1 //==- WebAssemblyDisassembler.cpp - Disassembler for WebAssembly -*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file is part of the WebAssembly Disassembler.
11 ///
12 /// It contains code to translate the data produced by the decoder into
13 /// MCInsts.
14 ///
15 //===----------------------------------------------------------------------===//
16
17 #include "MCTargetDesc/WebAssemblyInstPrinter.h"
18 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
19 #include "TargetInfo/WebAssemblyTargetInfo.h"
20 #include "llvm/MC/MCContext.h"
21 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
22 #include "llvm/MC/MCFixedLenDisassembler.h"
23 #include "llvm/MC/MCInst.h"
24 #include "llvm/MC/MCInstrInfo.h"
25 #include "llvm/MC/MCSubtargetInfo.h"
26 #include "llvm/MC/MCSymbol.h"
27 #include "llvm/MC/MCSymbolWasm.h"
28 #include "llvm/Support/Endian.h"
29 #include "llvm/Support/LEB128.h"
30 #include "llvm/Support/TargetRegistry.h"
31
32 using namespace llvm;
33
34 #define DEBUG_TYPE "wasm-disassembler"
35
36 using DecodeStatus = MCDisassembler::DecodeStatus;
37
38 #include "WebAssemblyGenDisassemblerTables.inc"
39
40 namespace {
41 static constexpr int WebAssemblyInstructionTableSize = 256;
42
43 class WebAssemblyDisassembler final : public MCDisassembler {
44 std::unique_ptr<const MCInstrInfo> MCII;
45
46 DecodeStatus getInstruction(MCInst &Instr, uint64_t &Size,
47 ArrayRef<uint8_t> Bytes, uint64_t Address,
48 raw_ostream &CStream) const override;
49 Optional<DecodeStatus> onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
50 ArrayRef<uint8_t> Bytes,
51 uint64_t Address,
52 raw_ostream &CStream) const override;
53
54 public:
WebAssemblyDisassembler(const MCSubtargetInfo & STI,MCContext & Ctx,std::unique_ptr<const MCInstrInfo> MCII)55 WebAssemblyDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
56 std::unique_ptr<const MCInstrInfo> MCII)
57 : MCDisassembler(STI, Ctx), MCII(std::move(MCII)) {}
58 };
59 } // end anonymous namespace
60
createWebAssemblyDisassembler(const Target & T,const MCSubtargetInfo & STI,MCContext & Ctx)61 static MCDisassembler *createWebAssemblyDisassembler(const Target &T,
62 const MCSubtargetInfo &STI,
63 MCContext &Ctx) {
64 std::unique_ptr<const MCInstrInfo> MCII(T.createMCInstrInfo());
65 return new WebAssemblyDisassembler(STI, Ctx, std::move(MCII));
66 }
67
68 extern "C" LLVM_EXTERNAL_VISIBILITY void
LLVMInitializeWebAssemblyDisassembler()69 LLVMInitializeWebAssemblyDisassembler() {
70 // Register the disassembler for each target.
71 TargetRegistry::RegisterMCDisassembler(getTheWebAssemblyTarget32(),
72 createWebAssemblyDisassembler);
73 TargetRegistry::RegisterMCDisassembler(getTheWebAssemblyTarget64(),
74 createWebAssemblyDisassembler);
75 }
76
nextByte(ArrayRef<uint8_t> Bytes,uint64_t & Size)77 static int nextByte(ArrayRef<uint8_t> Bytes, uint64_t &Size) {
78 if (Size >= Bytes.size())
79 return -1;
80 auto V = Bytes[Size];
81 Size++;
82 return V;
83 }
84
nextLEB(int64_t & Val,ArrayRef<uint8_t> Bytes,uint64_t & Size,bool Signed)85 static bool nextLEB(int64_t &Val, ArrayRef<uint8_t> Bytes, uint64_t &Size,
86 bool Signed) {
87 unsigned N = 0;
88 const char *Error = nullptr;
89 Val = Signed ? decodeSLEB128(Bytes.data() + Size, &N,
90 Bytes.data() + Bytes.size(), &Error)
91 : static_cast<int64_t>(decodeULEB128(Bytes.data() + Size, &N,
92 Bytes.data() + Bytes.size(),
93 &Error));
94 if (Error)
95 return false;
96 Size += N;
97 return true;
98 }
99
parseLEBImmediate(MCInst & MI,uint64_t & Size,ArrayRef<uint8_t> Bytes,bool Signed)100 static bool parseLEBImmediate(MCInst &MI, uint64_t &Size,
101 ArrayRef<uint8_t> Bytes, bool Signed) {
102 int64_t Val;
103 if (!nextLEB(Val, Bytes, Size, Signed))
104 return false;
105 MI.addOperand(MCOperand::createImm(Val));
106 return true;
107 }
108
109 template <typename T>
parseImmediate(MCInst & MI,uint64_t & Size,ArrayRef<uint8_t> Bytes)110 bool parseImmediate(MCInst &MI, uint64_t &Size, ArrayRef<uint8_t> Bytes) {
111 if (Size + sizeof(T) > Bytes.size())
112 return false;
113 T Val = support::endian::read<T, support::endianness::little, 1>(
114 Bytes.data() + Size);
115 Size += sizeof(T);
116 if (std::is_floating_point<T>::value) {
117 MI.addOperand(MCOperand::createFPImm(static_cast<double>(Val)));
118 } else {
119 MI.addOperand(MCOperand::createImm(static_cast<int64_t>(Val)));
120 }
121 return true;
122 }
123
onSymbolStart(SymbolInfoTy & Symbol,uint64_t & Size,ArrayRef<uint8_t> Bytes,uint64_t Address,raw_ostream & CStream) const124 Optional<MCDisassembler::DecodeStatus> WebAssemblyDisassembler::onSymbolStart(
125 SymbolInfoTy &Symbol, uint64_t &Size, ArrayRef<uint8_t> Bytes,
126 uint64_t Address, raw_ostream &CStream) const {
127 Size = 0;
128 if (Address == 0) {
129 // Start of a code section: we're parsing only the function count.
