1 //===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Common functionality for different debug information format backends.
10 // LLVM currently supports DWARF and CodeView.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/DebugHandlerBase.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/Twine.h"
17 #include "llvm/CodeGen/AsmPrinter.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/MachineModuleInfo.h"
21 #include "llvm/CodeGen/TargetSubtargetInfo.h"
22 #include "llvm/IR/DebugInfo.h"
23 #include "llvm/MC/MCStreamer.h"
24 #include "llvm/Support/CommandLine.h"
25 
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "dwarfdebug"
29 
30 /// If true, we drop variable location ranges which exist entirely outside the
31 /// variable's lexical scope instruction ranges.
32 static cl::opt<bool> TrimVarLocs("trim-var-locs", cl::Hidden, cl::init(true));
33 
34 Optional<DbgVariableLocation>
extractFromMachineInstruction(const MachineInstr & Instruction)35 DbgVariableLocation::extractFromMachineInstruction(
36     const MachineInstr &Instruction) {
37   DbgVariableLocation Location;
38   if (!Instruction.isDebugValue())
39     return None;
40   if (!Instruction.getDebugOperand(0).isReg())
41     return None;
42   Location.Register = Instruction.getDebugOperand(0).getReg();
43   Location.FragmentInfo.reset();
44   // We only handle expressions generated by DIExpression::appendOffset,
45   // which doesn't require a full stack machine.
46   int64_t Offset = 0;
47   const DIExpression *DIExpr = Instruction.getDebugExpression();
48   auto Op = DIExpr->expr_op_begin();
49   while (Op != DIExpr->expr_op_end()) {
50     switch (Op->getOp()) {
51     case dwarf::DW_OP_constu: {
52       int Value = Op->getArg(0);
53       ++Op;
54       if (Op != DIExpr->expr_op_end()) {
55         switch (Op->getOp()) {
56         case dwarf::DW_OP_minus:
57           Offset -= Value;
58           break;
59         case dwarf::DW_OP_plus:
60           Offset += Value;
61           break;
62         default:
63           continue;
64         }
65       }
66     } break;
67     case dwarf::DW_OP_plus_uconst:
68       Offset += Op->getArg(0);
69       break;
70     case dwarf::DW_OP_LLVM_fragment:
71       Location.FragmentInfo = {Op->getArg(1), Op->getArg(0)};
72       break;
73     case dwarf::DW_OP_deref:
74       Location.LoadChain.push_back(Offset);
75       Offset = 0;
76       break;
77     default:
78       return None;
79     }
80     ++Op;
81   }
82 
83   // Do one final implicit DW_OP_deref if this was an indirect DBG_VALUE
84   // instruction.
85   // FIXME: Replace these with DIExpression.
86   if (Instruction.isIndirectDebugValue())
87     Location.LoadChain.push_back(Offset);
88 
89   return Location;
90 }
91 
DebugHandlerBase(AsmPrinter * A)92 DebugHandlerBase::DebugHandlerBase(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
93 
beginModule(Module * M)94 void DebugHandlerBase::beginModule(Module *M) {
95   if (M->debug_compile_units().empty())
96     Asm = nullptr;
97 }
98 
99 // Each LexicalScope has first instruction and last instruction to mark
100 // beginning and end of a scope respectively. Create an inverse map that list
101 // scopes starts (and ends) with an instruction. One instruction may start (or
102 // end) multiple scopes. Ignore scopes that are not reachable.
identifyScopeMarkers()103 void DebugHandlerBase::identifyScopeMarkers() {
104   SmallVector<LexicalScope *, 4> WorkList;
105   WorkList.push_back(LScopes.getCurrentFunctionScope());
106   while (!WorkList.empty()) {
107     LexicalScope *S = WorkList.pop_back_val();
108 
109     const SmallVectorImpl<LexicalScope *> &Children = S->getChildren();
110     if (!Children.empty())
111       WorkList.append(Children.begin(), Children.end());
112 
113     if (S->isAbstractScope())
114       continue;
115 
116     for (const InsnRange &R : S->getRanges()) {
117       assert(R.first && "InsnRange does not have first instruction!");
118       assert(R.second && "InsnRange does not have second instruction!");
119       requestLabelBeforeInsn(R.first);
120       requestLabelAfterInsn(R.second);
121     }
122   }
123 }
124 
125 // Return Label preceding the instruction.
