1; RUN: llc -mtriple=i686-linux -pre-RA-sched=source < %s | FileCheck %s
2; RUN: opt -disable-output -debugify < %s
3
4declare void @error(i32 %i, i32 %a, i32 %b)
5
6define i32 @test_ifchains(i32 %i, i32* %a, i32 %b) {
7; Test a chain of ifs, where the block guarded by the if is error handling code
8; that is not expected to run.
9; CHECK-LABEL: test_ifchains:
10; CHECK: %entry
11; CHECK-NOT: .p2align
12; CHECK: %else1
13; CHECK-NOT: .p2align
14; CHECK: %else2
15; CHECK-NOT: .p2align
16; CHECK: %else3
17; CHECK-NOT: .p2align
18; CHECK: %else4
19; CHECK-NOT: .p2align
20; CHECK: %exit
21; CHECK: %then1
22; CHECK: %then2
23; CHECK: %then3
24; CHECK: %then4
25; CHECK: %then5
26
27entry:
28  %gep1 = getelementptr i32, i32* %a, i32 1
29  %val1 = load i32, i32* %gep1
30  %cond1 = icmp ugt i32 %val1, 1
31  br i1 %cond1, label %then1, label %else1, !prof !0
32
33then1:
34  call void @error(i32 %i, i32 1, i32 %b)
35  br label %else1
36
37else1:
38  %gep2 = getelementptr i32, i32* %a, i32 2
39  %val2 = load i32, i32* %gep2
40  %cond2 = icmp ugt i32 %val2, 2
41  br i1 %cond2, label %then2, label %else2, !prof !0
42
43then2:
44  call void @error(i32 %i, i32 1, i32 %b)
45  br label %else2
46
47else2:
48  %gep3 = getelementptr i32, i32* %a, i32 3
49  %val3 = load i32, i32* %gep3
50  %cond3 = icmp ugt i32 %val3, 3
51  br i1 %cond3, label %then3, label %else3, !prof !0
52
53then3:
54  call void @error(i32 %i, i32 1, i32 %b)
55  br label %else3
56
57else3:
58  %gep4 = getelementptr i32, i32* %a, i32 4
59  %val4 = load i32, i32* %gep4
60  %cond4 = icmp ugt i32 %val4, 4
61  br i1 %cond4, label %then4, label %else4, !prof !0
62
63then4:
64  call void @error(i32 %i, i32 1, i32 %b)
65  br label %else4
66
67else4:
68  %gep5 = getelementptr i32, i32* %a, i32 3
69  %val5 = load i32, i32* %gep5
70  %cond5 = icmp ugt i32 %val5, 3
71  br i1 %cond5, label %then5, label %exit, !prof !0
72
73then5:
74  call void @error(i32 %i, i32 1, i32 %b)
75  br label %exit
76
77exit:
78  ret i32 %b
79}
80
81define i32 @test_loop_cold_blocks(i32 %i, i32* %a) {
82; Check that we sink cold loop blocks after the hot loop body.
83; CHECK-LABEL: test_loop_cold_blocks:
84; CHECK: %entry
85; CHECK: .p2align
86; CHECK: %body1
87; CHECK: %body2
88; CHECK: %body3
89; CHECK-NOT: .p2align
90; CHECK: %unlikely1
91; CHECK-NOT: .p2align
92; CHECK: %unlikely2
93; CHECK: %exit
94
95entry:
96  br label %body1
97
98body1:
99  %iv = phi i32 [ 0, %entry ], [ %next, %body3 ]
100  %base = phi i32 [ 0, %entry ], [ %sum, %body3 ]
101  %unlikelycond1 = icmp slt i32 %base, 42
102  br i1 %unlikelycond1, label %unlikely1, label %body2, !prof !0
103
104unlikely1:
105  call void @error(i32 %i, i32 1, i32 %base)
106  br label %body2
107
108body2:
109  %unlikelycond2 = icmp sgt i32 %base, 21
110  br i1 %unlikelycond2, label %unlikely2, label %body3, !prof !0
111
112unlikely2:
113  call void @error(i32 %i, i32 2, i32 %base)
114  br label %body3
115
116body3:
117  %arrayidx = getelementptr inbounds i32, i32* %a, i32 %iv
118  %0 = load i32, i32* %arrayidx
119  %sum = add nsw i32 %0, %base
120  %next = add i32 %iv, 1
121  %exitcond = icmp eq i32 %next, %i
122  br i1 %exitcond, label %exit, label %body1
123
124exit:
125  ret i32 %sum
126}
127
128!0 = !{!"branch_weights", i32 1, i32 64}
129
130define i32 @test_loop_early_exits(i32 %i, i32* %a) {
131; Check that we sink early exit blocks out of loop bodies.
132; CHECK-LABEL: test_loop_early_exits:
133; CHECK: %entry
134; CHECK: %body1
135; CHECK: %body2
136; CHECK: %body3
137; CHECK: %body4
138; CHECK: %exit
139; CHECK: %bail1
140; CHECK: %bail2
141; CHECK: %bail3
142
143entry:
144  br label %body1
145
146body1:
147  %iv = phi i32 [ 0, %entry ], [ %next, %body4 ]
148  %base = phi i32 [ 0, %entry ], [ %sum, %body4 ]
149  %bailcond1 = icmp eq i32 %base, 42
150  br i1 %bailcond1, label %bail1, label %body2
151
152bail1:
153  ret i32 -1
154
155body2:
156  %bailcond2 = icmp eq i32 %base, 43
157  br i1 %bailcond2, label %bail2, label %body3
158
159bail2:
160  ret i32 -2
161
162body3:
163  %bailcond3 = icmp eq i32 %base, 44
164  br i1 %bailcond3, label %bail3, label %body4
165
166bail3:
167  ret i32 -3
168
169body4:
170  %arrayidx = getelementptr inbounds i32, i32* %a, i32 %iv
171  %0 = load i32, i32* %arrayidx
172  %sum = add nsw i32 %0, %base
173  %next = add i32 %iv, 1
174  %exitcond = icmp eq i32 %next, %i
175  br i1 %exitcond, label %exit, label %body1
176
177exit:
178  ret i32 %sum
179}
180
181; Tail duplication during layout can entirely remove body0 by duplicating it
182; into the entry block and into body1. This is a good thing but it isn't what
183; this test is looking for. So to make the blocks longer so they don't get
184; duplicated, we add some calls to dummy.
185declare void @dummy()
186
187define i32 @test_loop_rotate(i32 %i, i32* %a) {
188; Check that we rotate conditional exits from the loop to the bottom of the
189; loop, eliminating unconditional branches to the top.
190; CHECK-LABEL: test_loop_rotate:
191; CHECK: %entry
192; CHECK: %body0
193; CHECK: %body1
194; CHECK: %exit
195
196entry:
197  br label %body0
198
199body0:
200  %iv = phi i32 [ 0, %entry ], [ %next, %body1 ]
201  %base = phi i32 [ 0, %entry ], [ %sum, %body1 ]
202  %next = add i32 %iv, 1
203  %exitcond = icmp eq i32 %next, %i
204  call void @dummy()
205  call void @dummy()
206  br i1 %exitcond, label %exit, label %body1
207
208body1:
209  %arrayidx = getelementptr inbounds i32, i32* %a, i32 %iv
210  %0 = load i32, i32* %arrayidx
211  %sum = add nsw i32 %0, %base
212  %bailcond1 = icmp eq i32 %sum, 42
213  br label %body0
214
215exit:
216  ret i32 %base
217}
218
219define i32 @test_no_loop_rotate(i32 %i, i32* %a) {
220; Check that we don't try to rotate a loop which is already laid out with
221; fallthrough opportunities into the top and out of the bottom.
