1 //===-- SystemZSelectionDAGInfo.cpp - SystemZ SelectionDAG Info -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SystemZSelectionDAGInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SystemZTargetMachine.h"
15 #include "llvm/CodeGen/SelectionDAG.h"
16 
17 using namespace llvm;
18 
19 #define DEBUG_TYPE "systemz-selectiondag-info"
20 
21 // Decide whether it is best to use a loop or straight-line code for
22 // a block operation of Size bytes with source address Src and destination
23 // address Dest.  Sequence is the opcode to use for straight-line code
24 // (such as MVC) and Loop is the opcode to use for loops (such as MVC_LOOP).
25 // Return the chain for the completed operation.
emitMemMem(SelectionDAG & DAG,const SDLoc & DL,unsigned Sequence,unsigned Loop,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size)26 static SDValue emitMemMem(SelectionDAG &DAG, const SDLoc &DL, unsigned Sequence,
27                           unsigned Loop, SDValue Chain, SDValue Dst,
28                           SDValue Src, uint64_t Size) {
29   EVT PtrVT = Src.getValueType();
30   // The heuristic we use is to prefer loops for anything that would
31   // require 7 or more MVCs.  With these kinds of sizes there isn't
32   // much to choose between straight-line code and looping code,
33   // since the time will be dominated by the MVCs themselves.
34   // However, the loop has 4 or 5 instructions (depending on whether
35   // the base addresses can be proved equal), so there doesn't seem
36   // much point using a loop for 5 * 256 bytes or fewer.  Anything in
37   // the range (5 * 256, 6 * 256) will need another instruction after
38   // the loop, so it doesn't seem worth using a loop then either.
39   // The next value up, 6 * 256, can be implemented in the same
40   // number of straight-line MVCs as 6 * 256 - 1.
41   if (Size > 6 * 256)
42     return DAG.getNode(Loop, DL, MVT::Other, Chain, Dst, Src,
43                        DAG.getConstant(Size, DL, PtrVT),
44                        DAG.getConstant(Size / 256, DL, PtrVT));
45   return DAG.getNode(Sequence, DL, MVT::Other, Chain, Dst, Src,
46                      DAG.getConstant(Size, DL, PtrVT));
47 }
48 
EmitTargetCodeForMemcpy(SelectionDAG & DAG,const SDLoc & DL,SDValue Chain,SDValue Dst,SDValue Src,SDValue Size,unsigned Align,bool IsVolatile,bool AlwaysInline,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo) const49 SDValue SystemZSelectionDAGInfo::EmitTargetCodeForMemcpy(
50     SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dst, SDValue Src,
51     SDValue Size, unsigned Align, bool IsVolatile, bool AlwaysInline,
52     MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
53   if (IsVolatile)
54     return SDValue();
55 
56   if (auto *CSize = dyn_cast<ConstantSDNode>(Size))
57     return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP,
58                       Chain, Dst, Src, CSize->getZExtValue());
59   return SDValue();
60 }
61 
62 // Handle a memset of 1, 2, 4 or 8 bytes with the operands given by
63 // Chain, Dst, ByteVal and Size.  These cases are expected to use
64 // MVI, MVHHI, MVHI and MVGHI respectively.
