1; Test floating-point absolute.
2;
3; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z10 | FileCheck %s
4; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z13 | FileCheck %s
5
6; Test f32.
7declare float @llvm.fabs.f32(float %f)
8define float @f1(float %f) {
9; CHECK-LABEL: f1:
10; CHECK: lpdfr %f0, %f0
11; CHECK: br %r14
12  %res = call float @llvm.fabs.f32(float %f)
13  ret float %res
14}
15
16; Test f64.
17declare double @llvm.fabs.f64(double %f)
18define double @f2(double %f) {
19; CHECK-LABEL: f2:
20; CHECK: lpdfr %f0, %f0
21; CHECK: br %r14
22  %res = call double @llvm.fabs.f64(double %f)
23  ret double %res
24}
25
26; Test f128.  With the loads and stores, a pure absolute would probably
27; be better implemented using an NI on the upper byte.  Do some extra
28; processing so that using FPRs is unequivocally better.
29declare fp128 @llvm.fabs.f128(fp128 %f)
30define void @f3(fp128 *%ptr, fp128 *%ptr2) {
31; CHECK-LABEL: f3:
32; CHECK: lpxbr
33; CHECK: dxbr
34; CHECK: br %r14
35  %orig = load fp128 , fp128 *%ptr
36  %abs = call fp128 @llvm.fabs.f128(fp128 %orig)
37  %op2 = load fp128 , fp128 *%ptr2
38  %res = fdiv fp128 %abs, %op2
39  store fp128 %res, fp128 *%ptr
40  ret void
41}
42