222; CHECK-LABEL: test_no_loop_rotate:
223; CHECK: %entry
224; CHECK: %body0
225; CHECK: %body1
226; CHECK: %exit
227
228entry:
229  br label %body0
230
231body0:
232  %iv = phi i32 [ 0, %entry ], [ %next, %body1 ]
233  %base = phi i32 [ 0, %entry ], [ %sum, %body1 ]
234  %arrayidx = getelementptr inbounds i32, i32* %a, i32 %iv
235  %0 = load i32, i32* %arrayidx
236  %sum = add nsw i32 %0, %base
237  %bailcond1 = icmp eq i32 %sum, 42
238  br i1 %bailcond1, label %exit, label %body1
239
240body1:
241  %next = add i32 %iv, 1
242  %exitcond = icmp eq i32 %next, %i
243  br i1 %exitcond, label %exit, label %body0
244
245exit:
246  ret i32 %base
247}
248
249define i32 @test_loop_align(i32 %i, i32* %a) {
250; Check that we provide basic loop body alignment with the block placement
251; pass.
252; CHECK-LABEL: test_loop_align:
253; CHECK: %entry
254; CHECK: .p2align [[ALIGN:[0-9]+]],
255; CHECK-NEXT: %body
256; CHECK: %exit
257
258entry:
259  br label %body
260
261body:
262  %iv = phi i32 [ 0, %entry ], [ %next, %body ]
263  %base = phi i32 [ 0, %entry ], [ %sum, %body ]
264  %arrayidx = getelementptr inbounds i32, i32* %a, i32 %iv
265  %0 = load i32, i32* %arrayidx
266  %sum = add nsw i32 %0, %base
267  %next = add i32 %iv, 1
268  %exitcond = icmp eq i32 %next, %i
269  br i1 %exitcond, label %exit, label %body
270
271exit:
272  ret i32 %sum
273}
274
275define i32 @test_nested_loop_align(i32 %i, i32* %a, i32* %b) {
276; Check that we provide nested loop body alignment.
277; CHECK-LABEL: test_nested_loop_align:
278; CHECK: %entry
279; CHECK: .p2align [[ALIGN]],
280; CHECK-NEXT: %loop.body.1
281; CHECK: .p2align [[ALIGN]],
282; CHECK-NEXT: %inner.loop.body
283; CHECK-NOT: .p2align
284; CHECK: %exit
285
286entry:
287  br label %loop.body.1
288
289loop.body.1:
290  %iv = phi i32 [ 0, %entry ], [ %next, %loop.body.2 ]
291  %arrayidx = getelementptr inbounds i32, i32* %a, i32 %iv
292  %bidx = load i32, i32* %arrayidx
293  br label %inner.loop.body
294
295inner.loop.body:
296  %inner.iv = phi i32 [ 0, %loop.body.1 ], [ %inner.next, %inner.loop.body ]
297  %base = phi i32 [ 0, %loop.body.1 ], [ %sum, %inner.loop.body ]
298  %scaled_idx = mul i32 %bidx, %iv
299  %inner.arrayidx = getelementptr inbounds i32, i32* %b, i32 %scaled_idx
300  %0 = load i32, i32* %inner.arrayidx
301  %sum = add nsw i32 %0, %base
302  %inner.next = add i32 %iv, 1
303  %inner.exitcond = icmp eq i32 %inner.next, %i
304  br i1 %inner.exitcond, label %loop.body.2, label %inner.loop.body
305
306loop.body.2:
307  %next = add i32 %iv, 1
308  %exitcond = icmp eq i32 %next, %i
309  br i1 %exitcond, label %exit, label %loop.body.1
310
311exit:
312  ret i32 %sum
313}
314
315define void @unnatural_cfg1() {
316; Test that we can handle a loop with an inner unnatural loop at the end of
317; a function. This is a gross CFG reduced out of the single source GCC.
318; CHECK-LABEL: unnatural_cfg1
319; CHECK: %entry
320; CHECK: %loop.header
321; CHECK: %loop.body2
322; CHECK: %loop.body3
323
324entry:
325  br label %loop.header
326
327loop.header:
328  br label %loop.body1
329
330loop.body1:
331  br i1 undef, label %loop.body3, label %loop.body2
332
333loop.body2:
334  %ptr = load i32*, i32** undef, align 4
335  br label %loop.body3
336
337loop.body3:
338  %myptr = phi i32* [ %ptr2, %loop.body5 ], [ %ptr, %loop.body2 ], [ undef, %loop.body1 ]
339  %bcmyptr = bitcast i32* %myptr to i32*
340  %val = load i32, i32* %bcmyptr, align 4
341  %comp = icmp eq i32 %val, 48
342  br i1 %comp, label %loop.body4, label %loop.body5
343
344loop.body4:
345  br i1 undef, label %loop.header, label %loop.body5
346
347loop.body5:
348  %ptr2 = load i32*, i32** undef, align 4
349  br label %loop.body3
350}
351
352define void @unnatural_cfg2(i32* %p0, i32 %a0) {
353; Test that we can handle a loop with a nested natural loop *and* an unnatural
354; loop. This was reduced from a crash on block placement when run over
355; single-source GCC.
356; CHECK-LABEL: unnatural_cfg2
357; CHECK: %entry
358; CHECK: %loop.header
359; CHECK: %loop.body1
360; CHECK: %loop.body2
361; CHECK: %loop.body3
362; CHECK: %loop.inner1.begin
363; CHECK: %loop.body4
364; CHECK: %loop.inner2.begin
365; CHECK: %loop.inner2.begin
366; CHECK: %bail
367
368entry:
369  br label %loop.header
370
371loop.header:
372  %comp0 = icmp eq i32* %p0, null
373  br i1 %comp0, label %bail, label %loop.body1
374
375loop.body1:
376  %val0 = load i32*, i32** undef, align 4
377  br i1 undef, label %loop.body2, label %loop.inner1.begin
378
379loop.body2:
380  br i1 undef, label %loop.body4, label %loop.body3
381
382loop.body3:
383  %ptr1 = getelementptr inbounds i32, i32* %val0, i32 0
384  %castptr1 = bitcast i32* %ptr1 to i32**
385  %val1 = load i32*, i32** %castptr1, align 4
386  br label %loop.inner1.begin
387
388loop.inner1.begin:
389  %valphi = phi i32* [ %val2, %loop.inner1.end ], [ %val1, %loop.body3 ], [ %val0, %loop.body1 ]
390  %castval = bitcast i32* %valphi to i32*
391  %comp1 = icmp eq i32 %a0, 48
392  br i1 %comp1, label %loop.inner1.end, label %loop.body4
393
394loop.inner1.end:
395  %ptr2 = getelementptr inbounds i32, i32* %valphi, i32 0
396  %castptr2 = bitcast i32* %ptr2 to i32**
397  %val2 = load i32*, i32** %castptr2, align 4
398  br label %loop.inner1.begin
399
400loop.body4.dead:
401  br label %loop.body4
402
403loop.body4:
404  %comp2 = icmp ult i32 %a0, 3
405  br i1 %comp2, label %loop.inner2.begin, label %loop.end
406
407loop.inner2.begin:
408  br i1 false, label %loop.end, label %loop.inner2.end
409
410loop.inner2.end:
411  %comp3 = icmp eq i32 %a0, 1769472
412  br i1 %comp3, label %loop.end, label %loop.inner2.begin
413
414loop.end:
415  br label %loop.header
416
417bail:
418  unreachable
419}
420
421define i32 @problematic_switch() {
422; This function's CFG caused overlow in the machine branch probability
423; calculation, triggering asserts. Make sure we don't crash on it.