memsetStore(SelectionDAG & DAG,const SDLoc & DL,SDValue Chain,SDValue Dst,uint64_t ByteVal,uint64_t Size,unsigned Align,MachinePointerInfo DstPtrInfo)65 static SDValue memsetStore(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain,
66                            SDValue Dst, uint64_t ByteVal, uint64_t Size,
67                            unsigned Align, MachinePointerInfo DstPtrInfo) {
68   uint64_t StoreVal = ByteVal;
69   for (unsigned I = 1; I < Size; ++I)
70     StoreVal |= ByteVal << (I * 8);
71   return DAG.getStore(Chain, DL,
72                       DAG.getConstant(StoreVal, DL,
73                                       MVT::getIntegerVT(Size * 8)),
74                       Dst, DstPtrInfo, false, false, Align);
75 }
76 
EmitTargetCodeForMemset(SelectionDAG & DAG,const SDLoc & DL,SDValue Chain,SDValue Dst,SDValue Byte,SDValue Size,unsigned Align,bool IsVolatile,MachinePointerInfo DstPtrInfo) const77 SDValue SystemZSelectionDAGInfo::EmitTargetCodeForMemset(
78     SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dst,
79     SDValue Byte, SDValue Size, unsigned Align, bool IsVolatile,
80     MachinePointerInfo DstPtrInfo) const {
81   EVT PtrVT = Dst.getValueType();
82 
83   if (IsVolatile)
84     return SDValue();
85 
86   if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) {
87     uint64_t Bytes = CSize->getZExtValue();
88     if (Bytes == 0)
89       return SDValue();
90     if (auto *CByte = dyn_cast<ConstantSDNode>(Byte)) {
91       // Handle cases that can be done using at most two of
92       // MVI, MVHI, MVHHI and MVGHI.  The latter two can only be
93       // used if ByteVal is all zeros or all ones; in other casees,
94       // we can move at most 2 halfwords.
95       uint64_t ByteVal = CByte->getZExtValue();
96       if (ByteVal == 0 || ByteVal == 255 ?
97           Bytes <= 16 && countPopulation(Bytes) <= 2 :
98           Bytes <= 4) {
99         unsigned Size1 = Bytes == 16 ? 8 : 1 << findLastSet(Bytes);
100         unsigned Size2 = Bytes - Size1;
101         SDValue Chain1 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size1,
102                                      Align, DstPtrInfo);
103         if (Size2 == 0)
104           return Chain1;
105         Dst = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
106                           DAG.getConstant(Size1, DL, PtrVT));
107         DstPtrInfo = DstPtrInfo.getWithOffset(Size1);
108         SDValue Chain2 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size2,
109                                      std::min(Align, Size1), DstPtrInfo);
110         return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2);
111       }
112     } else {
113       // Handle one and two bytes using STC.
114       if (Bytes <= 2) {
115         SDValue Chain1 = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo,
116                                       false, false, Align);
117         if (Bytes == 1)
118           return Chain1;
119         SDValue Dst2 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
120                                    DAG.getConstant(1, DL, PtrVT));
121         SDValue Chain2 = DAG.getStore(Chain, DL, Byte, Dst2,
122                                       DstPtrInfo.getWithOffset(1),
123                                       false, false, 1);
124         return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2);
125       }
126     }
127     assert(Bytes >= 2 && "Should have dealt with 0- and 1-byte cases already");
128 
129     // Handle the special case of a memset of 0, which can use XC.
130     auto *CByte = dyn_cast<ConstantSDNode>(Byte);
131     if (CByte && CByte->getZExtValue() == 0)
132       return emitMemMem(DAG, DL, SystemZISD::XC, SystemZISD::XC_LOOP,
133                         Chain, Dst, Dst, Bytes);
134 
135     // Copy the byte to the first location and then use MVC to copy
136     // it to the rest.
137     Chain = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo,
138                          false, false, Align);
139     SDValue DstPlus1 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
140                                    DAG.getConstant(1, DL, PtrVT));
141     return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP,
142                       Chain, DstPlus1, Dst, Bytes - 1);
143   }
144   return SDValue();
145 }
146 
147 // Use CLC to compare [Src1, Src1 + Size) with [Src2, Src2 + Size),
148 // deciding whether to use a loop or straight-line code.
emitCLC(SelectionDAG & DAG,const SDLoc & DL,SDValue Chain,SDValue Src1,SDValue Src2,uint64_t Size)149 static SDValue emitCLC(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain,
150                        SDValue Src1, SDValue Src2, uint64_t Size) {
151   SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
152   EVT PtrVT = Src1.getValueType();
153   // A two-CLC sequence is a clear win over a loop, not least because it
154   // needs only one branch.  A three-CLC sequence needs the same number
155   // of branches as a loop (i.e. 2), but is shorter.  That brings us to
156   // lengths greater than 768 bytes.  It seems relatively likely that
157   // a difference will be found within the first 768 bytes, so we just
158   // optimize for the smallest number of branch instructions, in order
159   // to avoid polluting the prediction buffer too much.  A loop only ever
160   // needs 2 branches, whereas a straight-line sequence would need 3 or more.
