1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass moves instructions into successor blocks when possible, so that
10 // they aren't executed on paths where their results aren't needed.
11 //
12 // This pass is not intended to be a replacement or a complete alternative
13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
14 // constructs that are not exposed before lowering and instruction selection.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/SparseBitVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
29 #include "llvm/CodeGen/MachineDominators.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineLoopInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachinePostDominators.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/RegisterClassInfo.h"
38 #include "llvm/CodeGen/RegisterPressure.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/DebugInfoMetadata.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/InitializePasses.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/BranchProbability.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <cstdint>
55 #include <map>
56 #include <utility>
57 #include <vector>
58 
59 using namespace llvm;
60 
61 #define DEBUG_TYPE "machine-sink"
62 
63 static cl::opt<bool>
64 SplitEdges("machine-sink-split",
65            cl::desc("Split critical edges during machine sinking"),
66            cl::init(true), cl::Hidden);
67 
68 static cl::opt<bool>
69 UseBlockFreqInfo("machine-sink-bfi",
70            cl::desc("Use block frequency info to find successors to sink"),
71            cl::init(true), cl::Hidden);
72 
73 static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
74     "machine-sink-split-probability-threshold",
75     cl::desc(
76         "Percentage threshold for splitting single-instruction critical edge. "
77         "If the branch threshold is higher than this threshold, we allow "
78         "speculative execution of up to 1 instruction to avoid branching to "
79         "splitted critical edge"),
80     cl::init(40), cl::Hidden);
81 
82 STATISTIC(NumSunk,      "Number of machine instructions sunk");
83 STATISTIC(NumSplit,     "Number of critical edges split");
84 STATISTIC(NumCoalesces, "Number of copies coalesced");
85 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
86 
87 namespace {
88 
89   class MachineSinking : public MachineFunctionPass {
90     const TargetInstrInfo *TII;
91     const TargetRegisterInfo *TRI;
92     MachineRegisterInfo  *MRI;     // Machine register information
93     MachineDominatorTree *DT;      // Machine dominator tree
94     MachinePostDominatorTree *PDT; // Machine post dominator tree
95     MachineLoopInfo *LI;
96     MachineBlockFrequencyInfo *MBFI;
97     const MachineBranchProbabilityInfo *MBPI;
98     AliasAnalysis *AA;
99     RegisterClassInfo RegClassInfo;
100 
101     // Remember which edges have been considered for breaking.
102     SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
103     CEBCandidates;
104     // Remember which edges we are about to split.
105     // This is different from CEBCandidates since those edges
106     // will be split.
107     SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
108 
109     SparseBitVector<> RegsToClearKillFlags;
110 
111     using AllSuccsCache =
112         std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
113 
114     /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is
115     /// post-dominated by another DBG_VALUE of the same variable location.
116     /// This is necessary to detect sequences such as:
117     ///     %0 = someinst
118     ///     DBG_VALUE %0, !123, !DIExpression()
119     ///     %1 = anotherinst
120     ///     DBG_VALUE %1, !123, !DIExpression()
121     /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that
122     /// would re-order assignments.
123     using SeenDbgUser = PointerIntPair<MachineInstr *, 1>;
124 
125     /// Record of DBG_VALUE uses of vregs in a block, so that we can identify
126     /// debug instructions to sink.
127     SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers;
128 
129     /// Record of debug variables that have had their locations set in the
130     /// current block.
131     DenseSet<DebugVariable> SeenDbgVars;
132 
133     std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool>
134         HasStoreCache;
135     std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>,
136              std::vector<MachineInstr *>>
137         StoreInstrCache;
138 
139     /// Cached BB's register pressure.
140     std::map<MachineBasicBlock *, std::vector<unsigned>> CachedRegisterPressure;
141 
142   public:
143     static char ID; // Pass identification
144 
MachineSinking()145     MachineSinking() : MachineFunctionPass(ID) {
146       initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
147     }
148 
149     bool runOnMachineFunction(MachineFunction &MF) override;
150 
getAnalysisUsage(AnalysisUsage & AU) const151     void getAnalysisUsage(AnalysisUsage &AU) const override {
152       MachineFunctionPass::getAnalysisUsage(AU);
153       AU.addRequired<AAResultsWrapperPass>();
154       AU.addRequired<MachineDominatorTree>();
155       AU.addRequired<MachinePostDominatorTree>();
156       AU.addRequired<MachineLoopInfo>();
157       AU.addRequired<MachineBranchProbabilityInfo>();
158       AU.addPreserved<MachineLoopInfo>();
159       if (UseBlockFreqInfo)
160         AU.addRequired<MachineBlockFrequencyInfo>();
161     }
162 
releaseMemory()163     void releaseMemory() override {
164       CEBCandidates.clear();
165     }
166 
167   private:
168     bool ProcessBlock(MachineBasicBlock &MBB);
169     void ProcessDbgInst(MachineInstr &MI);
170     bool isWorthBreakingCriticalEdge(MachineInstr &MI,
171                                      MachineBasicBlock *From,
172                                      MachineBasicBlock *To);
173 
174     bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To,
175                          MachineInstr &MI);
176 
177     /// Postpone the splitting of the given critical
178     /// edge (\p From, \p To).
179     ///
180     /// We do not split the edges on the fly. Indeed, this invalidates
181     /// the dominance information and thus triggers a lot of updates
182     /// of that information underneath.
183     /// Instead, we postpone all the splits after each iteration of
184     /// the main loop. That way, the information is at least valid
185     /// for the lifetime of an iteration.
186     ///
187     /// \return True if the edge is marked as toSplit, false otherwise.
188     /// False can be returned if, for instance, this is not profitable.
189     bool PostponeSplitCriticalEdge(MachineInstr &MI,
190                                    MachineBasicBlock *From,
191                                    MachineBasicBlock *To,
192                                    bool BreakPHIEdge);
193     bool SinkInstruction(MachineInstr &MI, bool &SawStore,
194                          AllSuccsCache &AllSuccessors);
195 
196     /// If we sink a COPY inst, some debug users of it's destination may no
197     /// longer be dominated by the COPY, and will eventually be dropped.
198     /// This is easily rectified by forwarding the non-dominated debug uses
199     /// to the copy source.
200     void SalvageUnsunkDebugUsersOfCopy(MachineInstr &,
201                                        MachineBasicBlock *TargetBlock);
202     bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB,
203                                  MachineBasicBlock *DefMBB, bool &BreakPHIEdge,
204                                  bool &LocalUse) const;
205     MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
206                bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
207     bool isProfitableToSinkTo(Register Reg, MachineInstr &MI,
208                               MachineBasicBlock *MBB,
209                               MachineBasicBlock *SuccToSinkTo,
210                               AllSuccsCache &AllSuccessors);
211 
212     bool PerformTrivialForwardCoalescing(MachineInstr &MI,
213                                          MachineBasicBlock *MBB);
214 
215     SmallVector<MachineBasicBlock *, 4> &
216     GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
217                            AllSuccsCache &AllSuccessors) const;
218 
219     std::vector<unsigned> &getBBRegisterPressure(MachineBasicBlock &MBB);
220   };
221 
222 } // end anonymous namespace
223 
224 char MachineSinking::ID = 0;
225 
226 char &llvm::MachineSinkingID = MachineSinking::ID;
227 
228 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
229                       "Machine code sinking", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)230 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
231 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
232 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
233 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
234 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
235                     "Machine code sinking", false, false)
236 
237 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
238                                                      MachineBasicBlock *MBB) {
239   if (!MI.isCopy())
240     return false;
241 
242   Register SrcReg = MI.getOperand(1).getReg();
243   Register DstReg = MI.getOperand(0).getReg();
244   if (!Register::isVirtualRegister(SrcReg) ||
245       !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg))
246     return false;
247 
248   const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
249   const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
250   if (SRC != DRC)
251     return false;
252 
253   MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
254   if (DefMI->isCopyLike())
255     return false;
256   LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
257   LLVM_DEBUG(dbgs() << "*** to: " << MI);
258   MRI->replaceRegWith(DstReg, SrcReg);
259   MI.eraseFromParent();
260 
261   // Conservatively, clear any kill flags, since it's possible that they are no
262   // longer correct.
