1.section #gk110_builtin_code
2// DIV U32
3//
4// UNR recurrence (q = a / b):
5// look for z such that 2^32 - b <= b * z < 2^32
6// then q - 1 <= (a * z) / 2^32 <= q
7//
8// INPUT:   $r0: dividend, $r1: divisor
9// OUTPUT:  $r0: result, $r1: modulus
10// CLOBBER: $r2 - $r3, $p0 - $p1
11// SIZE:    22 / 14 * 8 bytes
12//
13gk110_div_u32:
14   sched 0x28 0x04 0x28 0x04 0x28 0x28 0x28
15   bfind u32 $r2 $r1
16   xor b32 $r2 $r2 0x1f
17   mov b32 $r3 0x1
18   shl b32 $r2 $r3 clamp $r2
19   cvt u32 $r1 neg u32 $r1
20   mul $r3 u32 $r1 u32 $r2
21   add $r2 (mul high u32 $r2 u32 $r3) $r2
22   sched 0x28 0x28 0x28 0x28 0x28 0x28 0x28
23   mul $r3 u32 $r1 u32 $r2
24   add $r2 (mul high u32 $r2 u32 $r3) $r2
25   mul $r3 u32 $r1 u32 $r2
26   add $r2 (mul high u32 $r2 u32 $r3) $r2
27   mul $r3 u32 $r1 u32 $r2
28   add $r2 (mul high u32 $r2 u32 $r3) $r2
29   mul $r3 u32 $r1 u32 $r2
30   sched 0x04 0x28 0x04 0x28 0x28 0x2c 0x04
31   add $r2 (mul high u32 $r2 u32 $r3) $r2
32   mov b32 $r3 $r0
33   mul high $r0 u32 $r0 u32 $r2
34   cvt u32 $r2 neg u32 $r1
35   add $r1 (mul u32 $r1 u32 $r0) $r3
36   set $p0 0x1 ge u32 $r1 $r2
37   $p0 sub b32 $r1 $r1 $r2
38   sched 0x28 0x2c 0x04 0x20 0x2e 0x28 0x20
39   $p0 add b32 $r0 $r0 0x1
40   $p0 set $p0 0x1 ge u32 $r1 $r2
41   $p0 sub b32 $r1 $r1 $r2
42   $p0 add b32 $r0 $r0 0x1
43   ret
44
45// DIV S32, like DIV U32 after taking ABS(inputs)
46//
47// INPUT:   $r0: dividend, $r1: divisor
48// OUTPUT:  $r0: result, $r1: modulus
49// CLOBBER: $r2 - $r3, $p0 - $p3
50//
51gk110_div_s32:
52   set $p2 0x1 lt s32 $r0 0x0
53   set $p3 0x1 lt s32 $r1 0x0 xor $p2
54   sched 0x20 0x28 0x28 0x04 0x28 0x04 0x28
55   cvt s32 $r0 abs s32 $r0
56   cvt s32 $r1 abs s32 $r1
57   bfind u32 $r2 $r1
58   xor b32 $r2 $r2 0x1f
59   mov b32 $r3 0x1
60   shl b32 $r2 $r3 clamp $r2
61   cvt u32 $r1 neg u32 $r1
62   sched 0x28 0x28 0x28 0x28 0x28 0x28 0x28
63   mul $r3 u32 $r1 u32 $r2
64   add $r2 (mul high u32 $r2 u32 $r3) $r2
65   mul $r3 u32 $r1 u32 $r2
66   add $r2 (mul high u32 $r2 u32 $r3) $r2
67   mul $r3 u32 $r1 u32 $r2
68   add $r2 (mul high u32 $r2 u32 $r3) $r2
69   mul $r3 u32 $r1 u32 $r2
70   sched 0x28 0x28 0x04 0x28 0x04 0x28 0x28
71   add $r2 (mul high u32 $r2 u32 $r3) $r2
72   mul $r3 u32 $r1 u32 $r2
73   add $r2 (mul high u32 $r2 u32 $r3) $r2
74   mov b32 $r3 $r0
75   mul high $r0 u32 $r0 u32 $r2
76   cvt u32 $r2 neg u32 $r1
77   add $r1 (mul u32 $r1 u32 $r0) $r3
78   sched 0x2c 0x04 0x28 0x2c 0x04 0x28 0x20
79   set $p0 0x1 ge u32 $r1 $r2
80   $p0 sub b32 $r1 $r1 $r2
81   $p0 add b32 $r0 $r0 0x1
82   $p0 set $p0 0x1 ge u32 $r1 $r2
83   $p0 sub b32 $r1 $r1 $r2
84   $p0 add b32 $r0 $r0 0x1
85   $p3 cvt s32 $r0 neg s32 $r0
86   sched 0x04 0x2e 0x28 0x04 0x28 0x28 0x28
87   $p2 cvt s32 $r1 neg s32 $r1
88   ret
89
90// RCP F64
91//
92// INPUT:   $r0d
93// OUTPUT:  $r0d
94// CLOBBER: $r2 - $r9, $p0
95//
96// The core of RCP and RSQ implementation is Newton-Raphson step, which is
97// used to find successively better approximation from an imprecise initial
98// value (single precision rcp in RCP and rsqrt64h in RSQ).
