181060791015625",
427       -38, first_normal, second_normal, first_normal);
428 
429   // penultimate_normal and last_normal.  Round-to-even rounds down.
430   TestHalfwayValue("3.40282336497324057985868971510891282432", 38,
431                    penultimate_normal, last_normal, penultimate_normal);
432 }
433 
TEST(FromChars,Underflow)434 TEST(FromChars, Underflow) {
435   // Check that underflow is handled correctly, according to the specification
436   // in DR 3081.
437   double d;
438   float f;
439   absl::from_chars_result result;
440 
441   std::string negative_underflow = "-1e-1000";
442   const char* begin = negative_underflow.data();
443   const char* end = begin + negative_underflow.size();
444   d = 100.0;
445   result = absl::from_chars(begin, end, d);
446   EXPECT_EQ(result.ptr, end);
447   EXPECT_EQ(result.ec, std::errc::result_out_of_range);
448   EXPECT_TRUE(std::signbit(d));  // negative
449   EXPECT_GE(d, -std::numeric_limits<double>::min());
450   f = 100.0;
451   result = absl::from_chars(begin, end, f);
452   EXPECT_EQ(result.ptr, end);
453   EXPECT_EQ(result.ec, std::errc::result_out_of_range);
454   EXPECT_TRUE(std::signbit(f));  // negative
455   EXPECT_GE(f, -std::numeric_limits<float>::min());
456 
457   std::string positive_underflow = "1e-1000";
458   begin = positive_underflow.data();
459   end = begin + positive_underflow.size();
460   d = -100.0;
461   result = absl::from_chars(begin, end, d);
462   EXPECT_EQ(result.ptr, end);
463   EXPECT_EQ(result.ec, std::errc::result_out_of_range);
464   EXPECT_FALSE(std::signbit(d));  // positive
465   EXPECT_LE(d, std::numeric_limits<double>::min());
466   f = -100.0;
467   result = absl::from_chars(begin, end, f);
468   EXPECT_EQ(result.ptr, end);
469   EXPECT_EQ(result.ec, std::errc::result_out_of_range);
470   EXPECT_FALSE(std::signbit(f));  // positive
471   EXPECT_LE(f, std::numeric_limits<float>::min());
472 }
473 
TEST(FromChars,Overflow)474 TEST(FromChars, Overflow) {
475   // Check that overflow is handled correctly, according to the specification
476   // in DR 3081.
477   double d;
478   float f;
479   absl::from_chars_result result;
480 
481   std::string negative_overflow = "-1e1000";
482   const char* begin = negative_overflow.data();
483   const char* end = begin + negative_overflow.size();
484   d = 100.0;
485   result = absl::from_chars(begin, end, d);
486   EXPECT_EQ(result.ptr, end);
487   EXPECT_EQ(result.ec, std::errc::result_out_of_range);
488   EXPECT_TRUE(std::signbit(d));  // negative
489   EXPECT_EQ(d, -std::numeric_limits<double>::max());
490   f = 100.0;
491   result = absl::from_chars(begin, end, f);
492   EXPECT_EQ(result.ptr, end);
493   EXPECT_EQ(result.ec, std::errc::result_out_of_range);
494   EXPECT_TRUE(std::signbit(f));  // negative
495   EXPECT_EQ(f, -std::numeric_limits<float>::max());
496 
497   std::string positive_overflow = "1e1000";
498   begin = positive_overflow.data();
499   end = begin + positive_overflow.size();
500   d = -100.0;
501   result = absl::from_chars(begin, end, d);
502   EXPECT_EQ(result.ptr, end);
503   EXPECT_EQ(result.ec, std::errc::result_out_of_range);
504   EXPECT_FALSE(std::signbit(d));  // positive
505   EXPECT_EQ(d, std::numeric_limits<double>::max());
506   f = -100.0;
507   result = absl::from_chars(begin, end, f);
508   EXPECT_EQ(result.ptr, end);
509   EXPECT_EQ(result.ec, std::errc::result_out_of_range);
510   EXPECT_FALSE(std::signbit(f));  // positive
511   EXPECT_EQ(f, std::numeric_limits<float>::max());
512 }
513 
TEST(FromChars,RegressionTestsFromFuzzer)514 TEST(FromChars, RegressionTestsFromFuzzer) {
515   absl::string_view src = "0x21900000p00000000099";
516   float f;
517   auto result = absl::from_chars(src.data(), src.data() + src.size(), f);
518   EXPECT_EQ(result.ec, std::errc::result_out_of_range);
519 }
520 
TEST(FromChars,ReturnValuePtr)521 TEST(FromChars, ReturnValuePtr) {
522   // Check that `ptr` points one past the number scanned, even if that number
523   // is not representable.