263   MRI->clearKillFlags(SrcReg);
264 
265   ++NumCoalesces;
266   return true;
267 }
268 
269 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
270 /// occur in blocks dominated by the specified block. If any use is in the
271 /// definition block, then return false since it is never legal to move def
272 /// after uses.
AllUsesDominatedByBlock(Register Reg,MachineBasicBlock * MBB,MachineBasicBlock * DefMBB,bool & BreakPHIEdge,bool & LocalUse) const273 bool MachineSinking::AllUsesDominatedByBlock(Register Reg,
274                                              MachineBasicBlock *MBB,
275                                              MachineBasicBlock *DefMBB,
276                                              bool &BreakPHIEdge,
277                                              bool &LocalUse) const {
278   assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs");
279 
280   // Ignore debug uses because debug info doesn't affect the code.
281   if (MRI->use_nodbg_empty(Reg))
282     return true;
283 
284   // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
285   // into and they are all PHI nodes. In this case, machine-sink must break
286   // the critical edge first. e.g.
287   //
288   // %bb.1:
289   //   Predecessors according to CFG: %bb.0
290   //     ...
291   //     %def = DEC64_32r %x, implicit-def dead %eflags
292   //     ...
293   //     JE_4 <%bb.37>, implicit %eflags
294   //   Successors according to CFG: %bb.37 %bb.2
295   //
296   // %bb.2:
297   //     %p = PHI %y, %bb.0, %def, %bb.1
298   if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) {
299         MachineInstr *UseInst = MO.getParent();
300         unsigned OpNo = UseInst->getOperandNo(&MO);
301         MachineBasicBlock *UseBlock = UseInst->getParent();
302         return UseBlock == MBB && UseInst->isPHI() &&
303                UseInst->getOperand(OpNo + 1).getMBB() == DefMBB;
304       })) {
305     BreakPHIEdge = true;
306     return true;
307   }
308 
309   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
310     // Determine the block of the use.
311     MachineInstr *UseInst = MO.getParent();
312     unsigned OpNo = &MO - &UseInst->getOperand(0);
313     MachineBasicBlock *UseBlock = UseInst->getParent();
314     if (UseInst->isPHI()) {
315       // PHI nodes use the operand in the predecessor block, not the block with
316       // the PHI.
317       UseBlock = UseInst->getOperand(OpNo+1).getMBB();
318     } else if (UseBlock == DefMBB) {
319       LocalUse = true;
320       return false;
321     }
322 
323     // Check that it dominates.
324     if (!DT->dominates(MBB, UseBlock))
325       return false;
326   }
327 
328   return true;
329 }
330 
runOnMachineFunction(MachineFunction & MF)331 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
332   if (skipFunction(MF.getFunction()))
333     return false;
334 
335   LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
336 
337   TII = MF.getSubtarget().getInstrInfo();
338   TRI = MF.getSubtarget().getRegisterInfo();
339   MRI = &MF.getRegInfo();
340   DT = &getAnalysis<MachineDominatorTree>();
341   PDT = &getAnalysis<MachinePostDominatorTree>();
342   LI = &getAnalysis<MachineLoopInfo>();
343   MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
344   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
345   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
346   RegClassInfo.runOnMachineFunction(MF);
347 
348   bool EverMadeChange = false;
349 
350   while (true) {
351     bool MadeChange = false;
352 
353     // Process all basic blocks.
354     CEBCandidates.clear();
355     ToSplit.clear();
356     for (auto &MBB: MF)
357       MadeChange |= ProcessBlock(MBB);
358 
359     // If we have anything we marked as toSplit, split it now.
360     for (auto &Pair : ToSplit) {
361       auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
362       if (NewSucc != nullptr) {
363         LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
364                           << printMBBReference(*Pair.first) << " -- "
365                           << printMBBReference(*NewSucc) << " -- "
366                           << printMBBReference(*Pair.second) << '\n');
367         if (MBFI)
368           MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI);
369 
370         MadeChange = true;
371         ++NumSplit;
372       } else
373         LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
374     }
375     // If this iteration over the code changed anything, keep iterating.
376     if (!MadeChange) break;
377     EverMadeChange = true;
378   }
379 
380   HasStoreCache.clear();
381   StoreInstrCache.clear();
382 
383   // Now clear any kill flags for recorded registers.
384   for (auto I : RegsToClearKillFlags)
385     MRI->clearKillFlags(I);
386   RegsToClearKillFlags.clear();
387 
388   return EverMadeChange;
389 }
390 
ProcessBlock(MachineBasicBlock & MBB)391 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
392   // Can't sink anything out of a block that has less than two successors.
393   if (MBB.succ_size() <= 1 || MBB.empty()) return false;
394 
395   // Don't bother sinking code out of unreachable blocks. In addition to being
396   // unprofitable, it can also lead to infinite looping, because in an
397   // unreachable loop there may be nowhere to stop.
398   if (!DT->isReachableFromEntry(&MBB)) return false;
399 
400   bool MadeChange = false;
401 
402   // Cache all successors, sorted by frequency info and loop depth.
403   AllSuccsCache AllSuccessors;
404 
405   // Walk the basic block bottom-up.  Remember if we saw a store.
406   MachineBasicBlock::iterator I = MBB.end();
407   --I;
408   bool ProcessedBegin, SawStore = false;
409   do {
410     MachineInstr &MI = *I;  // The instruction to sink.
411 
412     // Predecrement I (if it's not begin) so that it isn't invalidated by
413     // sinking.
414     ProcessedBegin = I == MBB.begin();
415     if (!ProcessedBegin)
416       --I;
417 
418     if (MI.isDebugInstr()) {
419       if (MI.isDebugValue())
420         ProcessDbgInst(MI);
421       continue;
422     }
423 
424     bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
425     if (Joined) {
426       MadeChange = true;
427       continue;
428     }
429 
430     if (SinkInstruction(MI, SawStore, AllSuccessors)) {
431       ++NumSunk;
432       MadeChange = true;
433     }
434 
435     // If we just processed the first instruction in the block, we're done.
436   } while (!ProcessedBegin);
437 
438   SeenDbgUsers.clear();
439   SeenDbgVars.clear();
440   // recalculate the bb register pressure after sinking one BB.
441   CachedRegisterPressure.clear();
442 
443   return MadeChange;
444 }
445 
ProcessDbgInst(MachineInstr & MI)446 void MachineSinking::ProcessDbgInst(MachineInstr &MI) {
447   // When we see DBG_VALUEs for registers, record any vreg it reads, so that
448   // we know what to sink if the vreg def sinks.