424; CHECK: problematic_switch
425
426entry:
427  switch i32 undef, label %exit [
428    i32 879, label %bogus
429    i32 877, label %step
430    i32 876, label %step
431    i32 875, label %step
432    i32 874, label %step
433    i32 873, label %step
434    i32 872, label %step
435    i32 868, label %step
436    i32 867, label %step
437    i32 866, label %step
438    i32 861, label %step
439    i32 860, label %step
440    i32 856, label %step
441    i32 855, label %step
442    i32 854, label %step
443    i32 831, label %step
444    i32 830, label %step
445    i32 829, label %step
446    i32 828, label %step
447    i32 815, label %step
448    i32 814, label %step
449    i32 811, label %step
450    i32 806, label %step
451    i32 805, label %step
452    i32 804, label %step
453    i32 803, label %step
454    i32 802, label %step
455    i32 801, label %step
456    i32 800, label %step
457    i32 799, label %step
458    i32 798, label %step
459    i32 797, label %step
460    i32 796, label %step
461    i32 795, label %step
462  ]
463bogus:
464  unreachable
465step:
466  br label %exit
467exit:
468  %merge = phi i32 [ 3, %step ], [ 6, %entry ]
469  ret i32 %merge
470}
471
472define void @fpcmp_unanalyzable_branch(i1 %cond, double %a0) {
473; This function's CFG contains an once-unanalyzable branch (une on floating
474; points). As now it becomes analyzable, we should get best layout in which each
475; edge in 'entry' -> 'entry.if.then_crit_edge' -> 'if.then' -> 'if.end' is
476; fall-through.
477; CHECK-LABEL: fpcmp_unanalyzable_branch:
478; CHECK:       # %bb.0: # %entry
479; CHECK:       # %bb.1: # %entry.if.then_crit_edge
480; CHECK:       .LBB10_5: # %if.then
481; CHECK:       .LBB10_6: # %if.end
482; CHECK:       # %bb.3: # %exit
483; CHECK:       jne .LBB10_4
484; CHECK-NEXT:  jnp .LBB10_6
485; CHECK:       jmp .LBB10_5
486
487entry:
488; Note that this branch must be strongly biased toward
489; 'entry.if.then_crit_edge' to ensure that we would try to form a chain for
490; 'entry' -> 'entry.if.then_crit_edge' -> 'if.then' -> 'if.end'.
491  br i1 %cond, label %entry.if.then_crit_edge, label %lor.lhs.false, !prof !1
492
493entry.if.then_crit_edge:
494  %.pre14 = load i8, i8* undef, align 1
495  br label %if.then
496
497lor.lhs.false:
498  br i1 undef, label %if.end, label %exit
499
500exit:
501  %cmp.i = fcmp une double 0.000000e+00, %a0
502  br i1 %cmp.i, label %if.then, label %if.end, !prof !3
503
504if.then:
505  %0 = phi i8 [ %.pre14, %entry.if.then_crit_edge ], [ undef, %exit ]
506  %1 = and i8 %0, 1
507  store i8 %1, i8* undef, align 4
508  br label %if.end
509
510if.end:
511  ret void
512}
513
514!1 = !{!"branch_weights", i32 1000, i32 1}
515!3 = !{!"branch_weights", i32 1, i32 1000}
516
517declare i32 @f()
518declare i32 @g()
519declare i32 @h(i32 %x)
520
521define i32 @test_global_cfg_break_profitability() {
522; Check that our metrics for the profitability of a CFG break are global rather
523; than local. A successor may be very hot, but if the current block isn't, it
524; doesn't matter. Within this test the 'then' block is slightly warmer than the
525; 'else' block, but not nearly enough to merit merging it with the exit block
526; even though the probability of 'then' branching to the 'exit' block is very
527; high.
528; CHECK: test_global_cfg_break_profitability
529; CHECK: calll {{_?}}f
530; CHECK: calll {{_?}}g
531; CHECK: calll {{_?}}h
532; CHECK: ret
533
534entry:
535  br i1 undef, label %then, label %else, !prof !2
536
537then:
538  %then.result = call i32 @f()
539  br label %exit
540
541else:
542  %else.result = call i32 @g()
543  br label %exit
544
545exit:
546  %result = phi i32 [ %then.result, %then ], [ %else.result, %else ]
547  %result2 = call i32 @h(i32 %result)
548  ret i32 %result
549}
550
551!2 = !{!"branch_weights", i32 3, i32 1}
552
553declare i32 @__gxx_personality_v0(...)
554
555define void @test_eh_lpad_successor() personality i8* bitcast (i32 (...)* @__gxx_personality_v0 to i8*) {
556; Some times the landing pad ends up as the first successor of an invoke block.
557; When this happens, a strange result used to fall out of updateTerminators: we
558; didn't correctly locate the fallthrough successor, assuming blindly that the
559; first one was the fallthrough successor. As a result, we would add an
560; erroneous jump to the landing pad thinking *that* was the default successor.
561; CHECK-LABEL: test_eh_lpad_successor
562; CHECK: %entry
563; CHECK-NOT: jmp
564; CHECK: %loop
565
566entry:
567  invoke i32 @f() to label %preheader unwind label %lpad
568
569preheader:
570  br label %loop
571
572lpad:
573  %lpad.val = landingpad { i8*, i32 }
574          cleanup
575  resume { i8*, i32 } %lpad.val
576
577loop:
578  br label %loop
579}
580
581declare void @fake_throw() noreturn
582
583define void @test_eh_throw() personality i8* bitcast (i32 (...)* @__gxx_personality_v0 to i8*) {
584; For blocks containing a 'throw' (or similar functionality), we have
585; a no-return invoke. In this case, only EH successors will exist, and
586; fallthrough simply won't occur. Make sure we don't crash trying to update
587; terminators for such constructs.
588;
589; CHECK-LABEL: test_eh_throw
590; CHECK: %entry
591; CHECK: %cleanup
592
593entry:
594  invoke void @fake_throw() to label %continue unwind label %cleanup
595
596continue:
597  unreachable
598
599cleanup:
600  %0 = landingpad { i8*, i32 }
601          cleanup
602  unreachable
603}
604
605define void @test_unnatural_cfg_backwards_inner_loop() {
606; Test that when we encounter an unnatural CFG structure after having formed
607; a chain for an inner loop which happened to be laid out backwards we don't
608; attempt to merge onto the wrong end of the inner loop just because we find it
609; first. This was reduced from a crasher in GCC's single source.
610;
611; CHECK-LABEL: test_unnatural_cfg_backwards_inner_loop
612; CHECK: %entry
613; CHECK: %loop2b
614; CHECK: %loop3
615
616entry:
617  br i1 undef, label %loop2a, label %body
618
619body:
620  br label %loop2a
621
622loop1:
623  %next.load = load i32*, i32** undef
624  br i1 %comp.a, label %loop2a, label %loop2b
625
626loop2a:
627  %var = phi i32* [ null, %entry ], [ null, %body ], [ %next.phi, %loop1 ]
628  %next.var = phi i32* [ null, %entry ], [ undef, %body ], [ %next.load, %loop1 ]
629  %comp.a = icmp eq i32* %var, null
630  br label %loop3
631
632loop2b:
633  %gep = getelementptr inbounds i32, i32* %var.phi, i32 0
634  %next.ptr = bitcast i32* %gep to i32**
635  store i32* %next.phi, i32** %next.ptr
636  br label %loop3
637
638loop3:
639  %var.phi = phi i32* [ %next.phi, %loop2b ], [ %var, %loop2a ]
640  %next.phi = phi i32* [ %next.load, %loop2b ], [ %next.var, %loop2a ]
641  br label %loop1
642}
643
644define void @unanalyzable_branch_to_loop_header(double %a0) {
645; Ensure that we can handle unanalyzable branches into loop headers. We
646; pre-form chains for unanalyzable branches, and will find the tail end of that
647; at the start of the loop. This function uses floating point comparison
648; fallthrough because that happens to always produce unanalyzable branches on
649; x86.
