1 //===-- LinuxPTraceDefines_arm64sve.h ------------------------- -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #ifndef LLDB_SOURCE_PLUGINS_PROCESS_UTILITY_LINUXPTRACEDEFINES_ARM64SVE_H
10 #define LLDB_SOURCE_PLUGINS_PROCESS_UTILITY_LINUXPTRACEDEFINES_ARM64SVE_H
11
12 #include <stdint.h>
13
14 namespace lldb_private {
15 namespace sve {
16
17 /*
18 * The SVE architecture leaves space for future expansion of the
19 * vector length beyond its initial architectural limit of 2048 bits
20 * (16 quadwords).
21 *
22 * See <Linux kernel source tree>/Documentation/arm64/sve.rst for a description
23 * of the vl/vq terminology.
24 */
25
26 const uint16_t vq_bytes = 16; /* number of bytes per quadword */
27
28 const uint16_t vq_min = 1;
29 const uint16_t vq_max = 512;
30
31 const uint16_t vl_min = vq_min * vq_bytes;
32 const uint16_t vl_max = vq_max * vq_bytes;
33
34 const uint16_t num_of_zregs = 32;
35 const uint16_t num_of_pregs = 16;
36
vl_valid(uint16_t vl)37 inline uint16_t vl_valid(uint16_t vl) {
38 return (vl % vq_bytes == 0 && vl >= vl_min && vl <= vl_max);
39 }
40
vq_from_vl(uint16_t vl)41 inline uint16_t vq_from_vl(uint16_t vl) { return vl / vq_bytes; }
vl_from_vq(uint16_t vq)42 inline uint16_t vl_from_vq(uint16_t vq) { return vq * vq_bytes; }
43
44 /* A new signal frame record sve_context encodes the SVE Registers on signal
45 * delivery. sve_context struct definition may be included in asm/sigcontext.h.
46 * We define sve_context_size which will be used by LLDB sve helper functions.
47 * More information on sve_context can be found in Linux kernel source tree at
48 * Documentation/arm64/sve.rst.
49 */
50
51 const uint16_t sve_context_size = 16;
52
53 /*
54 * If the SVE registers are currently live for the thread at signal delivery,
55 * sve_context.head.size >=
56 * SigContextSize(vq_from_vl(sve_context.vl))
57 * and the register data may be accessed using the Sig*() functions.
58 *
59 * If sve_context.head.size <
60 * SigContextSize(vq_from_vl(sve_context.vl)),
61 * the SVE registers were not live for the thread and no register data
62 * is included: in this case, the Sig*() functions should not be
63 * used except for this check.
64 *
65 * The same convention applies when returning from a signal: a caller
66 * will need to remove or resize the sve_context block if it wants to
67 * make the SVE registers live when they were previously non-live or
68 * vice-versa. This may require the the caller to allocate fresh
69 * memory and/or move other context blocks in the signal frame.
70 *
71 * Changing the vector length during signal return is not permitted:
72 * sve_context.vl must equal the thread's current vector length when
73 * doing a sigreturn.
74 *
75 *
76 * Note: for all these functions, the "vq" argument denotes the SVE
77 * vector length in quadwords (i.e., units of 128 bits).
78 *
79 * The correct way to obtain vq is to use vq_from_vl(vl). The
80 * result is valid if and only if vl_valid(vl) is true. This is
81 * guaranteed for a struct sve_context written by the kernel.
82 *
83 *
84 * Additional functions describe the contents and layout of the payload.
85 * For each, Sig*Offset(args) is the start offset relative to
86 * the start of struct sve_context, and Sig*Size(args) is the
87 * size in bytes:
88 *
89 * x type description
90 * - ---- -----------
91 * REGS the entire SVE context
92 *
93 * ZREGS __uint128_t[num_of_zregs][vq] all Z-registers
94 * ZREG __uint128_t[vq] individual Z-register Zn
95 *
96 * PREGS uint16_t[num_of_pregs][vq] all P-registers
97 * PREG uint16_t[vq] individual P-register Pn
98 *
99 * FFR uint16_t[vq] first-fault status register
100 *
101 * Additional data might be appended in the future.