161   if (Size > 3 * 256)
162     return DAG.getNode(SystemZISD::CLC_LOOP, DL, VTs, Chain, Src1, Src2,
163                        DAG.getConstant(Size, DL, PtrVT),
164                        DAG.getConstant(Size / 256, DL, PtrVT));
165   return DAG.getNode(SystemZISD::CLC, DL, VTs, Chain, Src1, Src2,
166                      DAG.getConstant(Size, DL, PtrVT));
167 }
168 
169 // Convert the current CC value into an integer that is 0 if CC == 0,
170 // less than zero if CC == 1 and greater than zero if CC >= 2.
171 // The sequence starts with IPM, which puts CC into bits 29 and 28
172 // of an integer and clears bits 30 and 31.
addIPMSequence(const SDLoc & DL,SDValue Glue,SelectionDAG & DAG)173 static SDValue addIPMSequence(const SDLoc &DL, SDValue Glue,
174                               SelectionDAG &DAG) {
175   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
176   SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
177                             DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
178   SDValue ROTL = DAG.getNode(ISD::ROTL, DL, MVT::i32, SRL,
179                              DAG.getConstant(31, DL, MVT::i32));
180   return ROTL;
181 }
182 
EmitTargetCodeForMemcmp(SelectionDAG & DAG,const SDLoc & DL,SDValue Chain,SDValue Src1,SDValue Src2,SDValue Size,MachinePointerInfo Op1PtrInfo,MachinePointerInfo Op2PtrInfo) const183 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForMemcmp(
184     SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src1,
185     SDValue Src2, SDValue Size, MachinePointerInfo Op1PtrInfo,
186     MachinePointerInfo Op2PtrInfo) const {
187   if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) {
188     uint64_t Bytes = CSize->getZExtValue();
189     assert(Bytes > 0 && "Caller should have handled 0-size case");
190     Chain = emitCLC(DAG, DL, Chain, Src1, Src2, Bytes);
191     SDValue Glue = Chain.getValue(1);
192     return std::make_pair(addIPMSequence(DL, Glue, DAG), Chain);
193   }
194   return std::make_pair(SDValue(), SDValue());
195 }
196 
EmitTargetCodeForMemchr(SelectionDAG & DAG,const SDLoc & DL,SDValue Chain,SDValue Src,SDValue Char,SDValue Length,MachinePointerInfo SrcPtrInfo) const197 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForMemchr(
198     SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src,
199     SDValue Char, SDValue Length, MachinePointerInfo SrcPtrInfo) const {
200   // Use SRST to find the character.  End is its address on success.
201   EVT PtrVT = Src.getValueType();
202   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other, MVT::Glue);
203   Length = DAG.getZExtOrTrunc(Length, DL, PtrVT);
204   Char = DAG.getZExtOrTrunc(Char, DL, MVT::i32);
205   Char = DAG.getNode(ISD::AND, DL, MVT::i32, Char,
206                      DAG.getConstant(255, DL, MVT::i32));
207   SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, Length);
208   SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain,
209                             Limit, Src, Char);
210   Chain = End.getValue(1);
211   SDValue Glue = End.getValue(2);
212 
213   // Now select between End and null, depending on whether the character
214   // was found.