650;
651; CHECK-LABEL: unanalyzable_branch_to_loop_header
652; CHECK: %entry
653; CHECK: %loop
654; CHECK: %exit
655
656entry:
657  %cmp = fcmp une double 0.000000e+00, %a0
658  br i1 %cmp, label %loop, label %exit
659
660loop:
661  %cond = icmp eq i8 undef, 42
662  br i1 %cond, label %exit, label %loop
663
664exit:
665  ret void
666}
667
668define void @unanalyzable_branch_to_best_succ(i1 %cond, double %a0) {
669; Ensure that we can handle unanalyzable branches where the destination block
670; gets selected as the optimal successor to merge.
671;
672; This branch is now analyzable and hence the destination block becomes the
673; hotter one. The right order is entry->bar->exit->foo.
674;
675; CHECK-LABEL: unanalyzable_branch_to_best_succ
676; CHECK: %entry
677; CHECK: %bar
678; CHECK: %exit
679; CHECK: %foo
680
681entry:
682  ; Bias this branch toward bar to ensure we form that chain.
683  br i1 %cond, label %bar, label %foo, !prof !1
684
685foo:
686  %cmp = fcmp une double 0.000000e+00, %a0
687  br i1 %cmp, label %bar, label %exit
688
689bar:
690  call i32 @f()
691  br label %exit
692
693exit:
694  ret void
695}
696
697define void @unanalyzable_branch_to_free_block(float %x) {
698; Ensure that we can handle unanalyzable branches where the destination block
699; gets selected as the best free block in the CFG.
700;
701; CHECK-LABEL: unanalyzable_branch_to_free_block
702; CHECK: %entry
703; CHECK: %a
704; CHECK: %b
705; CHECK: %c
706; CHECK: %exit
707
708entry:
709  br i1 undef, label %a, label %b
710
711a:
712  call i32 @f()
713  br label %c
714
715b:
716  %cmp = fcmp une float %x, 0.0
717  br i1 %cmp, label %c, label %exit
718
719c:
720  call i32 @g()
721  br label %exit
722
723exit:
724  ret void
725}
726
727define void @many_unanalyzable_branches() {
728; Ensure that we don't crash as we're building up many unanalyzable branches,
729; blocks, and loops.
730;
731; CHECK-LABEL: many_unanalyzable_branches
732; CHECK: %entry
733; CHECK: %exit
734
735entry:
736  br label %0
737
738  %val0 = load volatile float, float* undef
739  %cmp0 = fcmp une float %val0, 0.0
740  br i1 %cmp0, label %1, label %0
741  %val1 = load volatile float, float* undef
742  %cmp1 = fcmp une float %val1, 0.0
743  br i1 %cmp1, label %2, label %1
744  %val2 = load volatile float, float* undef
745  %cmp2 = fcmp une float %val2, 0.0
746  br i1 %cmp2, label %3, label %2
747  %val3 = load volatile float, float* undef
748  %cmp3 = fcmp une float %val3, 0.0
749  br i1 %cmp3, label %4, label %3
750  %val4 = load volatile float, float* undef
751  %cmp4 = fcmp une float %val4, 0.0
752  br i1 %cmp4, label %5, label %4
753  %val5 = load volatile float, float* undef
754  %cmp5 = fcmp une float %val5, 0.0
755  br i1 %cmp5, label %6, label %5
756  %val6 = load volatile float, float* undef
757  %cmp6 = fcmp une float %val6, 0.0
758  br i1 %cmp6, label %7, label %6
759  %val7 = load volatile float, float* undef
760  %cmp7 = fcmp une float %val7, 0.0
761  br i1 %cmp7, label %8, label %7
762  %val8 = load volatile float, float* undef
763  %cmp8 = fcmp une float %val8, 0.0
764  br i1 %cmp8, label %9, label %8
765  %val9 = load volatile float, float* undef
766  %cmp9 = fcmp une float %val9, 0.0
767  br i1 %cmp9, label %10, label %9
768  %val10 = load volatile float, float* undef
769  %cmp10 = fcmp une float %val10, 0.0
770  br i1 %cmp10, label %11, label %10
771  %val11 = load volatile float, float* undef
772  %cmp11 = fcmp une float %val11, 0.0
773  br i1 %cmp11, label %12, label %11
774  %val12 = load volatile float, float* undef
775  %cmp12 = fcmp une float %val12, 0.0
776  br i1 %cmp12, label %13, label %12
777  %val13 = load volatile float, float* undef
778  %cmp13 = fcmp une float %val13, 0.0
779  br i1 %cmp13, label %14, label %13
780  %val14 = load volatile float, float* undef
781  %cmp14 = fcmp une float %val14, 0.0
782  br i1 %cmp14, label %15, label %14
783  %val15 = load volatile float, float* undef
784  %cmp15 = fcmp une float %val15, 0.0
785  br i1 %cmp15, label %16, label %15
786  %val16 = load volatile float, float* undef
787  %cmp16 = fcmp une float %val16, 0.0
788  br i1 %cmp16, label %17, label %16
789  %val17 = load volatile float, float* undef
790  %cmp17 = fcmp une float %val17, 0.0
791  br i1 %cmp17, label %18, label %17
792  %val18 = load volatile float, float* undef
793  %cmp18 = fcmp une float %val18, 0.0
794  br i1 %cmp18, label %19, label %18
795  %val19 = load volatile float, float* undef
796  %cmp19 = fcmp une float %val19, 0.0
797  br i1 %cmp19, label %20, label %19
798  %val20 = load volatile float, float* undef
799  %cmp20 = fcmp une float %val20, 0.0
800  br i1 %cmp20, label %21, label %20
801  %val21 = load volatile float, float* undef
802  %cmp21 = fcmp une float %val21, 0.0
803  br i1 %cmp21, label %22, label %21
804  %val22 = load volatile float, float* undef
805  %cmp22 = fcmp une float %val22, 0.0
806  br i1 %cmp22, label %23, label %22
807  %val23 = load volatile float, float* undef
808  %cmp23 = fcmp une float %val23, 0.0
809  br i1 %cmp23, label %24, label %23
810  %val24 = load volatile float, float* undef
811  %cmp24 = fcmp une float %val24, 0.0
812  br i1 %cmp24, label %25, label %24
813  %val25 = load volatile float, float* undef
814  %cmp25 = fcmp une float %val25, 0.0
815  br i1 %cmp25, label %26, label %25
816  %val26 = load volatile float, float* undef
817  %cmp26 = fcmp une float %val26, 0.0
818  br i1 %cmp26, label %27, label %26
819  %val27 = load volatile float, float* undef
820  %cmp27 = fcmp une float %val27, 0.0
821  br i1 %cmp27, label %28, label %27
822  %val28 = load volatile float, float* undef