getLabelBeforeInsn(const MachineInstr * MI)126 MCSymbol *DebugHandlerBase::getLabelBeforeInsn(const MachineInstr *MI) {
127   MCSymbol *Label = LabelsBeforeInsn.lookup(MI);
128   assert(Label && "Didn't insert label before instruction");
129   return Label;
130 }
131 
132 // Return Label immediately following the instruction.
getLabelAfterInsn(const MachineInstr * MI)133 MCSymbol *DebugHandlerBase::getLabelAfterInsn(const MachineInstr *MI) {
134   return LabelsAfterInsn.lookup(MI);
135 }
136 
137 /// If this type is derived from a base type then return base type size.
getBaseTypeSize(const DIType * Ty)138 uint64_t DebugHandlerBase::getBaseTypeSize(const DIType *Ty) {
139   assert(Ty);
140   const DIDerivedType *DDTy = dyn_cast<DIDerivedType>(Ty);
141   if (!DDTy)
142     return Ty->getSizeInBits();
143 
144   unsigned Tag = DDTy->getTag();
145 
146   if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef &&
147       Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type &&
148       Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_atomic_type)
149     return DDTy->getSizeInBits();
150 
151   DIType *BaseType = DDTy->getBaseType();
152 
153   if (!BaseType)
154     return 0;
155 
156   // If this is a derived type, go ahead and get the base type, unless it's a
157   // reference then it's just the size of the field. Pointer types have no need
158   // of this since they're a different type of qualification on the type.
159   if (BaseType->getTag() == dwarf::DW_TAG_reference_type ||
160       BaseType->getTag() == dwarf::DW_TAG_rvalue_reference_type)
161     return Ty->getSizeInBits();
162 
163   return getBaseTypeSize(BaseType);
164 }
165 
isUnsignedDIType(const DIType * Ty)166 bool DebugHandlerBase::isUnsignedDIType(const DIType *Ty) {
167   if (auto *CTy = dyn_cast<DICompositeType>(Ty)) {
168     // FIXME: Enums without a fixed underlying type have unknown signedness
169     // here, leading to incorrectly emitted constants.
170     if (CTy->getTag() == dwarf::DW_TAG_enumeration_type)
171       return false;
172 
173     // (Pieces of) aggregate types that get hacked apart by SROA may be
174     // represented by a constant. Encode them as unsigned bytes.
175     return true;
176   }
177 
178   if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
179     dwarf::Tag T = (dwarf::Tag)Ty->getTag();
180     // Encode pointer constants as unsigned bytes. This is used at least for
181     // null pointer constant emission.
182     // FIXME: reference and rvalue_reference /probably/ shouldn't be allowed
183     // here, but accept them for now due to a bug in SROA producing bogus
184     // dbg.values.