215   SDValue Ops[] = {End, DAG.getConstant(0, DL, PtrVT),
216                    DAG.getConstant(SystemZ::CCMASK_SRST, DL, MVT::i32),
217                    DAG.getConstant(SystemZ::CCMASK_SRST_FOUND, DL, MVT::i32),
218                    Glue};
219   VTs = DAG.getVTList(PtrVT, MVT::Glue);
220   End = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
221   return std::make_pair(End, Chain);
222 }
223 
EmitTargetCodeForStrcpy(SelectionDAG & DAG,const SDLoc & DL,SDValue Chain,SDValue Dest,SDValue Src,MachinePointerInfo DestPtrInfo,MachinePointerInfo SrcPtrInfo,bool isStpcpy) const224 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrcpy(
225     SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dest,
226     SDValue Src, MachinePointerInfo DestPtrInfo, MachinePointerInfo SrcPtrInfo,
227     bool isStpcpy) const {
228   SDVTList VTs = DAG.getVTList(Dest.getValueType(), MVT::Other);
229   SDValue EndDest = DAG.getNode(SystemZISD::STPCPY, DL, VTs, Chain, Dest, Src,
230                                 DAG.getConstant(0, DL, MVT::i32));
231   return std::make_pair(isStpcpy ? EndDest : Dest, EndDest.getValue(1));
232 }
233 
EmitTargetCodeForStrcmp(SelectionDAG & DAG,const SDLoc & DL,SDValue Chain,SDValue Src1,SDValue Src2,MachinePointerInfo Op1PtrInfo,MachinePointerInfo Op2PtrInfo) const234 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrcmp(
235     SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src1,
236     SDValue Src2, MachinePointerInfo Op1PtrInfo,
237     MachinePointerInfo Op2PtrInfo) const {
238   SDVTList VTs = DAG.getVTList(Src1.getValueType(), MVT::Other, MVT::Glue);
239   SDValue Unused = DAG.getNode(SystemZISD::STRCMP, DL, VTs, Chain, Src1, Src2,
240                                DAG.getConstant(0, DL, MVT::i32));
241   Chain = Unused.getValue(1);
242   SDValue Glue = Chain.getValue(2);
243   return std::make_pair(addIPMSequence(DL, Glue, DAG), Chain);
244 }
245 
246 // Search from Src for a null character, stopping once Src reaches Limit.
247 // Return a pair of values, the first being the number of nonnull characters
248 // and the second being the out chain.
249 //
250 // This can be used for strlen by setting Limit to 0.
getBoundedStrlen(SelectionDAG & DAG,const SDLoc & DL,SDValue Chain,SDValue Src,SDValue Limit)251 static std::pair<SDValue, SDValue> getBoundedStrlen(SelectionDAG &DAG,
252                                                     const SDLoc &DL,
253                                                     SDValue Chain, SDValue Src,
254                                                     SDValue Limit) {
255   EVT PtrVT = Src.getValueType();
256   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other, MVT::Glue);
257   SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain,
258                             Limit, Src, DAG.getConstant(0, DL, MVT::i32));
259   Chain = End.getValue(1);
260   SDValue Len = DAG.getNode(ISD::SUB, DL, PtrVT, End, Src);
261   return std::make_pair(Len, Chain);
262 }
263 
EmitTargetCodeForStrlen(SelectionDAG & DAG,const SDLoc & DL,SDValue Chain,SDValue Src,MachinePointerInfo SrcPtrInfo) const264 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrlen(
265     SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src,
266     MachinePointerInfo SrcPtrInfo) const {
267   EVT PtrVT = Src.getValueType();
268   return getBoundedStrlen(DAG, DL, Chain, Src, DAG.getConstant(0, DL, PtrVT));
269 }
270 
EmitTargetCodeForStrnlen(SelectionDAG & DAG,const SDLoc & DL,SDValue Chain,SDValue Src,SDValue MaxLength,MachinePointerInfo SrcPtrInfo) const271 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrnlen(
272     SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src,
273     SDValue MaxLength, MachinePointerInfo SrcPtrInfo) const {
274   EVT PtrVT = Src.getValueType();
275   MaxLength = DAG.getZExtOrTrunc(MaxLength, DL, PtrVT);
276   SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, MaxLength);
277   return getBoundedStrlen(DAG, DL, Chain, Src, Limit);
278 }
279