823  %cmp28 = fcmp une float %val28, 0.0
824  br i1 %cmp28, label %29, label %28
825  %val29 = load volatile float, float* undef
826  %cmp29 = fcmp une float %val29, 0.0
827  br i1 %cmp29, label %30, label %29
828  %val30 = load volatile float, float* undef
829  %cmp30 = fcmp une float %val30, 0.0
830  br i1 %cmp30, label %31, label %30
831  %val31 = load volatile float, float* undef
832  %cmp31 = fcmp une float %val31, 0.0
833  br i1 %cmp31, label %32, label %31
834  %val32 = load volatile float, float* undef
835  %cmp32 = fcmp une float %val32, 0.0
836  br i1 %cmp32, label %33, label %32
837  %val33 = load volatile float, float* undef
838  %cmp33 = fcmp une float %val33, 0.0
839  br i1 %cmp33, label %34, label %33
840  %val34 = load volatile float, float* undef
841  %cmp34 = fcmp une float %val34, 0.0
842  br i1 %cmp34, label %35, label %34
843  %val35 = load volatile float, float* undef
844  %cmp35 = fcmp une float %val35, 0.0
845  br i1 %cmp35, label %36, label %35
846  %val36 = load volatile float, float* undef
847  %cmp36 = fcmp une float %val36, 0.0
848  br i1 %cmp36, label %37, label %36
849  %val37 = load volatile float, float* undef
850  %cmp37 = fcmp une float %val37, 0.0
851  br i1 %cmp37, label %38, label %37
852  %val38 = load volatile float, float* undef
853  %cmp38 = fcmp une float %val38, 0.0
854  br i1 %cmp38, label %39, label %38
855  %val39 = load volatile float, float* undef
856  %cmp39 = fcmp une float %val39, 0.0
857  br i1 %cmp39, label %40, label %39
858  %val40 = load volatile float, float* undef
859  %cmp40 = fcmp une float %val40, 0.0
860  br i1 %cmp40, label %41, label %40
861  %val41 = load volatile float, float* undef
862  %cmp41 = fcmp une float %val41, undef
863  br i1 %cmp41, label %42, label %41
864  %val42 = load volatile float, float* undef
865  %cmp42 = fcmp une float %val42, 0.0
866  br i1 %cmp42, label %43, label %42
867  %val43 = load volatile float, float* undef
868  %cmp43 = fcmp une float %val43, 0.0
869  br i1 %cmp43, label %44, label %43
870  %val44 = load volatile float, float* undef
871  %cmp44 = fcmp une float %val44, 0.0
872  br i1 %cmp44, label %45, label %44
873  %val45 = load volatile float, float* undef
874  %cmp45 = fcmp une float %val45, 0.0
875  br i1 %cmp45, label %46, label %45
876  %val46 = load volatile float, float* undef
877  %cmp46 = fcmp une float %val46, 0.0
878  br i1 %cmp46, label %47, label %46
879  %val47 = load volatile float, float* undef
880  %cmp47 = fcmp une float %val47, 0.0
881  br i1 %cmp47, label %48, label %47
882  %val48 = load volatile float, float* undef
883  %cmp48 = fcmp une float %val48, 0.0
884  br i1 %cmp48, label %49, label %48
885  %val49 = load volatile float, float* undef
886  %cmp49 = fcmp une float %val49, 0.0
887  br i1 %cmp49, label %50, label %49
888  %val50 = load volatile float, float* undef
889  %cmp50 = fcmp une float %val50, 0.0
890  br i1 %cmp50, label %51, label %50
891  %val51 = load volatile float, float* undef
892  %cmp51 = fcmp une float %val51, 0.0
893  br i1 %cmp51, label %52, label %51
894  %val52 = load volatile float, float* undef
895  %cmp52 = fcmp une float %val52, 0.0
896  br i1 %cmp52, label %53, label %52
897  %val53 = load volatile float, float* undef
898  %cmp53 = fcmp une float %val53, 0.0
899  br i1 %cmp53, label %54, label %53
900  %val54 = load volatile float, float* undef
901  %cmp54 = fcmp une float %val54, 0.0
902  br i1 %cmp54, label %55, label %54
903  %val55 = load volatile float, float* undef
904  %cmp55 = fcmp une float %val55, 0.0
905  br i1 %cmp55, label %56, label %55
906  %val56 = load volatile float, float* undef
907  %cmp56 = fcmp une float %val56, 0.0
908  br i1 %cmp56, label %57, label %56
909  %val57 = load volatile float, float* undef
910  %cmp57 = fcmp une float %val57, 0.0
911  br i1 %cmp57, label %58, label %57
912  %val58 = load volatile float, float* undef
913  %cmp58 = fcmp une float %val58, 0.0
914  br i1 %cmp58, label %59, label %58
915  %val59 = load volatile float, float* undef
916  %cmp59 = fcmp une float %val59, 0.0
917  br i1 %cmp59, label %60, label %59
918  %val60 = load volatile float, float* undef
919  %cmp60 = fcmp une float %val60, 0.0
920  br i1 %cmp60, label %61, label %60
921  %val61 = load volatile float, float* undef
922  %cmp61 = fcmp une float %val61, 0.0
923  br i1 %cmp61, label %62, label %61
924  %val62 = load volatile float, float* undef
925  %cmp62 = fcmp une float %val62, 0.0
926  br i1 %cmp62, label %63, label %62
927  %val63 = load volatile float, float* undef
928  %cmp63 = fcmp une float %val63, 0.0
929  br i1 %cmp63, label %64, label %63
930  %val64 = load volatile float, float* undef
931  %cmp64 = fcmp une float %val64, 0.0
932  br i1 %cmp64, label %65, label %64
933
934  br label %exit
935exit:
936  ret void
937}
938
939define void @benchmark_heapsort(i32 %n, double* nocapture %ra) {
940; This test case comes from the heapsort benchmark, and exemplifies several
941; important aspects to block placement in the presence of loops:
942; 1) Loop rotation needs to *ensure* that the desired exiting edge can be
943;    a fallthrough.
944; 2) The exiting edge from the loop which is rotated to be laid out at the
945;    bottom of the loop needs to be exiting into the nearest enclosing loop (to
946;    which there is an exit). Otherwise, we force that enclosing loop into
947;    strange layouts that are siginificantly less efficient, often times making
948;    it discontiguous.
949;
950; CHECK-LABEL: @benchmark_heapsort
951; CHECK: %entry
952; First rotated loop top.
953; CHECK: .p2align
954; CHECK: %while.end
955; %for.cond gets completely tail-duplicated away.