449   assert(MI.isDebugValue() && "Expected DBG_VALUE for processing");
450 
451   DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
452                     MI.getDebugLoc()->getInlinedAt());
453   bool SeenBefore = SeenDbgVars.count(Var) != 0;
454 
455   MachineOperand &MO = MI.getDebugOperand(0);
456   if (MO.isReg() && MO.getReg().isVirtual())
457     SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore));
458 
459   // Record the variable for any DBG_VALUE, to avoid re-ordering any of them.
460   SeenDbgVars.insert(Var);
461 }
462 
isWorthBreakingCriticalEdge(MachineInstr & MI,MachineBasicBlock * From,MachineBasicBlock * To)463 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
464                                                  MachineBasicBlock *From,
465                                                  MachineBasicBlock *To) {
466   // FIXME: Need much better heuristics.
467 
468   // If the pass has already considered breaking this edge (during this pass
469   // through the function), then let's go ahead and break it. This means
470   // sinking multiple "cheap" instructions into the same block.
471   if (!CEBCandidates.insert(std::make_pair(From, To)).second)
472     return true;
473 
474   if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
475     return true;
476 
477   if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
478       BranchProbability(SplitEdgeProbabilityThreshold, 100))
479     return true;
480 
481   // MI is cheap, we probably don't want to break the critical edge for it.
482   // However, if this would allow some definitions of its source operands
483   // to be sunk then it's probably worth it.
484   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
485     const MachineOperand &MO = MI.getOperand(i);
486     if (!MO.isReg() || !MO.isUse())
487       continue;
488     Register Reg = MO.getReg();
489     if (Reg == 0)
490       continue;
491 
492     // We don't move live definitions of physical registers,
493     // so sinking their uses won't enable any opportunities.
494     if (Register::isPhysicalRegister(Reg))
495       continue;
496 
497     // If this instruction is the only user of a virtual register,
498     // check if breaking the edge will enable sinking
499     // both this instruction and the defining instruction.
500     if (MRI->hasOneNonDBGUse(Reg)) {
501       // If the definition resides in same MBB,
502       // claim it's likely we can sink these together.
503       // If definition resides elsewhere, we aren't
504       // blocking it from being sunk so don't break the edge.
505       MachineInstr *DefMI = MRI->getVRegDef(Reg);
506       if (DefMI->getParent() == MI.getParent())
507         return true;
508     }
509   }
510 
511   return false;
512 }
513 
PostponeSplitCriticalEdge(MachineInstr & MI,MachineBasicBlock * FromBB,MachineBasicBlock * ToBB,bool BreakPHIEdge)514 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
515                                                MachineBasicBlock *FromBB,
516                                                MachineBasicBlock *ToBB,
517                                                bool BreakPHIEdge) {
518   if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
519     return false;
520 
521   // Avoid breaking back edge. From == To means backedge for single BB loop.
522   if (!SplitEdges || FromBB == ToBB)
523     return false;
524 
525   // Check for backedges of more "complex" loops.
526   if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
527       LI->isLoopHeader(ToBB))
528     return false;
529 
530   // It's not always legal to break critical edges and sink the computation
531   // to the edge.
532   //
533   // %bb.1:
534   // v1024
535   // Beq %bb.3
536   // <fallthrough>
537   // %bb.2:
538   // ... no uses of v1024
539   // <fallthrough>
540   // %bb.3:
541   // ...
542   //       = v1024
543   //
544   // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
545   //
546   // %bb.1:
547   // ...
548   // Bne %bb.2
549   // %bb.4:
550   // v1024 =
551   // B %bb.3
552   // %bb.2:
553   // ... no uses of v1024
554   // <fallthrough>
555   // %bb.3:
556   // ...
557   //       = v1024
558   //
559   // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
560   // flow. We need to ensure the new basic block where the computation is
561   // sunk to dominates all the uses.
562   // It's only legal to break critical edge and sink the computation to the
563   // new block if all the predecessors of "To", except for "From", are
564   // not dominated by "From". Given SSA property, this means these
565   // predecessors are dominated by "To".
566   //
567   // There is no need to do this check if all the uses are PHI nodes. PHI
568   // sources are only defined on the specific predecessor edges.
569   if (!BreakPHIEdge) {
570     for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
571            E = ToBB->pred_end(); PI != E; ++PI) {
572       if (*PI == FromBB)
573         continue;
574       if (!DT->dominates(ToBB, *PI))
575         return false;
576     }
577   }
578 
579   ToSplit.insert(std::make_pair(FromBB, ToBB));
580 
581   return true;
582 }
583 
584 std::vector<unsigned> &
getBBRegisterPressure(MachineBasicBlock & MBB)585 MachineSinking::getBBRegisterPressure(MachineBasicBlock &MBB) {
586   // Currently to save compiling time, MBB's register pressure will not change
587   // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's
588   // register pressure is changed after sinking any instructions into it.
589   // FIXME: need a accurate and cheap register pressure estiminate model here.
590   auto RP = CachedRegisterPressure.find(&MBB);
591   if (RP != CachedRegisterPressure.end())
592     return RP->second;
593 
594   RegionPressure Pressure;
595   RegPressureTracker RPTracker(Pressure);
596 
597   // Initialize the register pressure tracker.
598   RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(),
599                  /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true);
600 
601   for (MachineBasicBlock::iterator MII = MBB.instr_end(),
602                                    MIE = MBB.instr_begin();
603        MII != MIE; --MII) {
604     MachineInstr &MI = *std::prev(MII);
605     if (MI.isDebugValue() || MI.isDebugLabel())
606       continue;
607     RegisterOperands RegOpers;
608     RegOpers.collect(MI, *TRI, *MRI, false, false);
609     RPTracker.recedeSkipDebugValues();
610     assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!");
611     RPTracker.recede(RegOpers);
612   }
613 
614   RPTracker.closeRegion();
615   auto It = CachedRegisterPressure.insert(
616       std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure));
617   return It.first->second;
618 }
619 
620 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
isProfitableToSinkTo(Register Reg,MachineInstr & MI,MachineBasicBlock * MBB,MachineBasicBlock * SuccToSinkTo,AllSuccsCache & AllSuccessors)621 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI,
622                                           MachineBasicBlock *MBB,
623                                           MachineBasicBlock *SuccToSinkTo,
624                                           AllSuccsCache &AllSuccessors) {
625   assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
626 
627   if (MBB == SuccToSinkTo)
628     return false;
629 
630   // It is profitable if SuccToSinkTo does not post dominate current block.
631   if (!PDT->dominates(SuccToSinkTo, MBB))
632     return true;
633 
634   // It is profitable to sink an instruction from a deeper loop to a shallower
635   // loop, even if the latter post-dominates the former (PR21115).
636   if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
637     return true;
638 
639   // Check if only use in post dominated block is PHI instruction.
640   bool NonPHIUse = false;
641   for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
642     MachineBasicBlock *UseBlock = UseInst.getParent();
643     if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
644       NonPHIUse = true;
645   }
646   if (!NonPHIUse)
647     return true;
648 
649   // If SuccToSinkTo post dominates then also it may be profitable if MI
650   // can further profitably sinked into another block in next round.
651   bool BreakPHIEdge = false;
652   // FIXME - If finding successor is compile time expensive then cache results.