185     if (T == dwarf::DW_TAG_pointer_type ||
186         T == dwarf::DW_TAG_ptr_to_member_type ||
187         T == dwarf::DW_TAG_reference_type ||
188         T == dwarf::DW_TAG_rvalue_reference_type)
189       return true;
190     assert(T == dwarf::DW_TAG_typedef || T == dwarf::DW_TAG_const_type ||
191            T == dwarf::DW_TAG_volatile_type ||
192            T == dwarf::DW_TAG_restrict_type || T == dwarf::DW_TAG_atomic_type);
193     assert(DTy->getBaseType() && "Expected valid base type");
194     return isUnsignedDIType(DTy->getBaseType());
195   }
196 
197   auto *BTy = cast<DIBasicType>(Ty);
198   unsigned Encoding = BTy->getEncoding();
199   assert((Encoding == dwarf::DW_ATE_unsigned ||
200           Encoding == dwarf::DW_ATE_unsigned_char ||
201           Encoding == dwarf::DW_ATE_signed ||
202           Encoding == dwarf::DW_ATE_signed_char ||
203           Encoding == dwarf::DW_ATE_float || Encoding == dwarf::DW_ATE_UTF ||
204           Encoding == dwarf::DW_ATE_boolean ||
205           (Ty->getTag() == dwarf::DW_TAG_unspecified_type &&
206            Ty->getName() == "decltype(nullptr)")) &&
207          "Unsupported encoding");
208   return Encoding == dwarf::DW_ATE_unsigned ||
209          Encoding == dwarf::DW_ATE_unsigned_char ||
210          Encoding == dwarf::DW_ATE_UTF || Encoding == dwarf::DW_ATE_boolean ||
211          Ty->getTag() == dwarf::DW_TAG_unspecified_type;
212 }
213 
hasDebugInfo(const MachineModuleInfo * MMI,const MachineFunction * MF)214 static bool hasDebugInfo(const MachineModuleInfo *MMI,
215                          const MachineFunction *MF) {
216   if (!MMI->hasDebugInfo())
217     return false;
218   auto *SP = MF->getFunction().getSubprogram();
219   if (!SP)
220     return false;
221   assert(SP->getUnit());
222   auto EK = SP->getUnit()->getEmissionKind();
223   if (EK == DICompileUnit::NoDebug)
224     return false;
225   return true;
226 }
227 
beginFunction(const MachineFunction * MF)228 void DebugHandlerBase::beginFunction(const MachineFunction *MF) {
229   PrevInstBB = nullptr;
230 
231   if (!Asm || !hasDebugInfo(MMI, MF)) {
232     skippedNonDebugFunction();
233     return;
234   }
235 
236   // Grab the lexical scopes for the function, if we don't have any of those
237   // then we're not going to be able to do anything.
238   LScopes.initialize(*MF);
239   if (LScopes.empty()) {
240     beginFunctionImpl(MF);
241     return;
242   }
243 
244   // Make sure that each lexical scope will have a begin/end label.
245   identifyScopeMarkers();
246 
247   // Calculate history for local variables.
248   assert(DbgValues.empty() && "DbgValues map wasn't cleaned!");
249   assert(DbgLabels.empty() && "DbgLabels map wasn't cleaned!");
250   calculateDbgEntityHistory(MF, Asm->MF->getSubtarget().getRegisterInfo(),
251                             DbgValues, DbgLabels);
252   InstOrdering.initialize(*MF);
253   if (TrimVarLocs)
254     DbgValues.trimLocationRanges(*MF, LScopes, InstOrdering);
255   LLVM_DEBUG(DbgValues.dump());
256 
257   // Request labels for the full history.
258   for (const auto &I : DbgValues) {
259     const auto &Entries = I.second;
260     if (Entries.empty())
261       continue;
262 
263     auto IsDescribedByReg = [](const MachineInstr *MI) {
264       return MI->getDebugOperand(0).isReg() && MI->getDebugOperand(0).getReg();
265     };
266 
267     // The first mention of a function argument gets the CurrentFnBegin label,
268     // so arguments are visible when breaking at function entry.
269     //
270     // We do not change the label for values that are described by registers,
271     // as that could place them above their defining instructions. We should
272     // ideally not change the labels for constant debug values either, since
273     // doing that violates the ranges that are calculated in the history map.
274     // However, we currently do not emit debug values for constant arguments
275     // directly at the start of the function, so this code is still useful.
276     // FIXME: If the first mention of an argument is in a unique section basic
277     // block, we cannot always assign the CurrentFnBeginLabel as it lies in a
278     // different section.  Temporarily, we disable generating loc list
279     // information or DW_AT_const_value when the block is in a different
280     // section.
281     const DILocalVariable *DIVar =
282         Entries.front().getInstr()->getDebugVariable();
283     if (DIVar->isParameter() &&
284         getDISubprogram(DIVar->getScope())->describes(&MF->getFunction()) &&
285         Entries.front().getInstr()->getParent()->sameSection(&MF->front())) {
286       if (!IsDescribedByReg(Entries.front().getInstr()))
287         LabelsBeforeInsn[Entries.front().getInstr()] = Asm->getFunctionBegin();
288       if (Entries.front().getInstr()->getDebugExpression()->isFragment()) {
289         // Mark all non-overlapping initial fragments.