956; CHECK: %if.then
957; CHECK: %if.else
958; CHECK: %if.end10
959; Second rotated loop top
960; CHECK: %while.cond.outer
961; Third rotated loop top
962; CHECK: .p2align
963; CHECK: %if.end20
964; CHECK: %while.cond
965; CHECK: %while.body
966; CHECK: %land.lhs.true
967; CHECK: %if.then19
968; CHECK: %if.then24
969; CHECK: %if.then8
970; CHECK: ret
971
972entry:
973  %shr = ashr i32 %n, 1
974  %add = add nsw i32 %shr, 1
975  %arrayidx3 = getelementptr inbounds double, double* %ra, i64 1
976  br label %for.cond
977
978for.cond:
979  %ir.0 = phi i32 [ %n, %entry ], [ %ir.1, %while.end ]
980  %l.0 = phi i32 [ %add, %entry ], [ %l.1, %while.end ]
981  %cmp = icmp sgt i32 %l.0, 1
982  br i1 %cmp, label %if.then, label %if.else
983
984if.then:
985  %dec = add nsw i32 %l.0, -1
986  %idxprom = sext i32 %dec to i64
987  %arrayidx = getelementptr inbounds double, double* %ra, i64 %idxprom
988  %0 = load double, double* %arrayidx, align 8
989  br label %if.end10
990
991if.else:
992  %idxprom1 = sext i32 %ir.0 to i64
993  %arrayidx2 = getelementptr inbounds double, double* %ra, i64 %idxprom1
994  %1 = load double, double* %arrayidx2, align 8
995  %2 = load double, double* %arrayidx3, align 8
996  store double %2, double* %arrayidx2, align 8
997  %dec6 = add nsw i32 %ir.0, -1
998  %cmp7 = icmp eq i32 %dec6, 1
999  br i1 %cmp7, label %if.then8, label %if.end10
1000
1001if.then8:
1002  store double %1, double* %arrayidx3, align 8
1003  ret void
1004
1005if.end10:
1006  %ir.1 = phi i32 [ %ir.0, %if.then ], [ %dec6, %if.else ]
1007  %l.1 = phi i32 [ %dec, %if.then ], [ %l.0, %if.else ]
1008  %rra.0 = phi double [ %0, %if.then ], [ %1, %if.else ]
1009  %add31 = add nsw i32 %ir.1, 1
1010  br label %while.cond.outer
1011
1012while.cond.outer:
1013  %j.0.ph.in = phi i32 [ %l.1, %if.end10 ], [ %j.1, %if.then24 ]
1014  %j.0.ph = shl i32 %j.0.ph.in, 1
1015  br label %while.cond
1016
1017while.cond:
1018  %j.0 = phi i32 [ %add31, %if.end20 ], [ %j.0.ph, %while.cond.outer ]
1019  %cmp11 = icmp sgt i32 %j.0, %ir.1
1020  br i1 %cmp11, label %while.end, label %while.body
1021
1022while.body:
1023  %cmp12 = icmp slt i32 %j.0, %ir.1
1024  br i1 %cmp12, label %land.lhs.true, label %if.end20
1025
1026land.lhs.true:
1027  %idxprom13 = sext i32 %j.0 to i64
1028  %arrayidx14 = getelementptr inbounds double, double* %ra, i64 %idxprom13
1029  %3 = load double, double* %arrayidx14, align 8
1030  %add15 = add nsw i32 %j.0, 1
1031  %idxprom16 = sext i32 %add15 to i64
1032  %arrayidx17 = getelementptr inbounds double, double* %ra, i64 %idxprom16
1033  %4 = load double, double* %arrayidx17, align 8
1034  %cmp18 = fcmp olt double %3, %4
1035  br i1 %cmp18, label %if.then19, label %if.end20
1036
1037if.then19:
1038  br label %if.end20
1039
1040if.end20:
1041  %j.1 = phi i32 [ %add15, %if.then19 ], [ %j.0, %land.lhs.true ], [ %j.0, %while.body ]
1042  %idxprom21 = sext i32 %j.1 to i64
1043  %arrayidx22 = getelementptr inbounds double, double* %ra, i64 %idxprom21
1044  %5 = load double, double* %arrayidx22, align 8
1045  %cmp23 = fcmp olt double %rra.0, %5
1046  br i1 %cmp23, label %if.then24, label %while.cond
1047
1048if.then24:
1049  %idxprom27 = sext i32 %j.0.ph.in to i64
1050  %arrayidx28 = getelementptr inbounds double, double* %ra, i64 %idxprom27
1051  store double %5, double* %arrayidx28, align 8
1052  br label %while.cond.outer
1053
1054while.end:
1055  %idxprom33 = sext i32 %j.0.ph.in to i64
1056  %arrayidx34 = getelementptr inbounds double, double* %ra, i64 %idxprom33
1057  store double %rra.0, double* %arrayidx34, align 8
1058  br label %for.cond
1059}
1060
1061declare void @cold_function() cold
1062
1063define i32 @test_cold_calls(i32* %a) {
1064; Test that edges to blocks post-dominated by cold calls are
1065; marked as not expected to be taken.  They should be laid out
1066; at the bottom.
1067; CHECK-LABEL: test_cold_calls:
1068; CHECK: %entry
1069; CHECK: %else
1070; CHECK: %exit
1071; CHECK: %then
1072
1073entry:
1074  %gep1 = getelementptr i32, i32* %a, i32 1
1075  %val1 = load i32, i32* %gep1
1076  %cond1 = icmp ugt i32 %val1, 1
1077  br i1 %cond1, label %then, label %else
1078
1079then:
1080  call void @cold_function()
1081  br label %exit
1082
1083else:
1084  %gep2 = getelementptr i32, i32* %a, i32 2
1085  %val2 = load i32, i32* %gep2
1086  br label %exit
1087
1088exit:
1089  %ret = phi i32 [ %val1, %then ], [ %val2, %else ]
1090  ret i32 %ret
1091}
1092
1093; Make sure we put landingpads out of the way.
1094declare i32 @pers(...)
1095
1096declare i32 @foo();
1097
1098declare i32 @bar();
1099
1100define i32 @test_lp(i32 %a) personality i32 (...)* @pers {
1101; CHECK-LABEL: test_lp:
1102; CHECK: %entry
1103; CHECK: %hot
1104; CHECK: %then
1105; CHECK: %cold
1106; CHECK: %coldlp
1107; CHECK: %hotlp
1108; CHECK: %lpret
1109entry:
1110  %0 = icmp sgt i32 %a, 1
1111  br i1 %0, label %hot, label %cold, !prof !4
1112
1113hot:
1114  %1 = invoke i32 @foo()
1115          to label %then unwind label %hotlp
1116
1117cold:
1118  %2 = invoke i32 @bar()
1119          to label %then unwind label %coldlp
1120
1121then:
1122  %3 = phi i32 [ %1, %hot ], [ %2, %cold ]
1123  ret i32 %3
1124
1125hotlp:
1126  %4 = landingpad { i8*, i32 }
1127          cleanup
1128  br label %lpret
1129
1130coldlp:
1131  %5 = landingpad { i8*, i32 }
1132          cleanup
1133  br label %lpret
1134
1135lpret:
1136  %6 = phi i32 [-1, %hotlp], [-2, %coldlp]
1137  %7 = add i32 %6, 42
1138  ret i32 %7
1139}
1140
1141!4 = !{!"branch_weights", i32 65536, i32 0}
1142
1143; Make sure that ehpad are scheduled from the least probable one
1144; to the most probable one. See selectBestCandidateBlock as to why.
1145declare void @clean();
1146
1147define void @test_flow_unwind() personality i32 (...)* @pers {
1148; CHECK-LABEL: test_flow_unwind:
1149; CHECK: %entry
1150; CHECK: %then
1151; CHECK: %exit
1152; CHECK: %innerlp
1153; CHECK: %outerlp
1154; CHECK: %outercleanup
1155entry:
1156  %0 = invoke i32 @foo()
1157          to label %then unwind label %outerlp
1158
1159then:
1160  %1 = invoke i32 @bar()
1161          to label %exit unwind label %innerlp
1162
1163exit:
1164  ret void
1165
1166innerlp:
1167  %2 = landingpad { i8*, i32 }
1168          cleanup
1169  br label %innercleanup
1170
1171outerlp:
1172  %3 = landingpad { i8*, i32 }
1173          cleanup
1174  br label %outercleanup
1175
1176outercleanup:
1177  %4 = phi { i8*, i32 } [%2, %innercleanup], [%3, %outerlp]
1178  call void @clean()
1179  resume { i8*, i32 } %4
1180
1181innercleanup:
1182  call void @clean()
1183  br label %outercleanup
1184}
1185
1186declare void @hot_function()
1187
1188define void @test_hot_branch(i32* %a) {
1189; Test that a hot branch that has a probability a little larger than 80% will
1190; break CFG constrains when doing block placement.