524   double d;
525   absl::from_chars_result result;
526 
527   std::string normal = "3.14@#$%@#$%";
528   result = absl::from_chars(normal.data(), normal.data() + normal.size(), d);
529   EXPECT_EQ(result.ec, std::errc());
530   EXPECT_EQ(result.ptr - normal.data(), 4);
531 
532   std::string overflow = "1e1000@#$%@#$%";
533   result = absl::from_chars(overflow.data(),
534                             overflow.data() + overflow.size(), d);
535   EXPECT_EQ(result.ec, std::errc::result_out_of_range);
536   EXPECT_EQ(result.ptr - overflow.data(), 6);
537 
538   std::string garbage = "#$%@#$%";
539   result = absl::from_chars(garbage.data(),
540                             garbage.data() + garbage.size(), d);
541   EXPECT_EQ(result.ec, std::errc::invalid_argument);
542   EXPECT_EQ(result.ptr - garbage.data(), 0);
543 }
544 
545 // Check for a wide range of inputs that strtod() and absl::from_chars() exactly
546 // agree on the conversion amount.
547 //
548 // This test assumes the platform's strtod() uses perfect round_to_nearest
549 // rounding.
TEST(FromChars,TestVersusStrtod)550 TEST(FromChars, TestVersusStrtod) {
551   for (int mantissa = 1000000; mantissa <= 9999999; mantissa += 501) {
552     for (int exponent = -300; exponent < 300; ++exponent) {
553       std::string candidate = absl::StrCat(mantissa, "e", exponent);
554       double strtod_value = strtod(candidate.c_str(), nullptr);
555       double absl_value = 0;
556       absl::from_chars(candidate.data(), candidate.data() + candidate.size(),
557                        absl_value);
558       ASSERT_EQ(strtod_value, absl_value) << candidate;
559     }
560   }
561 }
562 
563 // Check for a wide range of inputs that strtof() and absl::from_chars() exactly
564 // agree on the conversion amount.
565 //
566 // This test assumes the platform's strtof() uses perfect round_to_nearest
567 // rounding.
TEST(FromChars,TestVersusStrtof)568 TEST(FromChars, TestVersusStrtof) {
569   for (int mantissa = 1000000; mantissa <= 9999999; mantissa += 501) {
570     for (int exponent = -43; exponent < 32; ++exponent) {
571       std::string candidate = absl::StrCat(mantissa, "e", exponent);
572       float strtod_value = strtof(candidate.c_str(), nullptr);
573       float absl_value = 0;
574       absl::from_chars(candidate.data(), candidate.data() + candidate.size(),
575                        absl_value);
576       ASSERT_EQ(strtod_value, absl_value) << candidate;
577     }
578   }
579 }
580 
581 // Tests if two floating point values have identical bit layouts.  (EXPECT_EQ
582 // is not suitable for NaN testing, since NaNs are never equal.)
583 template <typename Float>
Identical(Float a,Float b)584 bool Identical(Float a, Float b) {
585   return 0 == memcmp(&a, &b, sizeof(Float));
586 }
587 
588 // Check that NaNs are parsed correctly.  The spec requires that
589 // std::from_chars on "NaN(123abc)" return the same value as std::nan("123abc").
590 // How such an n-char-sequence affects the generated NaN is unspecified, so we
591 // just test for symmetry with std::nan and strtod here.
592 //
593 // (In Linux, this parses the value as a number and stuffs that number into the
594 // free bits of a quiet NaN.)
TEST(FromChars,NaNDoubles)595 TEST(FromChars, NaNDoubles) {
596   for (std::string n_char_sequence :
597        {"", "1", "2", "3", "fff", "FFF", "200000", "400000", "4000000000000",
598         "8000000000000", "abc123", "legal_but_unexpected",
599         "99999999999999999999999", "_"}) {
600     std::string input = absl::StrCat("nan(", n_char_sequence, ")");
601     SCOPED_TRACE(input);
602     double from_chars_double;
603     absl::from_chars(input.data(), input.data() + input.size(),
604                      from_chars_double);
605     double std_nan_double = std::nan(n_char_sequence.c_str());
606     EXPECT_TRUE(Identical(from_chars_double, std_nan_double));
607 
608     // Also check that we match strtod()'s behavior.  This test assumes that the
609     // platform has a compliant strtod().
