1 //===- MachineDominators.cpp - Machine Dominator Calculation --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements simple dominator construction algorithms for finding
11 // forward dominators on machine functions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineDominators.h"
16 #include "llvm/CodeGen/Passes.h"
17 #include "llvm/ADT/SmallBitVector.h"
18 #include "llvm/Support/CommandLine.h"
19 
20 using namespace llvm;
21 
22 // Always verify dominfo if expensive checking is enabled.
23 #ifdef EXPENSIVE_CHECKS
24 static bool VerifyMachineDomInfo = true;
25 #else
26 static bool VerifyMachineDomInfo = false;
27 #endif
28 static cl::opt<bool, true> VerifyMachineDomInfoX(
29     "verify-machine-dom-info", cl::location(VerifyMachineDomInfo),
30     cl::desc("Verify machine dominator info (time consuming)"));
31 
32 namespace llvm {
33 template class DomTreeNodeBase<MachineBasicBlock>;
34 template class DominatorTreeBase<MachineBasicBlock>;
35 }
36 
37 char MachineDominatorTree::ID = 0;
38 
39 INITIALIZE_PASS(MachineDominatorTree, "machinedomtree",
40                 "MachineDominator Tree Construction", true, true)
41 
42 char &llvm::MachineDominatorsID = MachineDominatorTree::ID;
43 
getAnalysisUsage(AnalysisUsage & AU) const44 void MachineDominatorTree::getAnalysisUsage(AnalysisUsage &AU) const {
45   AU.setPreservesAll();
46   MachineFunctionPass::getAnalysisUsage(AU);
47 }
48 
runOnMachineFunction(MachineFunction & F)49 bool MachineDominatorTree::runOnMachineFunction(MachineFunction &F) {
50   CriticalEdgesToSplit.clear();
51   NewBBs.clear();
52   DT->recalculate(F);
53 
54   return false;
55 }
56 
MachineDominatorTree()57 MachineDominatorTree::MachineDominatorTree()
58     : MachineFunctionPass(ID) {
59   initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
60   DT = new DominatorTreeBase<MachineBasicBlock>(false);
61 }
62 
~MachineDominatorTree()63 MachineDominatorTree::~MachineDominatorTree() {
64   delete DT;
65 }
66 
releaseMemory()67 void MachineDominatorTree::releaseMemory() {
68   DT->releaseMemory();
69 }
70 
verifyAnalysis() const71 void MachineDominatorTree::verifyAnalysis() const {
72   if (VerifyMachineDomInfo)
73     verifyDomTree();
74 }
75 
print(raw_ostream & OS,const Module *) const76 void MachineDominatorTree::print(raw_ostream &OS, const Module*) const {
77   DT->print(OS);
78 }
79 
applySplitCriticalEdges() const80 void MachineDominatorTree::applySplitCriticalEdges() const {
81   // Bail out early if there is nothing to do.
82   if (CriticalEdgesToSplit.empty())
83     return;
84 
85   // For each element in CriticalEdgesToSplit, remember whether or not element
86   // is the new immediate domminator of its successor. The mapping is done by
87   // index, i.e., the information for the ith element of CriticalEdgesToSplit is
88   // the ith element of IsNewIDom.
89   SmallBitVector IsNewIDom(CriticalEdgesToSplit.size(), true);
90   size_t Idx = 0;
91 
92   // Collect all the dominance properties info, before invalidating
93   // the underlying DT.
94   for (CriticalEdge &Edge : CriticalEdgesToSplit) {
95     // Update dominator information.
96     MachineBasicBlock *Succ = Edge.ToBB;
97     MachineDomTreeNode *SuccDTNode = DT->getNode(Succ);
98 
99     for (MachineBasicBlock *PredBB : Succ->predecessors()) {
100       if (PredBB == Edge.NewBB)
101         continue;
102       // If we are in this situation:
103       // FromBB1        FromBB2
104       //    +              +
105       //   + +            + +
106       //  +   +          +   +
107       // ...  Split1  Split2 ...
108       //           +   +
109       //            + +
110       //             +
111       //            Succ
112       // Instead of checking the domiance property with Split2, we check it with
113       // FromBB2 since Split2 is still unknown of the underlying DT structure.
114       if (NewBBs.count(PredBB)) {
115         assert(PredBB->pred_size() == 1 && "A basic block resulting from a "
116                                            "critical edge split has more "
117                                            "than one predecessor!");
118         PredBB = *PredBB->pred_begin();
119       }
120       if (!DT->dominates(SuccDTNode, DT->getNode(PredBB))) {
121         IsNewIDom[Idx] = false;
122         break;
123       }
124     }
125     ++Idx;
126   }
127 
128   // Now, update DT with the collected dominance properties info.
129   Idx = 0;
130   for (CriticalEdge &Edge : CriticalEdgesToSplit) {
131     // We know FromBB dominates NewBB.
132     MachineDomTreeNode *NewDTNode = DT->addNewBlock(Edge.NewBB, Edge.FromBB);
133 
134     // If all the other predecessors of "Succ" are dominated by "Succ" itself
135     // then the new block is the new immediate dominator of "Succ". Otherwise,
136     // the new block doesn't dominate anything.
137     if (IsNewIDom[Idx])
138       DT->changeImmediateDominator(DT->getNode(Edge.ToBB), NewDTNode);
139     ++Idx;
140   }
141   NewBBs.clear();
142   CriticalEdgesToSplit.clear();
143 }
144 
verifyDomTree() const145 void MachineDominatorTree::verifyDomTree() const {
146   MachineFunction &F = *getRoot()->getParent();
147 
148   MachineDominatorTree OtherDT;
149   OtherDT.DT->recalculate(F);
150   if (compare(OtherDT)) {
151     errs() << "MachineDominatorTree is not up to date!\nComputed:\n";
152     print(errs(), nullptr);
153     errs() << "\nActual:\n";
154     OtherDT.print(errs(), nullptr);
155     abort();
156   }
157 }
158