653   if (MachineBasicBlock *MBB2 =
654           FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
655     return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
656 
657   MachineLoop *ML = LI->getLoopFor(MBB);
658 
659   // If the instruction is not inside a loop, it is not profitable to sink MI to
660   // a post dominate block SuccToSinkTo.
661   if (!ML)
662     return false;
663 
664   auto isRegisterPressureSetExceedLimit = [&](const TargetRegisterClass *RC) {
665     unsigned Weight = TRI->getRegClassWeight(RC).RegWeight;
666     const int *PS = TRI->getRegClassPressureSets(RC);
667     // Get register pressure for block SuccToSinkTo.
668     std::vector<unsigned> BBRegisterPressure =
669         getBBRegisterPressure(*SuccToSinkTo);
670     for (; *PS != -1; PS++)
671       // check if any register pressure set exceeds limit in block SuccToSinkTo
672       // after sinking.
673       if (Weight + BBRegisterPressure[*PS] >=
674           TRI->getRegPressureSetLimit(*MBB->getParent(), *PS))
675         return true;
676     return false;
677   };
678 
679   // If this instruction is inside a loop and sinking this instruction can make
680   // more registers live range shorten, it is still prifitable.
681   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
682     const MachineOperand &MO = MI.getOperand(i);
683     // Ignore non-register operands.
684     if (!MO.isReg())
685       continue;
686     Register Reg = MO.getReg();
687     if (Reg == 0)
688       continue;
689 
690     // Don't handle physical register.
691     if (Register::isPhysicalRegister(Reg))
692       return false;
693 
694     // Users for the defs are all dominated by SuccToSinkTo.
695     if (MO.isDef()) {
696       // This def register's live range is shortened after sinking.
697       bool LocalUse = false;
698       if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge,
699                                    LocalUse))
700         return false;
701     } else {
702       MachineInstr *DefMI = MRI->getVRegDef(Reg);
703       // DefMI is defined outside of loop. There should be no live range
704       // impact for this operand. Defination outside of loop means:
705       // 1: defination is outside of loop.
706       // 2: defination is in this loop, but it is a PHI in the loop header.
707       if (LI->getLoopFor(DefMI->getParent()) != ML ||
708           (DefMI->isPHI() && LI->isLoopHeader(DefMI->getParent())))
709         continue;
710       // The DefMI is defined inside the loop.
711       // If sinking this operand makes some register pressure set exceed limit,
712       // it is not profitable.
713       if (isRegisterPressureSetExceedLimit(MRI->getRegClass(Reg))) {
714         LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable.");
715         return false;
716       }
717     }
718   }
719 
720   // If MI is in loop and all its operands are alive across the whole loop or if
721   // no operand sinking make register pressure set exceed limit, it is
722   // profitable to sink MI.
723   return true;
724 }
725 
726 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
727 /// computing it if it was not already cached.
728 SmallVector<MachineBasicBlock *, 4> &
GetAllSortedSuccessors(MachineInstr & MI,MachineBasicBlock * MBB,AllSuccsCache & AllSuccessors) const729 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
730                                        AllSuccsCache &AllSuccessors) const {
731   // Do we have the sorted successors in cache ?
732   auto Succs = AllSuccessors.find(MBB);
733   if (Succs != AllSuccessors.end())
734     return Succs->second;
735 
736   SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
737                                                MBB->succ_end());
738 
739   // Handle cases where sinking can happen but where the sink point isn't a
740   // successor. For example:
741   //
742   //   x = computation
743   //   if () {} else {}
744   //   use x
745   //
746   for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) {
747     // DomTree children of MBB that have MBB as immediate dominator are added.
748     if (DTChild->getIDom()->getBlock() == MI.getParent() &&
749         // Skip MBBs already added to the AllSuccs vector above.
750         !MBB->isSuccessor(DTChild->getBlock()))
751       AllSuccs.push_back(DTChild->getBlock());
752   }
753 
754   // Sort Successors according to their loop depth or block frequency info.
755   llvm::stable_sort(
756       AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
757         uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
758         uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
759         bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
760         return HasBlockFreq ? LHSFreq < RHSFreq
761                             : LI->getLoopDepth(L) < LI->getLoopDepth(R);
762       });
763 
764   auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
765 
766   return it.first->second;
767 }
768 
769 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
770 MachineBasicBlock *
FindSuccToSinkTo(MachineInstr & MI,MachineBasicBlock * MBB,bool & BreakPHIEdge,AllSuccsCache & AllSuccessors)771 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
772                                  bool &BreakPHIEdge,
773                                  AllSuccsCache &AllSuccessors) {
774   assert (MBB && "Invalid MachineBasicBlock!");
775 
776   // Loop over all the operands of the specified instruction.  If there is
777   // anything we can't handle, bail out.
778 
779   // SuccToSinkTo - This is the successor to sink this instruction to, once we
780   // decide.
781   MachineBasicBlock *SuccToSinkTo = nullptr;
782   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
783     const MachineOperand &MO = MI.getOperand(i);
784     if (!MO.isReg()) continue;  // Ignore non-register operands.
785 
786     Register Reg = MO.getReg();
787     if (Reg == 0) continue;
788 
789     if (Register::isPhysicalRegister(Reg)) {
790       if (MO.isUse()) {
791         // If the physreg has no defs anywhere, it's just an ambient register
792         // and we can freely move its uses. Alternatively, if it's allocatable,
793         // it could get allocated to something with a def during allocation.
794         if (!MRI->isConstantPhysReg(Reg))
795           return nullptr;
796       } else if (!MO.isDead()) {
797         // A def that isn't dead. We can't move it.
798         return nullptr;
799       }
800     } else {
801       // Virtual register uses are always safe to sink.
802       if (MO.isUse()) continue;
803 
804       // If it's not safe to move defs of the register class, then abort.
805       if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
806         return nullptr;
807 
808       // Virtual register defs can only be sunk if all their uses are in blocks
809       // dominated by one of the successors.
810       if (SuccToSinkTo) {
811         // If a previous operand picked a block to sink to, then this operand
812         // must be sinkable to the same block.
813         bool LocalUse = false;
814         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
815                                      BreakPHIEdge, LocalUse))
816           return nullptr;
817 
818         continue;
819       }
820 
821       // Otherwise, we should look at all the successors and decide which one
822       // we should sink to. If we have reliable block frequency information
823       // (frequency != 0) available, give successors with smaller frequencies
824       // higher priority, otherwise prioritize smaller loop depths.
825       for (MachineBasicBlock *SuccBlock :
826            GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
827         bool LocalUse = false;
828         if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
829                                     BreakPHIEdge, LocalUse)) {
830           SuccToSinkTo = SuccBlock;
831           break;
832         }
833         if (LocalUse)
834           // Def is used locally, it's never safe to move this def.
835           return nullptr;
836       }
837 
838       // If we couldn't find a block to sink to, ignore this instruction.
839       if (!SuccToSinkTo)
840         return nullptr;
841       if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
842         return nullptr;
843     }
844   }
845 
846   // It is not possible to sink an instruction into its own block.  This can
847   // happen with loops.
848   if (MBB == SuccToSinkTo)
849     return nullptr;
850 
851   // It's not safe to sink instructions to EH landing pad. Control flow into
852   // landing pad is implicitly defined.