610 #if ABSL_STRTOD_HANDLES_NAN_CORRECTLY
611     double strtod_double = strtod(input.c_str(), nullptr);
612     EXPECT_TRUE(Identical(from_chars_double, strtod_double));
613 #endif  // ABSL_STRTOD_HANDLES_NAN_CORRECTLY
614 
615     // Check that we can parse a negative NaN
616     std::string negative_input = "-" + input;
617     double negative_from_chars_double;
618     absl::from_chars(negative_input.data(),
619                      negative_input.data() + negative_input.size(),
620                      negative_from_chars_double);
621     EXPECT_TRUE(std::signbit(negative_from_chars_double));
622     EXPECT_FALSE(Identical(negative_from_chars_double, from_chars_double));
623     from_chars_double = std::copysign(from_chars_double, -1.0);
624     EXPECT_TRUE(Identical(negative_from_chars_double, from_chars_double));
625   }
626 }
627 
TEST(FromChars,NaNFloats)628 TEST(FromChars, NaNFloats) {
629   for (std::string n_char_sequence :
630        {"", "1", "2", "3", "fff", "FFF", "200000", "400000", "4000000000000",
631         "8000000000000", "abc123", "legal_but_unexpected",
632         "99999999999999999999999", "_"}) {
633     std::string input = absl::StrCat("nan(", n_char_sequence, ")");
634     SCOPED_TRACE(input);
635     float from_chars_float;
636     absl::from_chars(input.data(), input.data() + input.size(),
637                      from_chars_float);
638     float std_nan_float = std::nanf(n_char_sequence.c_str());
639     EXPECT_TRUE(Identical(from_chars_float, std_nan_float));
640 
641     // Also check that we match strtof()'s behavior.  This test assumes that the
642     // platform has a compliant strtof().
643 #if ABSL_STRTOD_HANDLES_NAN_CORRECTLY
644     float strtof_float = strtof(input.c_str(), nullptr);
645     EXPECT_TRUE(Identical(from_chars_float, strtof_float));
646 #endif  // ABSL_STRTOD_HANDLES_NAN_CORRECTLY
647 
648     // Check that we can parse a negative NaN
649     std::string negative_input = "-" + input;
650     float negative_from_chars_float;
651     absl::from_chars(negative_input.data(),
652                      negative_input.data() + negative_input.size(),
653                      negative_from_chars_float);
654     EXPECT_TRUE(std::signbit(negative_from_chars_float));
655     EXPECT_FALSE(Identical(negative_from_chars_float, from_chars_float));
656     from_chars_float = std::copysign(from_chars_float, -1.0);
657     EXPECT_TRUE(Identical(negative_from_chars_float, from_chars_float));
658   }
659 }
660 
661 // Returns an integer larger than step.  The values grow exponentially.
NextStep(int step)662 int NextStep(int step) {
663   return step + (step >> 2) + 1;
664 }
665 
666 // Test a conversion on a family of input strings, checking that the calculation
667 // is correct for in-bounds values, and that overflow and underflow are done
668 // correctly for out-of-bounds values.
669 //
670 // input_generator maps from an integer index to a string to test.
671 // expected_generator maps from an integer index to an expected Float value.
672 // from_chars conversion of input_generator(i) should result in
673 // expected_generator(i).
674 //
675 // lower_bound and upper_bound denote the smallest and largest values for which
676 // the conversion is expected to succeed.