99//
100gk110_rcp_f64:
101   // Step 1: classify input according to exponent and value, and calculate
102   // result for 0/inf/nan. $r2 holds the exponent value, which starts at
103   // bit 52 (bit 20 of the upper half) and is 11 bits in length
104   ext u32 $r2 $r1 0xb14
105   add b32 $r3 $r2 0xffffffff
106   joinat #rcp_rejoin
107   // We want to check whether the exponent is 0 or 0x7ff (i.e. NaN, inf,
108   // denorm, or 0). Do this by substracting 1 from the exponent, which will
109   // mean that it's > 0x7fd in those cases when doing unsigned comparison
110   set b32 $p0 0x1 gt u32 $r3 0x7fd
111   // $r3: 0 for norms, 0x36 for denorms, -1 for others
112   mov b32 $r3 0x0
113   sched 0x2f 0x04 0x2d 0x2b 0x2f 0x28 0x28
114   join (not $p0) nop
115   // Process all special values: NaN, inf, denorm, 0
116   mov b32 $r3 0xffffffff
117   // A number is NaN if its abs value is greater than or unordered with inf
118   set $p0 0x1 gtu f64 abs $r0d 0x7ff0000000000000
119   (not $p0) bra #rcp_inf_or_denorm_or_zero
120   // NaN -> NaN, the next line sets the "quiet" bit of the result. This
121   // behavior is both seen on the CPU and the blob
122   join or b32 $r1 $r1 0x80000
123rcp_inf_or_denorm_or_zero:
124   and b32 $r4 $r1 0x7ff00000
125   // Other values with nonzero in exponent field should be inf
126   set b32 $p0 0x1 eq s32 $r4 0x0
127   sched 0x2b 0x04 0x2f 0x2d 0x2b 0x2f 0x20
128   $p0 bra #rcp_denorm_or_zero
129   // +/-Inf -> +/-0
130   xor b32 $r1 $r1 0x7ff00000
131   join mov b32 $r0 0x0
132rcp_denorm_or_zero:
133   set $p0 0x1 gtu f64 abs $r0d 0x0
134   $p0 bra #rcp_denorm
135   // +/-0 -> +/-Inf
136   join or b32 $r1 $r1 0x7ff00000
137rcp_denorm:
138   // non-0 denorms: multiply with 2^54 (the 0x36 in $r3), join with norms
139   mul rn f64 $r0d $r0d 0x4350000000000000
140   sched 0x2f 0x28 0x2b 0x28 0x28 0x04 0x28
141   join mov b32 $r3 0x36
142rcp_rejoin:
143   // All numbers with -1 in $r3 have their result ready in $r0d, return them
144   // others need further calculation
145   set b32 $p0 0x1 lt s32 $r3 0x0
146   $p0 bra #rcp_end
147   // Step 2: Before the real calculation goes on, renormalize the values to
148   // range [1, 2) by setting exponent field to 0x3ff (the exponent of 1)
149   // result in $r6d. The exponent will be recovered later.
