1# 2# Copyright (C) 2020 Collabora, Ltd. 3# 4# Permission is hereby granted, free of charge, to any person obtaining a 5# copy of this software and associated documentation files (the "Software"), 6# to deal in the Software without restriction, including without limitation 7# the rights to use, copy, modify, merge, publish, distribute, sublicense, 8# and/or sell copies of the Software, and to permit persons to whom the 9# Software is furnished to do so, subject to the following conditions: 10# 11# The above copyright notice and this permission notice (including the next 12# paragraph) shall be included in all copies or substantial portions of the 13# Software. 14# 15# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21# IN THE SOFTWARE. 22 23import sys 24import itertools 25from isa_parse import parse_instructions, opname_to_c, expand_states 26from mako.template import Template 27 28instructions = parse_instructions(sys.argv[1]) 29 30# Constructs a reserved mask for a derived to cull impossible encodings 31 32def reserved_mask(derived): 33 ((pos, width), opts) = derived 34 reserved = [x is None for x in opts] 35 mask = sum([(y << x) for x, y in enumerate(reserved)]) 36 return (pos, width, mask) 37 38def reserved_masks(op): 39 masks = [reserved_mask(m) for m in op[2].get("derived", [])] 40 return [m for m in masks if m[2] != 0] 41 42# To decode instructions, pattern match based on the rules: 43# 44# 1. Execution unit (FMA or ADD) must line up. 45# 2. All exact bits must match. 46# 3. No fields should be reserved in a legal encoding. 47# 4. Tiebreaker: Longer exact masks (greater unsigned bitwise inverses) win. 48# 49# To implement, filter the execution unit and check for exact bits in 50# descending order of exact mask length. Check for reserved fields per 51# candidate and succeed if it matches. 52# found. 53 54def decode_op(instructions, is_fma): 55 # Filter out the desired execution unit 56 options = [n for n in instructions.keys() if (n[0] == '*') == is_fma] 57 58 # Sort by exact masks, descending 59 MAX_MASK = (1 << (23 if is_fma else 20)) - 1 60 options.sort(key = lambda n: (MAX_MASK ^ instructions[n][2]["exact"][0])) 61 62 # Map to what we need to template 63 mapped = [(opname_to_c(op), instructions[op][2]["exact"], reserved_masks(instructions[op])) for op in options] 64 65 # Generate checks in order 66 template = """void 67bi_disasm_${unit}(FILE *fp, unsigned bits, struct bifrost_regs *srcs, struct bifrost_regs *next_regs, unsigned staging_register, unsigned branch_offset, struct bi_constants *consts, bool last) 68{ 69% for (i, (name, (emask, ebits), derived)) in enumerate(options): 70% if len(derived) > 0: 71 ${"else " if i > 0 else ""}if (unlikely(((bits & ${hex(emask)}) == ${hex(ebits)}) 72% for (pos, width, reserved) in derived: 73 && !(${hex(reserved)} & (1 << _BITS(bits, ${pos}, ${width}))) 74% endfor 75 )) 76% else: 77 ${"else " if i > 0 else ""}if (unlikely(((bits & ${hex(emask)}) == ${hex(ebits)}))) 78% endif 79 bi_disasm_${name}(fp, bits, srcs, next_regs, staging_register, branch_offset, consts, last); 80% endfor 81 else 82 fprintf(fp, "INSTR_INVALID_ENC ${unit} %X\\n", bits); 83}""" 84 85 return Template(template).render(options = mapped, unit = "fma" if is_fma else "add") 86 87# Decoding emits a series of function calls to e.g. `fma_fadd_v2f16`. We need to 88# emit functions to disassemble a single decoded instruction in a particular 89# state. Sync prototypes to avoid moves when calling. 90 91disasm_op_template = Template("""static void 92bi_disasm_${c_name}(FILE *fp, unsigned bits, struct bifrost_regs *srcs, struct bifrost_regs *next_regs, unsigned staging_register, unsigned branch_offset, struct bi_constants *consts, bool last) 93{ 94 ${body.strip()} 95} 96""") 97 98lut_template_only = Template(""" static const char *${field}[] = { 99 ${", ".join(['"' + x + '"' for x in table])} 100 }; 101""") 102 103# Given a lookup table written logically, generate an accessor 104lut_template = Template(""" static const char *${field}_table[] = { 105 ${", ".join(['"' + x + '"' for x in table])} 106 }; 107 108 const char *${field} = ${field}_table[_BITS(bits, ${pos}, ${width})]; 