1// polynomial for approximating e^x 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 7deg = 5; // poly degree 8N = 128; // table entries 9b = log(2)/(2*N); // interval 10b = b + b*0x1p-16; // increase interval for non-nearest rounding (TOINT_NARROW) 11a = -b; 12 13// find polynomial with minimal abs error 14 15// return p that minimizes |exp(x) - poly(x) - x^d*p(x)| 16approx = proc(poly,d) { 17 return remez(exp(x)-poly(x), deg-d, [a;b], x^d, 1e-10); 18}; 19 20// first 2 coeffs are fixed, iteratively find optimal double prec coeffs 21poly = 1 + x; 22for i from 2 to deg do { 23 p = roundcoefficients(approx(poly,i), [|D ...|]); 24 poly = poly + x^i*coeff(p,0); 25}; 26 27display = hexadecimal; 28print("rel error:", accurateinfnorm(1-poly(x)/exp(x), [a;b], 30)); 29print("abs error:", accurateinfnorm(exp(x)-poly(x), [a;b], 30)); 30print("in [",a,b,"]"); 31// double interval error for non-nearest rounding 32print("rel2 error:", accurateinfnorm(1-poly(x)/exp(x), [2*a;2*b], 30)); 33print("abs2 error:", accurateinfnorm(exp(x)-poly(x), [2*a;2*b], 30)); 34print("in [",2*a,2*b,"]"); 35print("coeffs:"); 36for i from 0 to deg do coeff(poly,i); 37