150   ext u32 $r2 $r1 0xb14
151   and b32 $r7 $r1 0x800fffff
152   add b32 $r7 $r7 0x3ff00000
153   mov b32 $r6 $r0
154   sched 0x2b 0x04 0x28 0x28 0x2a 0x2b 0x2e
155   // Step 3: Convert new value to float (no overflow will occur due to step
156   // 2), calculate rcp and do newton-raphson step once
157   cvt rz f32 $r5 f64 $r6d
158   rcp f32 $r4 $r5
159   mov b32 $r0 0xbf800000
160   fma rn f32 $r5 $r4 $r5 $r0
161   fma rn f32 $r0 neg $r4 $r5 $r4
162   // Step 4: convert result $r0 back to double, do newton-raphson steps
163   cvt f64 $r0d f32 $r0
164   cvt f64 $r6d f64 neg $r6d
165   sched 0x2e 0x29 0x29 0x29 0x29 0x29 0x29
166   cvt f64 $r8d f32 0x3f800000
167   // 4 Newton-Raphson Steps, tmp in $r4d, result in $r0d
168   // The formula used here (and above) is:
169   //     RCP_{n + 1} = 2 * RCP_{n} - x * RCP_{n} * RCP_{n}
170   // The following code uses 2 FMAs for each step, and it will basically
171   // looks like:
172   //     tmp = -src * RCP_{n} + 1
173   //     RCP_{n + 1} = RCP_{n} * tmp + RCP_{n}
174   fma rn f64 $r4d $r6d $r0d $r8d
175   fma rn f64 $r0d $r0d $r4d $r0d
176   fma rn f64 $r4d $r6d $r0d $r8d
177   fma rn f64 $r0d $r0d $r4d $r0d
178   fma rn f64 $r4d $r6d $r0d $r8d
179   fma rn f64 $r0d $r0d $r4d $r0d
180   sched 0x29 0x20 0x28 0x28 0x28 0x28 0x28
181   fma rn f64 $r4d $r6d $r0d $r8d
182   fma rn f64 $r0d $r0d $r4d $r0d
183   // Step 5: Exponent recovery and final processing
184   // The exponent is recovered by adding what we added to the exponent.
185   // Suppose we want to calculate rcp(x), but we have rcp(cx), then
186   //     rcp(x) = c * rcp(cx)
187   // The delta in exponent comes from two sources:
188   //   1) The renormalization in step 2. The delta is:
189   //      0x3ff - $r2
190   //   2) (For the denorm input) The 2^54 we multiplied at rcp_denorm, stored
191   //      in $r3
192   // These 2 sources are calculated in the first two lines below, and then
193   // added to the exponent extracted from the result above.
194   // Note that after processing, the new exponent may >= 0x7ff (inf)
195   // or <= 0 (denorm). Those cases will be handled respectively below
196   subr b32 $r2 $r2 0x3ff
197   add b32 $r4 $r2 $r3
198   ext u32 $r3 $r1 0xb14
199   // New exponent in $r3
200   add b32 $r3 $r3 $r4
201   add b32 $r2 $r3 0xffffffff
202   sched 0x28 0x2b 0x28 0x2b 0x28 0x28 0x2b
203   // (exponent-1) < 0x7fe (unsigned) means the result is in norm range
204   // (same logic as in step 1)
205   set b32 $p0 0x1 lt u32 $r2 0x7fe
206   (not $p0) bra #rcp_result_inf_or_denorm
207   // Norms: convert exponents back and return
208   shl b32 $r4 $r4 clamp 0x14
209   add b32 $r1 $r4 $r1
210   bra #rcp_end
211rcp_result_inf_or_denorm:
212   // New exponent >= 0x7ff means that result is inf
213   set b32 $p0 0x1 ge s32 $r3 0x7ff
214   (not $p0) bra #rcp_result_denorm
215   sched 0x20 0x25 0x28 0x2b 0x23 0x25 0x2f
216   // Infinity
217   and b32 $r1 $r1 0x80000000
218   mov b32 $r0 0x0
219   add b32 $r1 $r1 0x7ff00000
220   bra #rcp_end
221rcp_result_denorm:
222   // Denorm result comes from huge input. The greatest possible fp64, i.e.
223   // 0x7fefffffffffffff's rcp is 0x0004000000000000, 1/4 of the smallest
224   // normal value. Other rcp result should be greater than that. If we
225   // set the exponent field to 1, we can recover the result by multiplying
226   // it with 1/2 or 1/4. 1/2 is used if the "exponent" $r3 is 0, otherwise
227   // 1/4 ($r3 should be -1 then). This is quite tricky but greatly simplifies
228   // the logic here.