109""") 110 111# Helpers for decoding follow. pretty_mods applies dot syntax 112 113def pretty_mods(opts, default): 114 return [('.' + (opt or 'reserved') if opt != default else '') for opt in opts] 115 116# Recursively searches for the set of free variables required by an expression 117 118def find_context_keys_expr(expr): 119 if isinstance(expr, list): 120 return set.union(*[find_context_keys_expr(x) for x in expr[1:]]) 121 elif expr[0] == '#': 122 return set() 123 else: 124 return set([expr]) 125 126def find_context_keys(desc, test): 127 keys = set() 128 129 if len(test) > 0: 130 keys |= find_context_keys_expr(test) 131 132 for i, (_, vals) in enumerate(desc.get('derived', [])): 133 for j, val in enumerate(vals): 134 if val is not None: 135 keys |= find_context_keys_expr(val) 136 137 return keys 138 139# Compiles a logic expression to Python expression, ctx -> { T, F } 140 141EVALUATORS = { 142 'and': ' and ', 143 'or': ' or ', 144 'eq': ' == ', 145 'neq': ' != ', 146} 147 148def compile_derived_inner(expr, keys): 149 if expr == []: 150 return 'True' 151 elif expr is None or expr[0] == 'alias': 152 return 'False' 153 elif isinstance(expr, list): 154 args = [compile_derived_inner(arg, keys) for arg in expr[1:]] 155 return '(' + EVALUATORS[expr[0]].join(args) + ')' 156 elif expr[0] == '#': 157 return "'{}'".format(expr[1:]) 158 elif expr == 'ordering': 159 return expr 160 else: 161 return "ctx[{}]".format(keys.index(expr)) 162 163def compile_derived(expr, keys): 164 return eval('lambda ctx, ordering: ' + compile_derived_inner(expr, keys)) 165 166# Generate all possible combinations of values and evaluate the derived values 167# by bruteforce evaluation to generate a forward mapping (values -> deriveds) 168 169def evaluate_forward_derived(vals, ctx, ordering): 170 for j, expr in enumerate(vals): 171 if expr(ctx, ordering): 172 return j 173 174 return None 175 176def evaluate_forward(keys, derivf, testf, ctx, ordering): 177 if not testf(ctx, ordering): 178 return None 179 180 deriv = [] 181 182 for vals in derivf: 183 evaled = evaluate_forward_derived(vals, ctx, ordering) 184 185 if evaled is None: 186 return None 187 188 deriv.append(evaled) 189 190 return deriv 191 192def evaluate_forwards(keys, derivf, testf, mod_vals, ordered): 193 orderings = ["lt", "gt"] if ordered else [None] 194 return [[evaluate_forward(keys, derivf, testf, i, order) for i in itertools.product(*mod_vals)] for order in orderings] 195 196# Invert the forward mapping (values -> deriveds) of finite sets to produce a 197# backwards mapping (deriveds -> values), suitable for disassembly. This is 198# possible since the encoding is unambiguous, so this mapping is a bijection 199# (after reserved/impossible encodings) 200 201def invert_lut(value_size, forward, derived, mod_map, keys, mod_vals): 202 backwards = [None] * (1 << value_size) 203 for (i, deriveds), ctx in zip(enumerate(forward), itertools.product(*mod_vals)): 204 # Skip reserved 205 if deriveds == None: 206 continue 207 208 shift = 0 209 param = 0 210 for j, ((x, width), y) in enumerate(derived): 211 param += (deriveds[j] << shift) 212 shift += width 213 214 assert(param not in backwards) 215 backwards[param] = ctx 216 217 return backwards 218 219# Compute the value of all indirectly specified modifiers by using the 220# backwards mapping (deriveds -> values) as a run-time lookup table. 221 222def build_lut(mnemonic, desc, test): 223 # Construct the system 224 facts = [] 225 226 mod_map = {} 227 228 for ((name, pos, width), default, values) in desc.get('modifiers', []): 229 mod_map[name] = (width, values, pos, default) 230 231 derived = desc.get('derived', []) 232 233 # Find the keys and impose an order 234 key_set = find_context_keys(desc, test) 235 ordered = 'ordering' in key_set 236 key_set.discard('ordering') 237 keys = list(key_set) 238 239 # Evaluate the deriveds for every possible state, forming a (state -> deriveds) map 240 testf = compile_derived(test, keys) 241 derivf = [[compile_derived(expr, keys) for expr in v] for (_, v) in derived] 242 mod_vals = [mod_map[k][1] for k in keys] 243 forward = evaluate_forwards(keys, derivf, testf, mod_vals, ordered) 244 245 # Now invert that map to get a (deriveds -> state) map 246 value_size = sum([width for ((x, width), y) in derived]) 247 backwards = [invert_lut(value_size, f, derived, mod_map, keys, mod_vals) for f in forward] 248 249 # From that map, we can generate LUTs 250 output = "" 251 252 if ordered: 253 output += "bool ordering = (_BITS(bits, {}, 3) > _BITS(bits, {}, 3));\n".format(desc["srcs"][0][0], desc["srcs"][1][0]) 254 255 for j, key in enumerate(keys): 256 # Only generate tables for indirect specifiers 257 if mod_map[key][2] is not None: 258 continue 259 260 idx_parts = [] 261 shift = 0 262 263 for ((pos, width), _) in derived: 264 idx_parts.append("(_BITS(bits, {}, {}) << {})".format(pos, width, shift)) 265 shift += width 266 267 built_idx = (" | ".join(idx_parts)) if len(idx_parts) > 0 else "0" 268 269 default = mod_map[key][3] 270 271 if ordered: 272 for i, order in enumerate(backwards): 273 options = [ctx[j] if ctx is not None and ctx[j] is not None else "reserved" for ctx in order] 274 output += lut_template_only.render(field = key + "_" + str(i), table = pretty_mods(options, default)) 275 276 output += " const char *{} = ordering ? {}_1[{}] : {}_0[{}];\n".format(key, key, built_idx, key, built_idx) 277 else: 278 options = [ctx[j] if ctx is not None and ctx[j] is not None else "reserved" for ctx in backwards[0]] 279 output += lut_template_only.render(field = key + "_table", table = pretty_mods(options, default)) 280 output += " const char *{} = {}_table[{}];\n".format(key, key, built_idx) 281 282 return output 283 284def disasm_mod(mod, skip_mods): 285 if mod[0][0] in skip_mods: 286 return '' 287 else: 288 return ' fputs({}, fp);\n'.format(mod[0][0]) 289 290def disasm_op(name, op): 291 (mnemonic, test, desc) = op 292 is_fma = mnemonic[0] == '*' 293 294 # Modifiers may be either direct (pos is not None) or indirect (pos is 295 # None). If direct, we just do the bit lookup. If indirect, we use a LUT. 296 297 body = "" 298 skip_mods = [] 299 300 body += build_lut(mnemonic, desc, test) 301 302 for ((mod, pos, width), default, opts) in desc.get('modifiers', []): 303 if pos is not None: 304 body += lut_template.render(field = mod, table = pretty_mods(opts, default), pos = pos, width = width) + "\n" 305 306 # Mnemonic, followed by modifiers 307 body += ' fputs("{}", fp);\n'.format(mnemonic) 308 309 srcs = desc.get('srcs', []) 310 311 for mod in desc.get('modifiers', []): 312 # Skip per-source until next block 313 if mod[0][0][-1] in "0123" and int(mod[0][0][-1]) < len(srcs): 314 continue 315 316 body += disasm_mod(mod, skip_mods) 317 318 body += ' fputs(" ", fp);\n' 319 body += ' bi_disasm_dest_{}(fp, next_regs, last);\n'.format('fma' if is_fma else 'add') 320 321 # Next up, each source. Source modifiers are inserterd here 322 323 for i, (pos, mask) in enumerate(srcs): 324 body += ' fputs(", ", fp);\n' 325 body += ' dump_src(fp, _BITS(bits, {}, 3), *srcs, consts, {});\n'.format(pos, "true" if is_fma else "false") 326 327 # Error check if needed 328 if (mask != 0xFF): 329 body += ' if (!({} & (1 << _BITS(bits, {}, 3)))) fputs("(INVALID)", fp);\n'.format(hex(mask), pos, 3) 330 331 # Print modifiers suffixed with this src number (e.g. abs0 for src0) 332 for mod in desc.get('modifiers', []): 333 if mod[0][0][-1] == str(i): 334 body += disasm_mod(mod, skip_mods) 335 336 # And each immediate 337 for (imm, pos, width) in desc.get('immediates', []): 338 body += ' fprintf(fp, ", {}:%u", _BITS(bits, {}, {}));\n'.format(imm, pos, width) 339 340 # Attach a staging register if one is used 341 if desc.get('staging'): 342 body += ' fprintf(fp, ", @r%u", staging_register);\n' 343 344 body += ' fputs("\\n", fp);\n' 345 return disasm_op_template.render(c_name = opname_to_c(name), body = body) 346 347print('#include "util/macros.h"') 348print('#include "disassemble.h"') 349 350states = expand_states(instructions) 351print('#define _BITS(bits, pos, width) (((bits) >> (pos)) & ((1 << (width)) - 1))') 352 353for st in states: 354 print(disasm_op(st, states[st])) 355 356print(decode_op(states, True)) 357print(decode_op(states, False)) 358