290         for (auto I = Entries.begin(); I != Entries.end(); ++I) {
291           if (!I->isDbgValue())
292             continue;
293           const DIExpression *Fragment = I->getInstr()->getDebugExpression();
294           if (std::any_of(Entries.begin(), I,
295                           [&](DbgValueHistoryMap::Entry Pred) {
296                             return Pred.isDbgValue() &&
297                                    Fragment->fragmentsOverlap(
298                                        Pred.getInstr()->getDebugExpression());
299                           }))
300             break;
301           // The code that generates location lists for DWARF assumes that the
302           // entries' start labels are monotonically increasing, and since we
303           // don't change the label for fragments that are described by
304           // registers, we must bail out when encountering such a fragment.
305           if (IsDescribedByReg(I->getInstr()))
306             break;
307           LabelsBeforeInsn[I->getInstr()] = Asm->getFunctionBegin();
308         }
309       }
310     }
311 
312     for (const auto &Entry : Entries) {
313       if (Entry.isDbgValue())
314         requestLabelBeforeInsn(Entry.getInstr());
315       else
316         requestLabelAfterInsn(Entry.getInstr());
317     }
318   }
319 
320   // Ensure there is a symbol before DBG_LABEL.
321   for (const auto &I : DbgLabels) {
322     const MachineInstr *MI = I.second;
323     requestLabelBeforeInsn(MI);
324   }
325 
326   PrevInstLoc = DebugLoc();
327   PrevLabel = Asm->getFunctionBegin();
328   beginFunctionImpl(MF);
329 }
330 
beginInstruction(const MachineInstr * MI)331 void DebugHandlerBase::beginInstruction(const MachineInstr *MI) {
332   if (!Asm || !MMI->hasDebugInfo())
333     return;
334 
335   assert(CurMI == nullptr);
336   CurMI = MI;
337 
338   // Insert labels where requested.
339   DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
340       LabelsBeforeInsn.find(MI);
341 
342   // No label needed.
343   if (I == LabelsBeforeInsn.end())
344     return;
345 
346   // Label already assigned.
347   if (I->second)
348     return;
349 
350   if (!PrevLabel) {
351     PrevLabel = MMI->getContext().createTempSymbol();
352     Asm->OutStreamer->emitLabel(PrevLabel);
353   }
354   I->second = PrevLabel;
355 }
356 
endInstruction()357 void DebugHandlerBase::endInstruction() {
358   if (!Asm || !MMI->hasDebugInfo())
359     return;
360 
361   assert(CurMI != nullptr);
362   // Don't create a new label after DBG_VALUE and other instructions that don't
363   // generate code.
364   if (!CurMI->isMetaInstruction()) {
365     PrevLabel = nullptr;
366     PrevInstBB = CurMI->getParent();
367   }
368 
369   DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
370       LabelsAfterInsn.find(CurMI);
371   CurMI = nullptr;
372 
373   // No label needed.
374   if (I == LabelsAfterInsn.end())
375     return;
376 
377   // Label already assigned.
378   if (I->second)
379     return;
380 
381   // We need a label after this instruction.
382   if (!PrevLabel) {
383     PrevLabel = MMI->getContext().createTempSymbol();
384     Asm->OutStreamer->emitLabel(PrevLabel);
385   }
386   I->second = PrevLabel;
387 }
388 
endFunction(const MachineFunction * MF)389 void DebugHandlerBase::endFunction(const MachineFunction *MF) {
390   if (Asm && hasDebugInfo(MMI, MF))
391     endFunctionImpl(MF);
392   DbgValues.clear();
393   DbgLabels.clear();
394   LabelsBeforeInsn.clear();
395   LabelsAfterInsn.clear();
396   InstOrdering.clear();
397 }
398 
beginBasicBlock(const MachineBasicBlock & MBB)399 void DebugHandlerBase::beginBasicBlock(const MachineBasicBlock &MBB) {
400   if (!MBB.isBeginSection())
401     return;
402 
403   PrevLabel = MBB.getSymbol();
404 }
405 
endBasicBlock(const MachineBasicBlock & MBB)406 void DebugHandlerBase::endBasicBlock(const MachineBasicBlock &MBB) {
407   if (!MBB.isEndSection())
408     return;
409 
410   PrevLabel = nullptr;
411 }
412