229   set b32 $p0 0x1 ne u32 $r3 0x0
230   and b32 $r1 $r1 0x800fffff
231   // 0x3e800000: 1/4
232   $p0 cvt f64 $r6d f32 0x3e800000
233   sched 0x2f 0x28 0x2c 0x2e 0x2a 0x20 0x27
234   // 0x3f000000: 1/2
235   (not $p0) cvt f64 $r6d f32 0x3f000000
236   add b32 $r1 $r1 0x00100000
237   mul rn f64 $r0d $r0d $r6d
238rcp_end:
239   ret
240
241// RSQ F64
242//
243// INPUT:   $r0d
244// OUTPUT:  $r0d
245// CLOBBER: $r2 - $r9, $p0 - $p1
246//
247gk110_rsq_f64:
248   // Before getting initial result rsqrt64h, two special cases should be
249   // handled first.
250   // 1. NaN: set the highest bit in mantissa so it'll be surely recognized
251   //    as NaN in rsqrt64h
252   set $p0 0x1 gtu f64 abs $r0d 0x7ff0000000000000
253   $p0 or b32 $r1 $r1 0x00080000
254   and b32 $r2 $r1 0x7fffffff
255   sched 0x27 0x20 0x28 0x2c 0x25 0x28 0x28
256   // 2. denorms and small normal values: using their original value will
257   //    lose precision either at rsqrt64h or the first step in newton-raphson
258   //    steps below. Take 2 as a threshold in exponent field, and multiply
259   //    with 2^54 if the exponent is smaller or equal. (will multiply 2^27
260   //    to recover in the end)
261   ext u32 $r3 $r1 0xb14
262   set b32 $p1 0x1 le u32 $r3 0x2
263   or b32 $r2 $r0 $r2
264   $p1 mul rn f64 $r0d $r0d 0x4350000000000000
265   rsqrt64h f32 $r5 $r1
266   // rsqrt64h will give correct result for 0/inf/nan, the following logic
267   // checks whether the input is one of those (exponent is 0x7ff or all 0
268   // except for the sign bit)
269   set b32 $r6 ne u32 $r3 0x7ff
270   and b32 $r2 $r2 $r6
271   sched 0x28 0x2b 0x20 0x27 0x28 0x2e 0x28
272   set b32 $p0 0x1 ne u32 $r2 0x0
273   $p0 bra #rsq_norm
274   // For 0/inf/nan, make sure the sign bit agrees with input and return
275   and b32 $r1 $r1 0x80000000
276   mov b32 $r0 0x0
277   or b32 $r1 $r1 $r5
278   ret
279rsq_norm:
280   // For others, do 4 Newton-Raphson steps with the formula:
281   //     RSQ_{n + 1} = RSQ_{n} * (1.5 - 0.5 * x * RSQ_{n} * RSQ_{n})
282   // In the code below, each step is written as:
283   //     tmp1 = 0.5 * x * RSQ_{n}
284   //     tmp2 = -RSQ_{n} * tmp1 + 0.5
285   //     RSQ_{n + 1} = RSQ_{n} * tmp2 + RSQ_{n}
286   mov b32 $r4 0x0
287   sched 0x2f 0x29 0x29 0x29 0x29 0x29 0x29
288   // 0x3f000000: 1/2
289   cvt f64 $r8d f32 0x3f000000
290   mul rn f64 $r2d $r0d $r8d
291   mul rn f64 $r0d $r2d $r4d
292   fma rn f64 $r6d neg $r4d $r0d $r8d
293   fma rn f64 $r4d $r4d $r6d $r4d
294   mul rn f64 $r0d $r2d $r4d
295   fma rn f64 $r6d neg $r4d $r0d $r8d
296   sched 0x29 0x29 0x29 0x29 0x29 0x29 0x29
297   fma rn f64 $r4d $r4d $r6d $r4d
298   mul rn f64 $r0d $r2d $r4d
299   fma rn f64 $r6d neg $r4d $r0d $r8d
300   fma rn f64 $r4d $r4d $r6d $r4d
301   mul rn f64 $r0d $r2d $r4d
302   fma rn f64 $r6d neg $r4d $r0d $r8d
303   fma rn f64 $r4d $r4d $r6d $r4d
304   sched 0x29 0x20 0x28 0x2e 0x00 0x00 0x00
305   // Multiply 2^27 to result for small inputs to recover
306   $p1 mul rn f64 $r4d $r4d 0x41a0000000000000
307   mov b32 $r1 $r5
308   mov b32 $r0 $r4
309   ret
310
311.section #gk110_builtin_offsets
312.b64 #gk110_div_u32
313.b64 #gk110_div_s32
314.b64 #gk110_rcp_f64
315.b64 #gk110_rsq_f64
316