853   if (SuccToSinkTo && SuccToSinkTo->isEHPad())
854     return nullptr;
855 
856   // It ought to be okay to sink instructions into an INLINEASM_BR target, but
857   // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in
858   // the source block (which this code does not yet do). So for now, forbid
859   // doing so.
860   if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget())
861     return nullptr;
862 
863   return SuccToSinkTo;
864 }
865 
866 /// Return true if MI is likely to be usable as a memory operation by the
867 /// implicit null check optimization.
868 ///
869 /// This is a "best effort" heuristic, and should not be relied upon for
870 /// correctness.  This returning true does not guarantee that the implicit null
871 /// check optimization is legal over MI, and this returning false does not
872 /// guarantee MI cannot possibly be used to do a null check.
SinkingPreventsImplicitNullCheck(MachineInstr & MI,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI)873 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
874                                              const TargetInstrInfo *TII,
875                                              const TargetRegisterInfo *TRI) {
876   using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
877 
878   auto *MBB = MI.getParent();
879   if (MBB->pred_size() != 1)
880     return false;
881 
882   auto *PredMBB = *MBB->pred_begin();
883   auto *PredBB = PredMBB->getBasicBlock();
884 
885   // Frontends that don't use implicit null checks have no reason to emit
886   // branches with make.implicit metadata, and this function should always
887   // return false for them.
888   if (!PredBB ||
889       !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
890     return false;
891 
892   const MachineOperand *BaseOp;
893   int64_t Offset;
894   bool OffsetIsScalable;
895   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
896     return false;
897 
898   if (!BaseOp->isReg())
899     return false;
900 
901   if (!(MI.mayLoad() && !MI.isPredicable()))
902     return false;
903 
904   MachineBranchPredicate MBP;
905   if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
906     return false;
907 
908   return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
909          (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
910           MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
911          MBP.LHS.getReg() == BaseOp->getReg();
912 }
913 
914 /// If the sunk instruction is a copy, try to forward the copy instead of
915 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if
916 /// there's any subregister weirdness involved. Returns true if copy
917 /// propagation occurred.
attemptDebugCopyProp(MachineInstr & SinkInst,MachineInstr & DbgMI)918 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI) {
919   const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo();
920   const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo();
921 
922   // Copy DBG_VALUE operand and set the original to undef. We then check to
923   // see whether this is something that can be copy-forwarded. If it isn't,
924   // continue around the loop.
925   MachineOperand &DbgMO = DbgMI.getDebugOperand(0);
926 
927   const MachineOperand *SrcMO = nullptr, *DstMO = nullptr;
928   auto CopyOperands = TII.isCopyInstr(SinkInst);
929   if (!CopyOperands)
930     return false;
931   SrcMO = CopyOperands->Source;
932   DstMO = CopyOperands->Destination;
933 
934   // Check validity of forwarding this copy.
935   bool PostRA = MRI.getNumVirtRegs() == 0;
936 
937   // Trying to forward between physical and virtual registers is too hard.
938   if (DbgMO.getReg().isVirtual() != SrcMO->getReg().isVirtual())
939     return false;
940 
941   // Only try virtual register copy-forwarding before regalloc, and physical
942   // register copy-forwarding after regalloc.
943   bool arePhysRegs = !DbgMO.getReg().isVirtual();
944   if (arePhysRegs != PostRA)
945     return false;
946 
947   // Pre-regalloc, only forward if all subregisters agree (or there are no
948   // subregs at all). More analysis might recover some forwardable copies.
949   if (!PostRA && (DbgMO.getSubReg() != SrcMO->getSubReg() ||
950                   DbgMO.getSubReg() != DstMO->getSubReg()))
951     return false;
952 
953   // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register
954   // of this copy. Only forward the copy if the DBG_VALUE operand exactly
955   // matches the copy destination.
956   if (PostRA && DbgMO.getReg() != DstMO->getReg())
957     return false;
958 
959   DbgMO.setReg(SrcMO->getReg());
960   DbgMO.setSubReg(SrcMO->getSubReg());
961   return true;
962 }
963 
964 /// Sink an instruction and its associated debug instructions.
performSink(MachineInstr & MI,MachineBasicBlock & SuccToSinkTo,MachineBasicBlock::iterator InsertPos,SmallVectorImpl<MachineInstr * > & DbgValuesToSink)965 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
966                         MachineBasicBlock::iterator InsertPos,
967                         SmallVectorImpl<MachineInstr *> &DbgValuesToSink) {
968 
969   // If we cannot find a location to use (merge with), then we erase the debug
970   // location to prevent debug-info driven tools from potentially reporting
971   // wrong location information.
972   if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
973     MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
974                                                  InsertPos->getDebugLoc()));
975   else
976     MI.setDebugLoc(DebugLoc());
977 
978   // Move the instruction.
979   MachineBasicBlock *ParentBlock = MI.getParent();
980   SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
981                       ++MachineBasicBlock::iterator(MI));
982 
983   // Sink a copy of debug users to the insert position. Mark the original
984   // DBG_VALUE location as 'undef', indicating that any earlier variable
985   // location should be terminated as we've optimised away the value at this
986   // point.
987   for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
988                                                  DBE = DbgValuesToSink.end();
989        DBI != DBE; ++DBI) {
990     MachineInstr *DbgMI = *DBI;
991     MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(*DBI);
992     SuccToSinkTo.insert(InsertPos, NewDbgMI);
993 
994     if (!attemptDebugCopyProp(MI, *DbgMI))
995       DbgMI->setDebugValueUndef();
996   }
997 }
998 
999 /// hasStoreBetween - check if there is store betweeen straight line blocks From
1000 /// and To.
hasStoreBetween(MachineBasicBlock * From,MachineBasicBlock * To,MachineInstr & MI)1001 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From,
1002                                      MachineBasicBlock *To, MachineInstr &MI) {
1003   // Make sure From and To are in straight line which means From dominates To
1004   // and To post dominates From.
1005   if (!DT->dominates(From, To) || !PDT->dominates(To, From))
1006     return true;
1007 
1008   auto BlockPair = std::make_pair(From, To);
1009 
1010   // Does these two blocks pair be queried before and have a definite cached
1011   // result?
1012   if (HasStoreCache.find(BlockPair) != HasStoreCache.end())
1013     return HasStoreCache[BlockPair];
1014 
1015   if (StoreInstrCache.find(BlockPair) != StoreInstrCache.end())
1016     return std::any_of(
1017         StoreInstrCache[BlockPair].begin(), StoreInstrCache[BlockPair].end(),
1018         [&](MachineInstr *I) { return I->mayAlias(AA, MI, false); });
1019 
1020   bool SawStore = false;
1021   bool HasAliasedStore = false;
1022   DenseSet<MachineBasicBlock *> HandledBlocks;
1023   // Go through all reachable blocks from From.
1024   for (MachineBasicBlock *BB : depth_first(From)) {
1025     // We insert the instruction at the start of block To, so no need to worry
1026     // about stores inside To.
1027     // Store in block From should be already considered when just enter function
1028     // SinkInstruction.
1029     if (BB == To || BB == From)
1030       continue;
1031 
1032     // We already handle this BB in previous iteration.
1033     if (HandledBlocks.count(BB))
1034       continue;
1035 
1036     HandledBlocks.insert(BB);
1037     // To post dominates BB, it must be a path from block From.
1038     if (PDT->dominates(To, BB)) {
1039       for (MachineInstr &I : *BB) {
1040         // Treat as alias conservatively for a call or an ordered memory
1041         // operation.