677 template <typename Float>
TestOverflowAndUnderflow(const std::function<std::string (int)> & input_generator,const std::function<Float (int)> & expected_generator,int lower_bound,int upper_bound)678 void TestOverflowAndUnderflow(
679     const std::function<std::string(int)>& input_generator,
680     const std::function<Float(int)>& expected_generator, int lower_bound,
681     int upper_bound) {
682   // test legal values near lower_bound
683   int index, step;
684   for (index = lower_bound, step = 1; index < upper_bound;
685        index += step, step = NextStep(step)) {
686     std::string input = input_generator(index);
687     SCOPED_TRACE(input);
688     Float expected = expected_generator(index);
689     Float actual;
690     auto result =
691         absl::from_chars(input.data(), input.data() + input.size(), actual);
692     EXPECT_EQ(result.ec, std::errc());
693     EXPECT_EQ(expected, actual)
694         << absl::StrFormat("%a vs %a", expected, actual);
695   }
696   // test legal values near upper_bound
697   for (index = upper_bound, step = 1; index > lower_bound;
698        index -= step, step = NextStep(step)) {
699     std::string input = input_generator(index);
700     SCOPED_TRACE(input);
701     Float expected = expected_generator(index);
702     Float actual;
703     auto result =
704         absl::from_chars(input.data(), input.data() + input.size(), actual);
705     EXPECT_EQ(result.ec, std::errc());
706     EXPECT_EQ(expected, actual)
707         << absl::StrFormat("%a vs %a", expected, actual);
708   }
709   // Test underflow values below lower_bound
710   for (index = lower_bound - 1, step = 1; index > -1000000;
711        index -= step, step = NextStep(step)) {
712     std::string input = input_generator(index);
713     SCOPED_TRACE(input);
714     Float actual;
715     auto result =
716         absl::from_chars(input.data(), input.data() + input.size(), actual);
717     EXPECT_EQ(result.ec, std::errc::result_out_of_range);
718     EXPECT_LT(actual, 1.0);  // check for underflow
719   }
720   // Test overflow values above upper_bound
721   for (index = upper_bound + 1, step = 1; index < 1000000;
722        index += step, step = NextStep(step)) {
723     std::string input = input_generator(index);
724     SCOPED_TRACE(input);
725     Float actual;
726     auto result =
727         absl::from_chars(input.data(), input.data() + input.size(), actual);
728     EXPECT_EQ(result.ec, std::errc::result_out_of_range);
729     EXPECT_GT(actual, 1.0);  // check for overflow
730   }
731 }
732 
733 // Check that overflow and underflow are caught correctly for hex doubles.
734 //
735 // The largest representable double is 0x1.fffffffffffffp+1023, and the
736 // smallest representable subnormal is 0x0.0000000000001p-1022, which equals
737 // 0x1p-1074.  Therefore 1023 and -1074 are the limits of acceptable exponents
738 // in this test.
TEST(FromChars,HexdecimalDoubleLimits)739 TEST(FromChars, HexdecimalDoubleLimits) {
740   auto input_gen = [](int index) { return absl::StrCat("0x1.0p", index); };
741   auto expected_gen = [](int index) { return std::ldexp(1.0, index); };
742   TestOverflowAndUnderflow<double>(input_gen, expected_gen, -1074, 1023);
743 }
744 
745 // Check that overflow and underflow are caught correctly for hex floats.
746 //
747 // The largest representable float is 0x1.fffffep+127, and the smallest
748 // representable subnormal is 0x0.000002p-126, which equals 0x1p-149.
749 // Therefore 127 and -149 are the limits of acceptable exponents in this test.
TEST(FromChars,HexdecimalFloatLimits)750 TEST(FromChars, HexdecimalFloatLimits) {
751   auto input_gen = [](int index) { return absl::StrCat("0x1.0p", index); };
752   auto expected_gen = [](int index) { return std::ldexp(1.0f, index); };
753   TestOverflowAndUnderflow<float>(input_gen, expected_gen, -149, 127);
754 }
755 
756 // Check that overflow and underflow are caught correctly for decimal doubles.
757 //
758 // The largest representable double is about 1.8e308, and the smallest
759 // representable subnormal is about 5e-324.  '1e-324' therefore rounds away from
760 // the smallest representable positive value.  -323 and 308 are the limits of
761 // acceptable exponents in this test.
TEST(FromChars,DecimalDoubleLimits)762 TEST(FromChars, DecimalDoubleLimits) {
763   auto input_gen = [](int index) { return absl::StrCat("1.0e", index); };
764   auto expected_gen = [](int index) { return Pow10(index); };
765   TestOverflowAndUnderflow<double>(input_gen, expected_gen, -323, 308);
766 }
767 
768 // Check that overflow and underflow are caught correctly for decimal floats.
769 //
770 // The largest representable float is about 3.4e38, and the smallest
771 // representable subnormal is about 1.45e-45.  '1e-45' therefore rounds towards
772 // the smallest representable positive value.  -45 and 38 are the limits of
773 // acceptable exponents in this test.
TEST(FromChars,DecimalFloatLimits)774 TEST(FromChars, DecimalFloatLimits) {
775   auto input_gen = [](int index) { return absl::StrCat("1.0e", index); };
776   auto expected_gen = [](int index) { return Pow10(index); };
777   TestOverflowAndUnderflow<float>(input_gen, expected_gen, -45, 38);
778 }
779 
780 }  // namespace
781