102 */
103
SigZRegSize(uint16_t vq)104 inline uint16_t SigZRegSize(uint16_t vq) { return vq * vq_bytes; }
SigPRegSize(uint16_t vq)105 inline uint16_t SigPRegSize(uint16_t vq) { return vq * vq_bytes / 8; }
SigFFRSize(uint16_t vq)106 inline uint16_t SigFFRSize(uint16_t vq) { return SigPRegSize(vq); }
107
SigRegsOffset()108 inline uint32_t SigRegsOffset() {
109 return (sve_context_size + vq_bytes - 1) / vq_bytes * vq_bytes;
110 }
111
SigZRegsOffset()112 inline uint32_t SigZRegsOffset() { return SigRegsOffset(); }
113
SigZRegOffset(uint16_t vq,uint16_t n)114 inline uint32_t SigZRegOffset(uint16_t vq, uint16_t n) {
115 return SigRegsOffset() + SigZRegSize(vq) * n;
116 }
117
SigZRegsSize(uint16_t vq)118 inline uint32_t SigZRegsSize(uint16_t vq) {
119 return SigZRegOffset(vq, num_of_zregs) - SigRegsOffset();
120 }
121
SigPRegsOffset(uint16_t vq)122 inline uint32_t SigPRegsOffset(uint16_t vq) {
123 return SigRegsOffset() + SigZRegsSize(vq);
124 }
125
SigPRegOffset(uint16_t vq,uint16_t n)126 inline uint32_t SigPRegOffset(uint16_t vq, uint16_t n) {
127 return SigPRegsOffset(vq) + SigPRegSize(vq) * n;
128 }
129
SigpRegsSize(uint16_t vq)130 inline uint32_t SigpRegsSize(uint16_t vq) {
131 return SigPRegOffset(vq, num_of_pregs) - SigPRegsOffset(vq);
132 }
133
SigFFROffset(uint16_t vq)134 inline uint32_t SigFFROffset(uint16_t vq) {
135 return SigPRegsOffset(vq) + SigpRegsSize(vq);
136 }
137
SigRegsSize(uint16_t vq)138 inline uint32_t SigRegsSize(uint16_t vq) {
139 return SigFFROffset(vq) + SigFFRSize(vq) - SigRegsOffset();
140 }
141
SVESigContextSize(uint16_t vq)142 inline uint32_t SVESigContextSize(uint16_t vq) {
143 return SigRegsOffset() + SigRegsSize(vq);
144 }
145
146 struct user_sve_header {
147 uint32_t size; /* total meaningful regset content in bytes */
148 uint32_t max_size; /* maxmium possible size for this thread */
149 uint16_t vl; /* current vector length */
150 uint16_t max_vl; /* maximum possible vector length */
151 uint16_t flags;
152 uint16_t reserved;
153 };
154
155 /* Definitions for user_sve_header.flags: */
156 const uint16_t ptrace_regs_mask = 1 << 0;
157 const uint16_t ptrace_regs_fpsimd = 0;
158 const uint16_t ptrace_regs_sve = ptrace_regs_mask;
159
160 /*
161 * The remainder of the SVE state follows struct user_sve_header. The
162 * total size of the SVE state (including header) depends on the
163 * metadata in the header: PTraceSize(vq, flags) gives the total size
164 * of the state in bytes, including the header.
165 *
166 * Refer to <asm/sigcontext.h> for details of how to pass the correct
167 * "vq" argument to these macros.
168 */
169
170 /* Offset from the start of struct user_sve_header to the register data */
PTraceRegsOffset()171 inline uint16_t PTraceRegsOffset() {
172 return (sizeof(struct user_sve_header) + vq_bytes - 1) / vq_bytes * vq_bytes;
173 }
174
175 /*
176 * The register data content and layout depends on the value of the
177 * flags field.
178 */
179
180 /*
181 * (flags & ptrace_regs_mask) == ptrace_regs_fpsimd case:
182 *
183 * The payload starts at offset PTraceFPSIMDOffset, and is of type
184 * struct user_fpsimd_state. Additional data might be appended in the
185 * future: use PTraceFPSIMDSize(vq, flags) to compute the total size.
186 * PTraceFPSIMDSize(vq, flags) will never be less than
187 * sizeof(struct user_fpsimd_state).
188 */
189
190 const uint32_t ptrace_fpsimd_offset = PTraceRegsOffset();
191
192 /* Return size of struct user_fpsimd_state from asm/ptrace.h */
PTraceFPSIMDSize(uint16_t vq,uint16_t flags)193 inline uint32_t PTraceFPSIMDSize(uint16_t vq, uint16_t flags) { return 528; }
194
195 /*
196 * (flags & ptrace_regs_mask) == ptrace_regs_sve case:
197 *
198 * The payload starts at offset PTraceSVEOffset, and is of size
199 * PTraceSVESize(vq, flags).
200 *
201 * Additional functions describe the contents and layout of the payload.