1042         if (I.isCall() || I.hasOrderedMemoryRef()) {
1043           HasStoreCache[BlockPair] = true;
1044           return true;
1045         }
1046 
1047         if (I.mayStore()) {
1048           SawStore = true;
1049           // We still have chance to sink MI if all stores between are not
1050           // aliased to MI.
1051           // Cache all store instructions, so that we don't need to go through
1052           // all From reachable blocks for next load instruction.
1053           if (I.mayAlias(AA, MI, false))
1054             HasAliasedStore = true;
1055           StoreInstrCache[BlockPair].push_back(&I);
1056         }
1057       }
1058     }
1059   }
1060   // If there is no store at all, cache the result.
1061   if (!SawStore)
1062     HasStoreCache[BlockPair] = false;
1063   return HasAliasedStore;
1064 }
1065 
1066 /// SinkInstruction - Determine whether it is safe to sink the specified machine
1067 /// instruction out of its current block into a successor.
SinkInstruction(MachineInstr & MI,bool & SawStore,AllSuccsCache & AllSuccessors)1068 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
1069                                      AllSuccsCache &AllSuccessors) {
1070   // Don't sink instructions that the target prefers not to sink.
1071   if (!TII->shouldSink(MI))
1072     return false;
1073 
1074   // Check if it's safe to move the instruction.
1075   if (!MI.isSafeToMove(AA, SawStore))
1076     return false;
1077 
1078   // Convergent operations may not be made control-dependent on additional
1079   // values.
1080   if (MI.isConvergent())
1081     return false;
1082 
1083   // Don't break implicit null checks.  This is a performance heuristic, and not
1084   // required for correctness.
1085   if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
1086     return false;
1087 
1088   // FIXME: This should include support for sinking instructions within the
1089   // block they are currently in to shorten the live ranges.  We often get
1090   // instructions sunk into the top of a large block, but it would be better to
1091   // also sink them down before their first use in the block.  This xform has to
1092   // be careful not to *increase* register pressure though, e.g. sinking
1093   // "x = y + z" down if it kills y and z would increase the live ranges of y
1094   // and z and only shrink the live range of x.
1095 
1096   bool BreakPHIEdge = false;
1097   MachineBasicBlock *ParentBlock = MI.getParent();
1098   MachineBasicBlock *SuccToSinkTo =
1099       FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
1100 
1101   // If there are no outputs, it must have side-effects.
1102   if (!SuccToSinkTo)
1103     return false;
1104 
1105   // If the instruction to move defines a dead physical register which is live
1106   // when leaving the basic block, don't move it because it could turn into a
1107   // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
1108   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1109     const MachineOperand &MO = MI.getOperand(I);
1110     if (!MO.isReg()) continue;
1111     Register Reg = MO.getReg();
1112     if (Reg == 0 || !Register::isPhysicalRegister(Reg))
1113       continue;
1114     if (SuccToSinkTo->isLiveIn(Reg))
1115       return false;
1116   }
1117 
1118   LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
1119 
1120   // If the block has multiple predecessors, this is a critical edge.
1121   // Decide if we can sink along it or need to break the edge.
1122   if (SuccToSinkTo->pred_size() > 1) {
1123     // We cannot sink a load across a critical edge - there may be stores in
1124     // other code paths.
1125     bool TryBreak = false;
1126     bool Store =
1127         MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true;
1128     if (!MI.isSafeToMove(AA, Store)) {
1129       LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
1130       TryBreak = true;
1131     }
1132 
1133     // We don't want to sink across a critical edge if we don't dominate the
1134     // successor. We could be introducing calculations to new code paths.
1135     if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
1136       LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
1137       TryBreak = true;
1138     }
1139 
1140     // Don't sink instructions into a loop.
1141     if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
1142       LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
1143       TryBreak = true;
1144     }
1145 
1146     // Otherwise we are OK with sinking along a critical edge.
1147     if (!TryBreak)
1148       LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
1149     else {
1150       // Mark this edge as to be split.
1151       // If the edge can actually be split, the next iteration of the main loop
1152       // will sink MI in the newly created block.
1153       bool Status =
1154         PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
1155       if (!Status)
1156         LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
1157                              "break critical edge\n");
1158       // The instruction will not be sunk this time.
1159       return false;
1160     }
1161   }
1162 
1163   if (BreakPHIEdge) {
1164     // BreakPHIEdge is true if all the uses are in the successor MBB being
1165     // sunken into and they are all PHI nodes. In this case, machine-sink must
1166     // break the critical edge first.
1167     bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
1168                                             SuccToSinkTo, BreakPHIEdge);
1169     if (!Status)
1170       LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
1171                            "break critical edge\n");
1172     // The instruction will not be sunk this time.
1173     return false;
1174   }
1175 
1176   // Determine where to insert into. Skip phi nodes.
1177   MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
1178   while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
1179     ++InsertPos;
1180 
1181   // Collect debug users of any vreg that this inst defines.
1182   SmallVector<MachineInstr *, 4> DbgUsersToSink;
1183   for (auto &MO : MI.operands()) {
1184     if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
1185       continue;
1186     if (!SeenDbgUsers.count(MO.getReg()))
1187       continue;
1188 
1189     // Sink any users that don't pass any other DBG_VALUEs for this variable.
1190     auto &Users = SeenDbgUsers[MO.getReg()];
1191     for (auto &User : Users) {
1192       MachineInstr *DbgMI = User.getPointer();
1193       if (User.getInt()) {
1194         // This DBG_VALUE would re-order assignments. If we can't copy-propagate
1195         // it, it can't be recovered. Set it undef.
1196         if (!attemptDebugCopyProp(MI, *DbgMI))
1197           DbgMI->setDebugValueUndef();
1198       } else {
1199         DbgUsersToSink.push_back(DbgMI);
1200       }
1201     }
1202   }
1203 
1204   // After sinking, some debug users may not be dominated any more. If possible,
1205   // copy-propagate their operands. As it's expensive, don't do this if there's
1206   // no debuginfo in the program.
1207   if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy())
1208     SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo);
1209 
1210   performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink);
1211 
1212   // Conservatively, clear any kill flags, since it's possible that they are no
1213   // longer correct.
1214   // Note that we have to clear the kill flags for any register this instruction
1215   // uses as we may sink over another instruction which currently kills the
1216   // used registers.
1217   for (MachineOperand &MO : MI.operands()) {
1218     if (MO.isReg() && MO.isUse())
1219       RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
1220   }
1221 
1222   return true;
1223 }
1224 
SalvageUnsunkDebugUsersOfCopy(MachineInstr & MI,MachineBasicBlock * TargetBlock)1225 void MachineSinking::SalvageUnsunkDebugUsersOfCopy(
1226     MachineInstr &MI, MachineBasicBlock *TargetBlock) {
1227   assert(MI.isCopy());
1228   assert(MI.getOperand(1).isReg());
1229 
1230   // Enumerate all users of vreg operands that are def'd. Skip those that will
1231   // be sunk. For the rest, if they are not dominated by the block we will sink
1232   // MI into, propagate the copy source to them.
1233   SmallVector<MachineInstr *, 4> DbgDefUsers;
1234   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
1235   for (auto &MO : MI.operands()) {
1236     if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
1237       continue;
1238     for (auto &User : MRI.use_instructions(MO.getReg())) {
1239       if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent()))
1240         continue;
1241 
1242       // If is in same block, will either sink or be use-before-def.
