1// RUN: mlir-opt %s -tensor-constant-bufferize -std-bufferize -linalg-bufferize \ 2// RUN: -func-bufferize -finalizing-bufferize -convert-linalg-to-loops \ 3// RUN: -convert-linalg-to-llvm -convert-std-to-llvm | \ 4// RUN: mlir-cpu-runner -e main -entry-point-result=void \ 5// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_runner_utils%shlibext \ 6// RUN: | FileCheck %s 7 8func @foo() -> tensor<4xf32> { 9 %0 = constant dense<[1.0, 2.0, 3.0, 4.0]> : tensor<4xf32> 10 return %0 : tensor<4xf32> 11} 12 13func @main() { 14 %0 = call @foo() : () -> tensor<4xf32> 15 16 // Instead of relying on tensor_store which introduces aliasing, we rely on 17 // the conversion of print_memref_f32(tensor<*xf32>) to 18 // print_memref_f32(memref<*xf32>). 19 // Note that this is skipping a step and we would need at least some function 20 // attribute to declare that this conversion is valid (e.g. when we statically 21 // know that things will play nicely at the C ABI boundary). 22 %unranked = tensor_cast %0 : tensor<4xf32> to tensor<*xf32> 23 call @print_memref_f32(%unranked) : (tensor<*xf32>) -> () 24 25 // CHECK: Unranked Memref base@ = {{0x[-9a-f]*}} 26 // CHECK-SAME: rank = 1 offset = 0 sizes = [4] strides = [1] data = 27 // CHECK-NEXT: [1, 2, 3, 4] 28 29 return 30} 31 32// This gets converted to a function operating on memref<*xf32>. 33// Note that this is skipping a step and we would need at least some function 34// attribute to declare that this conversion is valid (e.g. when we statically 35// know that things will play nicely at the C ABI boundary). 36func private @print_memref_f32(%ptr : tensor<*xf32>) 37