130 int64_t FunctionCount;
131 if (!nextLEB(FunctionCount, Bytes, Size, false))
132 return None;
133 outs() << " # " << FunctionCount << " functions in section.";
134 } else {
135 // Parse the start of a single function.
136 int64_t BodySize, LocalEntryCount;
137 if (!nextLEB(BodySize, Bytes, Size, false) ||
138 !nextLEB(LocalEntryCount, Bytes, Size, false))
139 return None;
140 if (LocalEntryCount) {
141 outs() << " .local ";
142 for (int64_t I = 0; I < LocalEntryCount; I++) {
143 int64_t Count, Type;
144 if (!nextLEB(Count, Bytes, Size, false) ||
145 !nextLEB(Type, Bytes, Size, false))
146 return None;
147 for (int64_t J = 0; J < Count; J++) {
148 if (I || J)
149 outs() << ", ";
150 outs() << WebAssembly::anyTypeToString(Type);
151 }
152 }
153 }
154 }
155 outs() << "\n";
156 return MCDisassembler::Success;
157 }
158
getInstruction(MCInst & MI,uint64_t & Size,ArrayRef<uint8_t> Bytes,uint64_t,raw_ostream & CS) const159 MCDisassembler::DecodeStatus WebAssemblyDisassembler::getInstruction(
160 MCInst &MI, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t /*Address*/,
161 raw_ostream &CS) const {
162 CommentStream = &CS;
163 Size = 0;
164 int Opc = nextByte(Bytes, Size);
165 if (Opc < 0)
166 return MCDisassembler::Fail;
167 const auto *WasmInst = &InstructionTable0[Opc];
168 // If this is a prefix byte, indirect to another table.
169 if (WasmInst->ET == ET_Prefix) {
170 WasmInst = nullptr;
171 // Linear search, so far only 2 entries.
172 for (auto PT = PrefixTable; PT->Table; PT++) {
173 if (PT->Prefix == Opc) {
174 WasmInst = PT->Table;
175 break;
176 }
177 }
178 if (!WasmInst)
179 return MCDisassembler::Fail;
180 int64_t PrefixedOpc;
181 if (!nextLEB(PrefixedOpc, Bytes, Size, false))
182 return MCDisassembler::Fail;
183 if (PrefixedOpc < 0 || PrefixedOpc >= WebAssemblyInstructionTableSize)
184 return MCDisassembler::Fail;
185 WasmInst += PrefixedOpc;
186 }
187 if (WasmInst->ET == ET_Unused)
188 return MCDisassembler::Fail;
189 // At this point we must have a valid instruction to decode.
190 assert(WasmInst->ET == ET_Instruction);
191 MI.setOpcode(WasmInst->Opcode);
192 // Parse any operands.