1191; CHECK-LABEL: test_hot_branch:
1192; CHECK: %entry
1193; CHECK: %then
1194; CHECK: %exit
1195; CHECK: %else
1196
1197entry:
1198  %gep1 = getelementptr i32, i32* %a, i32 1
1199  %val1 = load i32, i32* %gep1
1200  %cond1 = icmp ugt i32 %val1, 1
1201  br i1 %cond1, label %then, label %else, !prof !5
1202
1203then:
1204  call void @hot_function()
1205  br label %exit
1206
1207else:
1208  call void @cold_function()
1209  br label %exit
1210
1211exit:
1212  call void @hot_function()
1213  ret void
1214}
1215
1216define void @test_hot_branch_profile(i32* %a) !prof !6 {
1217; Test that a hot branch that has a probability a little larger than 50% will
1218; break CFG constrains when doing block placement when profile is available.
1219; CHECK-LABEL: test_hot_branch_profile:
1220; CHECK: %entry
1221; CHECK: %then
1222; CHECK: %exit
1223; CHECK: %else
1224
1225entry:
1226  %gep1 = getelementptr i32, i32* %a, i32 1
1227  %val1 = load i32, i32* %gep1
1228  %cond1 = icmp ugt i32 %val1, 1
1229  br i1 %cond1, label %then, label %else, !prof !7
1230
1231then:
1232  call void @hot_function()
1233  br label %exit
1234
1235else:
1236  call void @cold_function()
1237  br label %exit
1238
1239exit:
1240  call void @hot_function()
1241  ret void
1242}
1243
1244define void @test_hot_branch_triangle_profile(i32* %a) !prof !6 {
1245; Test that a hot branch that has a probability a little larger than 80% will
1246; break triangle shaped CFG constrains when doing block placement if profile
1247; is present.
1248; CHECK-LABEL: test_hot_branch_triangle_profile:
1249; CHECK: %entry
1250; CHECK: %exit
1251; CHECK: %then
1252
1253entry:
1254  %gep1 = getelementptr i32, i32* %a, i32 1
1255  %val1 = load i32, i32* %gep1
1256  %cond1 = icmp ugt i32 %val1, 1
1257  br i1 %cond1, label %exit, label %then, !prof !5
1258
1259then:
1260  call void @hot_function()
1261  br label %exit
1262
1263exit:
1264  call void @hot_function()
1265  ret void
1266}
1267
1268define void @test_hot_branch_triangle_profile_topology(i32* %a) !prof !6 {
1269; Test that a hot branch that has a probability between 50% and 66% will not
1270; break triangle shaped CFG constrains when doing block placement if profile
1271; is present.
1272; CHECK-LABEL: test_hot_branch_triangle_profile_topology:
1273; CHECK: %entry
1274; CHECK: %then
1275; CHECK: %exit
1276
1277entry:
1278  %gep1 = getelementptr i32, i32* %a, i32 1
1279  %val1 = load i32, i32* %gep1
1280  %cond1 = icmp ugt i32 %val1, 1
1281  br i1 %cond1, label %exit, label %then, !prof !7
1282
1283then:
1284  call void @hot_function()
1285  br label %exit
1286
1287exit:
1288  call void @hot_function()
1289  ret void
1290}
1291
1292declare void @a()
1293declare void @b()
1294
1295define void @test_forked_hot_diamond(i32* %a) {
1296; Test that a hot-branch with probability > 80% followed by a 50/50 branch
1297; will not place the cold predecessor if the probability for the fallthrough
1298; remains above 80%
1299; CHECK-LABEL: test_forked_hot_diamond
1300; CHECK: %entry
1301; CHECK: %then
1302; CHECK: %fork1
1303; CHECK: %else
1304; CHECK: %fork2
1305; CHECK: %exit
1306entry:
1307  %gep1 = getelementptr i32, i32* %a, i32 1
1308  %val1 = load i32, i32* %gep1
1309  %cond1 = icmp ugt i32 %val1, 1
1310  br i1 %cond1, label %then, label %else, !prof !5
1311
1312then:
1313  call void @hot_function()
1314  %gep2 = getelementptr i32, i32* %a, i32 2
1315  %val2 = load i32, i32* %gep2
1316  %cond2 = icmp ugt i32 %val2, 2
1317  br i1 %cond2, label %fork1, label %fork2, !prof !8
1318
1319else:
1320  call void @cold_function()
1321  %gep3 = getelementptr i32, i32* %a, i32 3
1322  %val3 = load i32, i32* %gep3
1323  %cond3 = icmp ugt i32 %val3, 3
1324  br i1 %cond3, label %fork1, label %fork2, !prof !8
1325
1326fork1:
1327  call void @a()
1328  br label %exit
1329
1330fork2:
1331  call void @b()
1332  br label %exit
1333
1334exit:
1335  call void @hot_function()
1336  ret void
1337}
1338
1339define void @test_forked_hot_diamond_gets_cold(i32* %a) {
1340; Test that a hot-branch with probability > 80% followed by a 50/50 branch
1341; will place the cold predecessor if the probability for the fallthrough
1342; falls below 80%
1343; The probability for both branches is 85%. For then2 vs else1
1344; this results in a compounded probability of 83%.
1345; Neither then2->fork1 nor then2->fork2 has a large enough relative
1346; probability to break the CFG.
1347; Relative probs:
1348; then2 -> fork1 vs else1 -> fork1 = 71%
1349; then2 -> fork2 vs else2 -> fork2 = 74%
1350; CHECK-LABEL: test_forked_hot_diamond_gets_cold
1351; CHECK: %entry
1352; CHECK: %then1
1353; CHECK: %then2
1354; CHECK: %else1
1355; CHECK: %fork1
1356; CHECK: %else2
1357; CHECK: %fork2
1358; CHECK: %exit
1359entry:
1360  %gep1 = getelementptr i32, i32* %a, i32 1
1361  %val1 = load i32, i32* %gep1
1362  %cond1 = icmp ugt i32 %val1, 1
1363  br i1 %cond1, label %then1, label %else1, !prof !9
1364
1365then1:
1366  call void @hot_function()
1367  %gep2 = getelementptr i32, i32* %a, i32 2
1368  %val2 = load i32, i32* %gep2
1369  %cond2 = icmp ugt i32 %val2, 2
1370  br i1 %cond2, label %then2, label %else2, !prof !9
1371
1372else1:
1373  call void @cold_function()
1374  br label %fork1
1375
1376then2:
1377  call void @hot_function()
1378  %gep3 = getelementptr i32, i32* %a, i32 3
1379  %val3 = load i32, i32* %gep2
1380  %cond3 = icmp ugt i32 %val2, 3
1381  br i1 %cond3, label %fork1, label %fork2, !prof !8
1382
1383else2:
1384  call void @cold_function()
1385  br label %fork2
1386
1387fork1:
1388  call void @a()
1389  br label %exit
1390
1391fork2:
1392  call void @b()
1393  br label %exit
1394
1395exit:
1396  call void @hot_function()
1397  ret void
1398}
1399
1400define void @test_forked_hot_diamond_stays_hot(i32* %a) {
1401; Test that a hot-branch with probability > 88.88% (1:8) followed by a 50/50
1402; branch will not place the cold predecessor as the probability for the
1403; fallthrough stays above 80%
1404; (1:8) followed by (1:1) is still (1:4)
1405; Here we use 90% probability because two in a row
1406; have a 89 % probability vs the original branch.