1243       if (User.getParent() == MI.getParent())
1244         continue;
1245 
1246       assert(User.getDebugOperand(0).isReg() &&
1247              "DBG_VALUE user of vreg, but non reg operand?");
1248       DbgDefUsers.push_back(&User);
1249     }
1250   }
1251 
1252   // Point the users of this copy that are no longer dominated, at the source
1253   // of the copy.
1254   for (auto *User : DbgDefUsers) {
1255     User->getDebugOperand(0).setReg(MI.getOperand(1).getReg());
1256     User->getDebugOperand(0).setSubReg(MI.getOperand(1).getSubReg());
1257   }
1258 }
1259 
1260 //===----------------------------------------------------------------------===//
1261 // This pass is not intended to be a replacement or a complete alternative
1262 // for the pre-ra machine sink pass. It is only designed to sink COPY
1263 // instructions which should be handled after RA.
1264 //
1265 // This pass sinks COPY instructions into a successor block, if the COPY is not
1266 // used in the current block and the COPY is live-in to a single successor
1267 // (i.e., doesn't require the COPY to be duplicated).  This avoids executing the
1268 // copy on paths where their results aren't needed.  This also exposes
1269 // additional opportunites for dead copy elimination and shrink wrapping.
1270 //
1271 // These copies were either not handled by or are inserted after the MachineSink
1272 // pass. As an example of the former case, the MachineSink pass cannot sink
1273 // COPY instructions with allocatable source registers; for AArch64 these type
1274 // of copy instructions are frequently used to move function parameters (PhyReg)
1275 // into virtual registers in the entry block.
1276 //
1277 // For the machine IR below, this pass will sink %w19 in the entry into its
1278 // successor (%bb.1) because %w19 is only live-in in %bb.1.
1279 // %bb.0:
1280 //   %wzr = SUBSWri %w1, 1
1281 //   %w19 = COPY %w0
1282 //   Bcc 11, %bb.2
1283 // %bb.1:
1284 //   Live Ins: %w19
1285 //   BL @fun
1286 //   %w0 = ADDWrr %w0, %w19
1287 //   RET %w0
1288 // %bb.2:
1289 //   %w0 = COPY %wzr
1290 //   RET %w0
1291 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
1292 // able to see %bb.0 as a candidate.
1293 //===----------------------------------------------------------------------===//
1294 namespace {
1295 
1296 class PostRAMachineSinking : public MachineFunctionPass {
1297 public:
1298   bool runOnMachineFunction(MachineFunction &MF) override;
1299 
1300   static char ID;
PostRAMachineSinking()1301   PostRAMachineSinking() : MachineFunctionPass(ID) {}
getPassName() const1302   StringRef getPassName() const override { return "PostRA Machine Sink"; }
1303 
getAnalysisUsage(AnalysisUsage & AU) const1304   void getAnalysisUsage(AnalysisUsage &AU) const override {
1305     AU.setPreservesCFG();
1306     MachineFunctionPass::getAnalysisUsage(AU);
1307   }
1308 
getRequiredProperties() const1309   MachineFunctionProperties getRequiredProperties() const override {
1310     return MachineFunctionProperties().set(
1311         MachineFunctionProperties::Property::NoVRegs);
1312   }
1313 
1314 private:
1315   /// Track which register units have been modified and used.
1316   LiveRegUnits ModifiedRegUnits, UsedRegUnits;
1317 
1318   /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
1319   /// entry in this map for each unit it touches.
1320   DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs;
1321 
1322   /// Sink Copy instructions unused in the same block close to their uses in
1323   /// successors.
1324   bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
1325                      const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
1326 };
1327 } // namespace
1328 
1329 char PostRAMachineSinking::ID = 0;
1330 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
1331 
1332 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
1333                 "PostRA Machine Sink", false, false)
1334 
aliasWithRegsInLiveIn(MachineBasicBlock & MBB,unsigned Reg,const TargetRegisterInfo * TRI)1335 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
1336                                   const TargetRegisterInfo *TRI) {
1337   LiveRegUnits LiveInRegUnits(*TRI);
1338   LiveInRegUnits.addLiveIns(MBB);
1339   return !LiveInRegUnits.available(Reg);
1340 }
1341 
1342 static MachineBasicBlock *
getSingleLiveInSuccBB(MachineBasicBlock & CurBB,const SmallPtrSetImpl<MachineBasicBlock * > & SinkableBBs,unsigned Reg,const TargetRegisterInfo * TRI)1343 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1344                       const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1345                       unsigned Reg, const TargetRegisterInfo *TRI) {
1346   // Try to find a single sinkable successor in which Reg is live-in.
1347   MachineBasicBlock *BB = nullptr;
1348   for (auto *SI : SinkableBBs) {
1349     if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
1350       // If BB is set here, Reg is live-in to at least two sinkable successors,
1351       // so quit.
1352       if (BB)
1353         return nullptr;
1354       BB = SI;
1355     }
1356   }
1357   // Reg is not live-in to any sinkable successors.
1358   if (!BB)
1359     return nullptr;
1360 
1361   // Check if any register aliased with Reg is live-in in other successors.
1362   for (auto *SI : CurBB.successors()) {
1363     if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
1364       return nullptr;
1365   }
1366   return BB;
1367 }
1368 
1369 static MachineBasicBlock *
getSingleLiveInSuccBB(MachineBasicBlock & CurBB,const SmallPtrSetImpl<MachineBasicBlock * > & SinkableBBs,ArrayRef<unsigned> DefedRegsInCopy,const TargetRegisterInfo * TRI)1370 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1371                       const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1372                       ArrayRef<unsigned> DefedRegsInCopy,
1373                       const TargetRegisterInfo *TRI) {
1374   MachineBasicBlock *SingleBB = nullptr;
1375   for (auto DefReg : DefedRegsInCopy) {
1376     MachineBasicBlock *BB =
1377         getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1378     if (!BB || (SingleBB && SingleBB != BB))
1379       return nullptr;
1380     SingleBB = BB;
1381   }
1382   return SingleBB;
1383 }
1384 
clearKillFlags(MachineInstr * MI,MachineBasicBlock & CurBB,SmallVectorImpl<unsigned> & UsedOpsInCopy,LiveRegUnits & UsedRegUnits,const TargetRegisterInfo * TRI)1385 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1386                            SmallVectorImpl<unsigned> &UsedOpsInCopy,
1387                            LiveRegUnits &UsedRegUnits,
1388                            const TargetRegisterInfo *TRI) {
1389   for (auto U : UsedOpsInCopy) {
1390     MachineOperand &MO = MI->getOperand(U);
1391     Register SrcReg = MO.getReg();
1392     if (!UsedRegUnits.available(SrcReg)) {
1393       MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1394       for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1395         if (UI.killsRegister(SrcReg, TRI)) {
1396           UI.clearRegisterKills(SrcReg, TRI);
1397           MO.setIsKill(true);
1398           break;
1399         }
1400       }
1401     }
1402   }
1403 }
1404 
updateLiveIn(MachineInstr * MI,MachineBasicBlock * SuccBB,SmallVectorImpl<unsigned> & UsedOpsInCopy,SmallVectorImpl<unsigned> & DefedRegsInCopy)1405 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1406                          SmallVectorImpl<unsigned> &UsedOpsInCopy,
1407                          SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1408   MachineFunction &MF = *SuccBB->getParent();
1409   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1410   for (unsigned DefReg : DefedRegsInCopy)
1411     for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
1412       SuccBB->removeLiveIn(*S);
1413   for (auto U : UsedOpsInCopy) {
1414     Register SrcReg = MI->getOperand(U).getReg();
1415     LaneBitmask Mask;
1416     for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) {
1417       Mask |= (*S).second;
1418     }
1419     SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll());
1420   }
1421   SuccBB->sortUniqueLiveIns();
1422 }
1423 
hasRegisterDependency(MachineInstr * MI,SmallVectorImpl<unsigned> & UsedOpsInCopy,SmallVectorImpl<unsigned> & DefedRegsInCopy,LiveRegUnits & ModifiedRegUnits,LiveRegUnits & UsedRegUnits)1424 static bool hasRegisterDependency(MachineInstr *MI,
1425                                   SmallVectorImpl<unsigned> &UsedOpsInCopy,
1426                                   SmallVectorImpl<unsigned> &DefedRegsInCopy,
1427                                   LiveRegUnits &ModifiedRegUnits,
1428                                   LiveRegUnits &UsedRegUnits) {
1429   bool HasRegDependency = false;
1430   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1431     MachineOperand &MO = MI->getOperand(i);
1432     if (!MO.isReg())
1433       continue;
1434     Register Reg = MO.getReg();
1435     if (!Reg)
1436       continue;
1437     if (MO.isDef()) {
1438       if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1439         HasRegDependency = true;
1440         break;
1441       }
1442       DefedRegsInCopy.push_back(Reg);
1443 
1444       // FIXME: instead of isUse(), readsReg() would be a better fix here,
1445       // For example, we can ignore modifications in reg with undef. However,
1446       // it's not perfectly clear if skipping the internal read is safe in all
1447       // other targets.