202 * For each, PTrace*X*Offset(args) is the start offset relative to
203 * the start of struct user_sve_header, and PTrace*X*Size(args) is
204 * the size in bytes:
205 *
206 * x type description
207 * - ---- -----------
208 * ZREGS \
209 * ZREG |
210 * PREGS | refer to <asm/sigcontext.h>
211 * PREG |
212 * FFR /
213 *
214 * FPSR uint32_t FPSR
215 * FPCR uint32_t FPCR
216 *
217 * Additional data might be appended in the future.
218 */
219
PTraceZRegSize(uint16_t vq)220 inline uint32_t PTraceZRegSize(uint16_t vq) { return SigZRegSize(vq); }
221
PTracePRegSize(uint16_t vq)222 inline uint32_t PTracePRegSize(uint16_t vq) { return SigPRegSize(vq); }
223
PTraceFFRSize(uint16_t vq)224 inline uint32_t PTraceFFRSize(uint16_t vq) { return SigFFRSize(vq); }
225
226 const uint32_t fpsr_size = sizeof(uint32_t);
227 const uint32_t fpcr_size = sizeof(uint32_t);
228
SigToPTrace(uint32_t offset)229 inline uint32_t SigToPTrace(uint32_t offset) {
230 return offset - SigRegsOffset() + PTraceRegsOffset();
231 }
232
233 const uint32_t ptrace_sve_offset = PTraceRegsOffset();
234
PTraceZRegsOffset(uint16_t vq)235 inline uint32_t PTraceZRegsOffset(uint16_t vq) {
236 return SigToPTrace(SigZRegsOffset());
237 }
238
PTraceZRegOffset(uint16_t vq,uint16_t n)239 inline uint32_t PTraceZRegOffset(uint16_t vq, uint16_t n) {
240 return SigToPTrace(SigZRegOffset(vq, n));
241 }
242
PTraceZRegsSize(uint16_t vq)243 inline uint32_t PTraceZRegsSize(uint16_t vq) {
244 return PTraceZRegOffset(vq, num_of_zregs) - SigToPTrace(SigRegsOffset());
245 }
246
PTracePRegsOffset(uint16_t vq)247 inline uint32_t PTracePRegsOffset(uint16_t vq) {
248 return SigToPTrace(SigPRegsOffset(vq));
249 }
250
PTracePRegOffset(uint16_t vq,uint16_t n)251 inline uint32_t PTracePRegOffset(uint16_t vq, uint16_t n) {
252 return SigToPTrace(SigPRegOffset(vq, n));
253 }
254
PTracePRegsSize(uint16_t vq)255 inline uint32_t PTracePRegsSize(uint16_t vq) {
256 return PTracePRegOffset(vq, num_of_pregs) - PTracePRegsOffset(vq);
257 }
258
PTraceFFROffset(uint16_t vq)259 inline uint32_t PTraceFFROffset(uint16_t vq) {
260 return SigToPTrace(SigFFROffset(vq));
261 }
262
PTraceFPSROffset(uint16_t vq)263 inline uint32_t PTraceFPSROffset(uint16_t vq) {
264 return (PTraceFFROffset(vq) + PTraceFFRSize(vq) + (vq_bytes - 1)) / vq_bytes *
265 vq_bytes;
266 }
267
PTraceFPCROffset(uint16_t vq)268 inline uint32_t PTraceFPCROffset(uint16_t vq) {
269 return PTraceFPSROffset(vq) + fpsr_size;
270 }
271
272 /*
273 * Any future extension appended after FPCR must be aligned to the next
274 * 128-bit boundary.
275 */
276
PTraceSVESize(uint16_t vq,uint16_t flags)277 inline uint32_t PTraceSVESize(uint16_t vq, uint16_t flags) {
278 return (PTraceFPCROffset(vq) + fpcr_size - ptrace_sve_offset + vq_bytes - 1) /
279 vq_bytes * vq_bytes;
280 }
281
PTraceSize(uint16_t vq,uint16_t flags)282 inline uint32_t PTraceSize(uint16_t vq, uint16_t flags) {
283 return (flags & ptrace_regs_mask) == ptrace_regs_sve
284 ? ptrace_sve_offset + PTraceSVESize(vq, flags)
285 : ptrace_fpsimd_offset + PTraceFPSIMDSize(vq, flags);
286 }
287
288 } // namespace SVE
289 } // namespace lldb_private
290
291 #endif // LLDB_SOURCE_PLUGINS_PROCESS_UTILITY_LINUXPTRACEDEFINES_ARM64SVE_H
292