1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // REQUIRES: long_tests
10 
11 // <random>
12 
13 // template<class RealType = double>
14 // class weibull_distribution
15 
16 // template<class _URNG> result_type operator()(_URNG& g);
17 
18 #include <random>
19 #include <cassert>
20 #include <vector>
21 #include <numeric>
22 #include <cstddef>
23 
24 #include "test_macros.h"
25 
26 template <class T>
27 inline
28 T
sqr(T x)29 sqr(T x)
30 {
31     return x * x;
32 }
33 
main(int,char **)34 int main(int, char**)
35 {
36     {
37         typedef std::weibull_distribution<> D;
38         typedef std::mt19937 G;
39         G g;
40         D d(0.5, 2);
41         const int N = 1000000;
42         std::vector<D::result_type> u;
43         for (int i = 0; i < N; ++i)
44         {
45             D::result_type v = d(g);
46             assert(d.min() <= v);
47             u.push_back(v);
48         }
49         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
50         double var = 0;
51         double skew = 0;
52         double kurtosis = 0;
53         for (std::size_t i = 0; i < u.size(); ++i)
54         {
55             double dbl = (u[i] - mean);
56             double d2 = sqr(dbl);
57             var += d2;
58             skew += dbl * d2;
59             kurtosis += d2 * d2;
60         }
61         var /= u.size();
62         double dev = std::sqrt(var);
63         skew /= u.size() * dev * var;
64         kurtosis /= u.size() * var * var;
65         kurtosis -= 3;
66         double x_mean = d.b() * std::tgamma(1 + 1/d.a());
67         double x_var = sqr(d.b()) * std::tgamma(1 + 2/d.a()) - sqr(x_mean);
68         double x_skew = (sqr(d.b())*d.b() * std::tgamma(1 + 3/d.a()) -
69                         3*x_mean*x_var - sqr(x_mean)*x_mean) /
70                         (std::sqrt(x_var)*x_var);
71         double x_kurtosis = (sqr(sqr(d.b())) * std::tgamma(1 + 4/d.a()) -
72                        4*x_skew*x_var*sqrt(x_var)*x_mean -
73                        6*sqr(x_mean)*x_var - sqr(sqr(x_mean))) / sqr(x_var) - 3;
74         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
75         assert(std::abs((var - x_var) / x_var) < 0.01);
76         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
77         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
78     }
79     {
80         typedef std::weibull_distribution<> D;
81         typedef std::mt19937 G;
82         G g;
83         D d(1, .5);
84         const int N = 1000000;
85         std::vector<D::result_type> u;
86         for (int i = 0; i < N; ++i)
87         {
88             D::result_type v = d(g);
89             assert(d.min() <= v);
90             u.push_back(v);
91         }
92         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
93         double var = 0;
94         double skew = 0;
95         double kurtosis = 0;
96         for (std::size_t i = 0; i < u.size(); ++i)
97         {
98             double dbl = (u[i] - mean);
99             double d2 = sqr(dbl);
100             var += d2;
101             skew += dbl * d2;
102             kurtosis += d2 * d2;
103         }
104         var /= u.size();
105         double dev = std::sqrt(var);
106         skew /= u.size() * dev * var;
107         kurtosis /= u.size() * var * var;
108         kurtosis -= 3;
109         double x_mean = d.b() * std::tgamma(1 + 1/d.a());
110         double x_var = sqr(d.b()) * std::tgamma(1 + 2/d.a()) - sqr(x_mean);
111         double x_skew = (sqr(d.b())*d.b() * std::tgamma(1 + 3/d.a()) -
112                         3*x_mean*x_var - sqr(x_mean)*x_mean) /
113                         (std::sqrt(x_var)*x_var);
114         double x_kurtosis = (sqr(sqr(d.b())) * std::tgamma(1 + 4/d.a()) -
115                        4*x_skew*x_var*sqrt(x_var)*x_mean -
116                        6*sqr(x_mean)*x_var - sqr(sqr(x_mean))) / sqr(x_var) - 3;
117         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
118         assert(std::abs((var - x_var) / x_var) < 0.01);
119         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
120         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
121     }
122     {
123         typedef std::weibull_distribution<> D;
124         typedef std::mt19937 G;
125         G g;
126         D d(2, 3);
127         const int N = 1000000;
128         std::vector<D::result_type> u;
129         for (int i = 0; i < N; ++i)
130         {
131             D::result_type v = d(g);
132             assert(d.min() <= v);
133             u.push_back(v);
134         }
135         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
136         double var = 0;
137         double skew = 0;
138         double kurtosis = 0;
139         for (std::size_t i = 0; i < u.size(); ++i)
140         {
141             double dbl = (u[i] - mean);
142             double d2 = sqr(dbl);
143             var += d2;
144             skew += dbl * d2;
145             kurtosis += d2 * d2;
146         }
147         var /= u.size();
148         double dev = std::sqrt(var);
149         skew /= u.size() * dev * var;
150         kurtosis /= u.size() * var * var;
151         kurtosis -= 3;
152         double x_mean = d.b() * std::tgamma(1 + 1/d.a());
153         double x_var = sqr(d.b()) * std::tgamma(1 + 2/d.a()) - sqr(x_mean);
154         double x_skew = (sqr(d.b())*d.b() * std::tgamma(1 + 3/d.a()) -
155                         3*x_mean*x_var - sqr(x_mean)*x_mean) /
156                         (std::sqrt(x_var)*x_var);
157         double x_kurtosis = (sqr(sqr(d.b())) * std::tgamma(1 + 4/d.a()) -
158                        4*x_skew*x_var*sqrt(x_var)*x_mean -
159                        6*sqr(x_mean)*x_var - sqr(sqr(x_mean))) / sqr(x_var) - 3;
160         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
161         assert(std::abs((var - x_var) / x_var) < 0.01);
162         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
163         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
164     }
165 
166   return 0;
167 }
168