193 for (uint8_t OPI = 0; OPI < WasmInst->NumOperands; OPI++) {
194 auto OT = OperandTable[WasmInst->OperandStart + OPI];
195 switch (OT) {
196 // ULEB operands:
197 case WebAssembly::OPERAND_BASIC_BLOCK:
198 case WebAssembly::OPERAND_LOCAL:
199 case WebAssembly::OPERAND_GLOBAL:
200 case WebAssembly::OPERAND_FUNCTION32:
201 case WebAssembly::OPERAND_TABLE:
202 case WebAssembly::OPERAND_OFFSET32:
203 case WebAssembly::OPERAND_OFFSET64:
204 case WebAssembly::OPERAND_P2ALIGN:
205 case WebAssembly::OPERAND_TYPEINDEX:
206 case WebAssembly::OPERAND_EVENT:
207 case MCOI::OPERAND_IMMEDIATE: {
208 if (!parseLEBImmediate(MI, Size, Bytes, false))
209 return MCDisassembler::Fail;
210 break;
211 }
212 // SLEB operands:
213 case WebAssembly::OPERAND_I32IMM:
214 case WebAssembly::OPERAND_I64IMM: {
215 if (!parseLEBImmediate(MI, Size, Bytes, true))
216 return MCDisassembler::Fail;
217 break;
218 }
219 // block_type operands:
220 case WebAssembly::OPERAND_SIGNATURE: {
221 int64_t Val;
222 uint64_t PrevSize = Size;
223 if (!nextLEB(Val, Bytes, Size, true))
224 return MCDisassembler::Fail;
225 if (Val < 0) {
226 // Negative values are single septet value types or empty types
227 if (Size != PrevSize + 1) {
228 MI.addOperand(
229 MCOperand::createImm(int64_t(WebAssembly::BlockType::Invalid)));
230 } else {
231 MI.addOperand(MCOperand::createImm(Val & 0x7f));
232 }
233 } else {
234 // We don't have access to the signature, so create a symbol without one
235 MCSymbol *Sym = getContext().createTempSymbol("typeindex", true);
236 auto *WasmSym = cast<MCSymbolWasm>(Sym);
237 WasmSym->setType(wasm::WASM_SYMBOL_TYPE_FUNCTION);
238 const MCExpr *Expr = MCSymbolRefExpr::create(
239 WasmSym, MCSymbolRefExpr::VK_WASM_TYPEINDEX, getContext());
240 MI.addOperand(MCOperand::createExpr(Expr));
241 }
242 break;
243 }
244 // heap_type operands, for e.g. ref.null:
245 case WebAssembly::OPERAND_HEAPTYPE: {
246 int64_t Val;
247 uint64_t PrevSize = Size;
248 if (!nextLEB(Val, Bytes, Size, true))
249 return MCDisassembler::Fail;
250 if (Val < 0 && Size == PrevSize + 1) {
251 // The HeapType encoding is like BlockType, in that encodings that
252 // decode as negative values indicate ValTypes. In practice we expect
253 // either wasm::ValType::EXTERNREF or wasm::ValType::FUNCREF here.
254 //
255 // The positive SLEB values are reserved for future expansion and are
256 // expected to be type indices in the typed function references
257 // proposal, and should disassemble as MCSymbolRefExpr as in BlockType
258 // above.
259 MI.addOperand(MCOperand::createImm(Val & 0x7f));
260 } else {
261 MI.addOperand(
262 MCOperand::createImm(int64_t(WebAssembly::HeapType::Invalid)));
263 }
264 break;
265 }
266 // FP operands.
267 case WebAssembly::OPERAND_F32IMM: {
268 if (!parseImmediate<float>(MI, Size, Bytes))
269 return MCDisassembler::Fail;
270 break;
271 }
272 case WebAssembly::OPERAND_F64IMM: {
273 if (!parseImmediate<double>(MI, Size, Bytes))
274 return MCDisassembler::Fail;
275 break;
276 }
277 // Vector lane operands (not LEB encoded).
278 case WebAssembly::OPERAND_VEC_I8IMM: {
279 if (!parseImmediate<uint8_t>(MI, Size, Bytes))
280 return MCDisassembler::Fail;
281 break;
282 }
283 case WebAssembly::OPERAND_VEC_I16IMM: {
284 if (!parseImmediate<uint16_t>(MI, Size, Bytes))
285 return MCDisassembler::Fail;
286 break;
287 }
288 case WebAssembly::OPERAND_VEC_I32IMM: {
289 if (!parseImmediate<uint32_t>(MI, Size, Bytes))
290 return MCDisassembler::Fail;
291 break;
292 }
293 case WebAssembly::OPERAND_VEC_I64IMM: {
294 if (!parseImmediate<uint64_t>(MI, Size, Bytes))
295 return MCDisassembler::Fail;
296 break;
297 }
298 case WebAssembly::OPERAND_BRLIST: {
299 int64_t TargetTableLen;
300 if (!nextLEB(TargetTableLen, Bytes, Size, false))
301 return MCDisassembler::Fail;
302 for (int64_t I = 0; I < TargetTableLen; I++) {
303 if (!parseLEBImmediate(MI, Size, Bytes, false))
304 return MCDisassembler::Fail;
305 }
306 // Default case.
307 if (!parseLEBImmediate(MI, Size, Bytes, false))
308 return MCDisassembler::Fail;
309 break;
310 }
311 case MCOI::OPERAND_REGISTER:
312 // The tablegen header currently does not have any register operands since
313 // we use only the stack (_S) instructions.
314 // If you hit this that probably means a bad instruction definition in
315 // tablegen.
316 llvm_unreachable("Register operand in WebAssemblyDisassembler");
317 default:
318 llvm_unreachable("Unknown operand type in WebAssemblyDisassembler");
319 }
320 }
321 return MCDisassembler::Success;
322 }
323