1407; CHECK-LABEL: test_forked_hot_diamond_stays_hot
1408; CHECK: %entry
1409; CHECK: %then1
1410; CHECK: %then2
1411; CHECK: %fork1
1412; CHECK: %else1
1413; CHECK: %else2
1414; CHECK: %fork2
1415; CHECK: %exit
1416entry:
1417  %gep1 = getelementptr i32, i32* %a, i32 1
1418  %val1 = load i32, i32* %gep1
1419  %cond1 = icmp ugt i32 %val1, 1
1420  br i1 %cond1, label %then1, label %else1, !prof !10
1421
1422then1:
1423  call void @hot_function()
1424  %gep2 = getelementptr i32, i32* %a, i32 2
1425  %val2 = load i32, i32* %gep2
1426  %cond2 = icmp ugt i32 %val2, 2
1427  br i1 %cond2, label %then2, label %else2, !prof !10
1428
1429else1:
1430  call void @cold_function()
1431  br label %fork1
1432
1433then2:
1434  call void @hot_function()
1435  %gep3 = getelementptr i32, i32* %a, i32 3
1436  %val3 = load i32, i32* %gep2
1437  %cond3 = icmp ugt i32 %val2, 3
1438  br i1 %cond3, label %fork1, label %fork2, !prof !8
1439
1440else2:
1441  call void @cold_function()
1442  br label %fork2
1443
1444fork1:
1445  call void @a()
1446  br label %exit
1447
1448fork2:
1449  call void @b()
1450  br label %exit
1451
1452exit:
1453  call void @hot_function()
1454  ret void
1455}
1456
1457; Because %endif has a higher frequency than %if, the calculations show we
1458; shouldn't tail-duplicate %endif so that we can place it after %if. We were
1459; previously undercounting the cost by ignoring execution frequency that didn't
1460; come from the %if->%endif path.
1461; CHECK-LABEL: higher_frequency_succ_tail_dup
1462; CHECK: %entry
1463; CHECK: %elseif
1464; CHECK: %else
1465; CHECK: %endif
1466; CHECK: %then
1467; CHECK: %ret
1468define void @higher_frequency_succ_tail_dup(i1 %a, i1 %b, i1 %c) {
1469entry:
1470  br label %if
1471if:                                               ; preds = %entry
1472  call void @effect(i32 0)
1473  br i1 %a, label %elseif, label %endif, !prof !11 ; even
1474
1475elseif:                                           ; preds = %if
1476  call void @effect(i32 1)
1477  br i1 %b, label %else, label %endif, !prof !11 ; even
1478
1479else:                                             ; preds = %elseif
1480  call void @effect(i32 2)
1481  br label %endif
1482
1483endif:                                            ; preds = %if, %elseif, %else
1484  br i1 %c, label %then, label %ret, !prof !12 ; 5 to 3
1485
1486then:                                             ; preds = %endif
1487  call void @effect(i32 3)
1488  br label %ret
1489
1490ret:                                              ; preds = %endif, %then
1491  ret void
1492}
1493
1494define i32 @not_rotate_if_extra_branch(i32 %count) {
1495; Test checks that there is no loop rotation
1496; if it introduces extra branch.
1497; Specifically in this case because best exit is .header
1498; but it has fallthrough to .middle block and last block in
1499; loop chain .slow does not have afallthrough to .header.
1500; CHECK-LABEL: not_rotate_if_extra_branch
1501; CHECK: %.entry
1502; CHECK: %.header
1503; CHECK: %.middle
1504; CHECK: %.backedge
1505; CHECK: %.slow
1506; CHECK: %.bailout
1507; CHECK: %.stop
1508.entry:
1509  %sum.0 = shl nsw i32 %count, 1
1510  br label %.header
1511
1512.header:
1513  %i = phi i32 [ %i.1, %.backedge ], [ 0, %.entry ]
1514  %sum = phi i32 [ %sum.1, %.backedge ], [ %sum.0, %.entry ]
1515  %is_exc = icmp sgt i32 %i, 9000000
1516  br i1 %is_exc, label %.bailout, label %.middle, !prof !13
1517
1518.bailout:
1519  %sum.2 = add nsw i32 %count, 1
1520  br label %.stop
1521
1522.middle:
1523  %pr.1 = and i32 %i, 1023
1524  %pr.2 = icmp eq i32 %pr.1, 0
1525  br i1 %pr.2, label %.slow, label %.backedge, !prof !14
1526
1527.slow:
1528  tail call void @effect(i32 %sum)
1529  br label %.backedge
1530
1531.backedge:
1532  %sum.1 = add nsw i32 %i, %sum
1533  %i.1 = add nsw i32 %i, 1
1534  %end = icmp slt i32 %i.1, %count
1535  br i1 %end, label %.header, label %.stop, !prof !15
1536
1537.stop:
1538  %sum.phi = phi i32 [ %sum.1, %.backedge ], [ %sum.2, %.bailout ]
1539  ret i32 %sum.phi
1540}
1541
1542define i32 @not_rotate_if_extra_branch_regression(i32 %count, i32 %init) {
1543; This is a regression test against patch avoid loop rotation if
1544; it introduce an extra btanch.
1545; CHECK-LABEL: not_rotate_if_extra_branch_regression
1546; CHECK: %.entry
1547; CHECK: %.first_backedge
1548; CHECK: %.second_header
1549; CHECK: %.slow
1550.entry:
1551  %sum.0 = shl nsw i32 %count, 1
1552  br label %.first_header
1553
1554.first_header:
1555  %i = phi i32 [ %i.1, %.first_backedge ], [ 0, %.entry ]
1556  %is_bo1 = icmp sgt i32 %i, 9000000
1557  br i1 %is_bo1, label %.bailout, label %.first_backedge, !prof !14
1558
1559.first_backedge:
1560  %i.1 = add nsw i32 %i, 1
1561  %end = icmp slt i32 %i.1, %count
1562  br i1 %end, label %.first_header, label %.second_header, !prof !13
1563
1564.second_header:
1565  %j = phi i32 [ %j.1, %.second_backedge ], [ %init, %.first_backedge ]
1566  %end.2 = icmp sgt i32 %j, %count
1567  br i1 %end.2, label %.stop, label %.second_middle, !prof !14
1568
1569.second_middle:
1570  %is_slow = icmp sgt i32 %j, 9000000
1571  br i1 %is_slow, label %.slow, label %.second_backedge, !prof !14
1572
1573.slow:
1574  tail call void @effect(i32 %j)
1575  br label %.second_backedge
1576
1577.second_backedge:
1578  %j.1 = add nsw i32 %j, 1
1579  %end.3 = icmp slt i32 %j, 10000000
1580  br i1 %end.3, label %.second_header, label %.stop, !prof !13
1581
1582.stop:
1583  %res = add nsw i32 %j, %i.1
1584  ret i32 %res
1585
1586.bailout:
1587  ret i32 0
1588}
1589
1590declare void @effect(i32)
1591
1592!5 = !{!"branch_weights", i32 84, i32 16}
1593!6 = !{!"function_entry_count", i32 10}
1594!7 = !{!"branch_weights", i32 60, i32 40}
1595!8 = !{!"branch_weights", i32 5001, i32 4999}
1596!9 = !{!"branch_weights", i32 85, i32 15}
1597!10 = !{!"branch_weights", i32 90, i32 10}
1598!11 = !{!"branch_weights", i32 1, i32 1}
1599!12 = !{!"branch_weights", i32 5, i32 3}
1600!13 = !{!"branch_weights", i32 1, i32 1}
1601!14 = !{!"branch_weights", i32 1, i32 1023}
1602!15 = !{!"branch_weights", i32 4095, i32 1}
1603