1448     } else if (MO.isUse()) {
1449       if (!ModifiedRegUnits.available(Reg)) {
1450         HasRegDependency = true;
1451         break;
1452       }
1453       UsedOpsInCopy.push_back(i);
1454     }
1455   }
1456   return HasRegDependency;
1457 }
1458 
getRegUnits(MCRegister Reg,const TargetRegisterInfo * TRI)1459 static SmallSet<MCRegister, 4> getRegUnits(MCRegister Reg,
1460                                            const TargetRegisterInfo *TRI) {
1461   SmallSet<MCRegister, 4> RegUnits;
1462   for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI)
1463     RegUnits.insert(*RI);
1464   return RegUnits;
1465 }
1466 
tryToSinkCopy(MachineBasicBlock & CurBB,MachineFunction & MF,const TargetRegisterInfo * TRI,const TargetInstrInfo * TII)1467 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1468                                          MachineFunction &MF,
1469                                          const TargetRegisterInfo *TRI,
1470                                          const TargetInstrInfo *TII) {
1471   SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
1472   // FIXME: For now, we sink only to a successor which has a single predecessor
1473   // so that we can directly sink COPY instructions to the successor without
1474   // adding any new block or branch instruction.
1475   for (MachineBasicBlock *SI : CurBB.successors())
1476     if (!SI->livein_empty() && SI->pred_size() == 1)
1477       SinkableBBs.insert(SI);
1478 
1479   if (SinkableBBs.empty())
1480     return false;
1481 
1482   bool Changed = false;
1483 
1484   // Track which registers have been modified and used between the end of the
1485   // block and the current instruction.
1486   ModifiedRegUnits.clear();
1487   UsedRegUnits.clear();
1488   SeenDbgInstrs.clear();
1489 
1490   for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
1491     MachineInstr *MI = &*I;
1492     ++I;
1493 
1494     // Track the operand index for use in Copy.
1495     SmallVector<unsigned, 2> UsedOpsInCopy;
1496     // Track the register number defed in Copy.
1497     SmallVector<unsigned, 2> DefedRegsInCopy;
1498 
1499     // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
1500     // for DBG_VALUEs later, record them when they're encountered.
1501     if (MI->isDebugValue()) {
1502       auto &MO = MI->getDebugOperand(0);
1503       if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) {
1504         // Bail if we can already tell the sink would be rejected, rather
1505         // than needlessly accumulating lots of DBG_VALUEs.
1506         if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1507                                   ModifiedRegUnits, UsedRegUnits))
1508           continue;
1509 
1510         // Record debug use of each reg unit.
1511         SmallSet<MCRegister, 4> Units = getRegUnits(MO.getReg(), TRI);
1512         for (MCRegister Reg : Units)
1513           SeenDbgInstrs[Reg].push_back(MI);
1514       }
1515       continue;
1516     }
1517 
1518     if (MI->isDebugInstr())
1519       continue;
1520 
1521     // Do not move any instruction across function call.
1522     if (MI->isCall())
1523       return false;
1524 
1525     if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
1526       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1527                                         TRI);
1528       continue;
1529     }
1530 
1531     // Don't sink the COPY if it would violate a register dependency.
1532     if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1533                               ModifiedRegUnits, UsedRegUnits)) {
1534       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1535                                         TRI);
1536       continue;
1537     }
1538     assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
1539            "Unexpect SrcReg or DefReg");
1540     MachineBasicBlock *SuccBB =
1541         getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
1542     // Don't sink if we cannot find a single sinkable successor in which Reg
1543     // is live-in.
1544     if (!SuccBB) {
1545       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1546                                         TRI);
1547       continue;
1548     }
1549     assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
1550            "Unexpected predecessor");
1551 
1552     // Collect DBG_VALUEs that must sink with this copy. We've previously
1553     // recorded which reg units that DBG_VALUEs read, if this instruction
1554     // writes any of those units then the corresponding DBG_VALUEs must sink.
1555     SetVector<MachineInstr *> DbgValsToSinkSet;
1556     SmallVector<MachineInstr *, 4> DbgValsToSink;
1557     for (auto &MO : MI->operands()) {
1558       if (!MO.isReg() || !MO.isDef())
1559         continue;
1560 
1561       SmallSet<MCRegister, 4> Units = getRegUnits(MO.getReg(), TRI);
1562       for (MCRegister Reg : Units)
1563         for (auto *MI : SeenDbgInstrs.lookup(Reg))
1564           DbgValsToSinkSet.insert(MI);
1565     }
1566     DbgValsToSink.insert(DbgValsToSink.begin(), DbgValsToSinkSet.begin(),
1567                          DbgValsToSinkSet.end());
1568 
1569     // Clear the kill flag if SrcReg is killed between MI and the end of the
1570     // block.
1571     clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
1572     MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
1573     performSink(*MI, *SuccBB, InsertPos, DbgValsToSink);
1574     updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
1575 
1576     Changed = true;
1577     ++NumPostRACopySink;
1578   }
1579   return Changed;
1580 }
1581 
runOnMachineFunction(MachineFunction & MF)1582 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
1583   if (skipFunction(MF.getFunction()))
1584     return false;
1585 
1586   bool Changed = false;
1587   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1588   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1589 
1590   ModifiedRegUnits.init(*TRI);
1591   UsedRegUnits.init(*TRI);
1592   for (auto &BB : MF)
1593     Changed |= tryToSinkCopy(BB, MF, TRI, TII);
1594 
1595   return Changed;
1596 }
1597