1:mod:`math` --- Mathematical functions
2======================================
3
4.. module:: math
5   :synopsis: Mathematical functions (sin() etc.).
6
7.. testsetup::
8
9   from math import fsum
10
11--------------
12
13This module provides access to the mathematical functions defined by the C
14standard.
15
16These functions cannot be used with complex numbers; use the functions of the
17same name from the :mod:`cmath` module if you require support for complex
18numbers.  The distinction between functions which support complex numbers and
19those which don't is made since most users do not want to learn quite as much
20mathematics as required to understand complex numbers.  Receiving an exception
21instead of a complex result allows earlier detection of the unexpected complex
22number used as a parameter, so that the programmer can determine how and why it
23was generated in the first place.
24
25The following functions are provided by this module.  Except when explicitly
26noted otherwise, all return values are floats.
27
28
29Number-theoretic and representation functions
30---------------------------------------------
31
32.. function:: ceil(x)
33
34   Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
35   If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
36   :class:`~numbers.Integral` value.
37
38
39.. function:: comb(n, k)
40
41   Return the number of ways to choose *k* items from *n* items without repetition
42   and without order.
43
44   Evaluates to ``n! / (k! * (n - k)!)`` when ``k <= n`` and evaluates
45   to zero when ``k > n``.
46
47   Also called the binomial coefficient because it is equivalent
48   to the coefficient of k-th term in polynomial expansion of the
49   expression ``(1 + x) ** n``.
50
51   Raises :exc:`TypeError` if either of the arguments are not integers.
52   Raises :exc:`ValueError` if either of the arguments are negative.
53
54   .. versionadded:: 3.8
55
56
57.. function:: copysign(x, y)
58
59   Return a float with the magnitude (absolute value) of *x* but the sign of
60   *y*.  On platforms that support signed zeros, ``copysign(1.0, -0.0)``
61   returns *-1.0*.
62
63
64.. function:: fabs(x)
65
66   Return the absolute value of *x*.
67
68
69.. function:: factorial(x)
70
71   Return *x* factorial as an integer.  Raises :exc:`ValueError` if *x* is not integral or
72   is negative.
73
74   .. deprecated:: 3.9
75      Accepting floats with integral values (like ``5.0``) is deprecated.
76
77
78.. function:: floor(x)
79
80   Return the floor of *x*, the largest integer less than or equal to *x*.
81   If *x* is not a float, delegates to ``x.__floor__()``, which should return an
82   :class:`~numbers.Integral` value.
83
84
85.. function:: fmod(x, y)
86
87   Return ``fmod(x, y)``, as defined by the platform C library. Note that the
88   Python expression ``x % y`` may not return the same result.  The intent of the C
89   standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
90   precision) equal to ``x - n*y`` for some integer *n* such that the result has
91   the same sign as *x* and magnitude less than ``abs(y)``.  Python's ``x % y``
92   returns a result with the sign of *y* instead, and may not be exactly computable
93   for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
94   the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
95   represented exactly as a float, and rounds to the surprising ``1e100``.  For
96   this reason, function :func:`fmod` is generally preferred when working with
97   floats, while Python's ``x % y`` is preferred when working with integers.
98
99
100.. function:: frexp(x)
101
102   Return the mantissa and exponent of *x* as the pair ``(m, e)``.  *m* is a float
103   and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
104   returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``.  This is used to "pick
105   apart" the internal representation of a float in a portable way.
106
107
108.. function:: fsum(iterable)
109
110   Return an accurate floating point sum of values in the iterable.  Avoids
111   loss of precision by tracking multiple intermediate partial sums::
112
113        >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
114        0.9999999999999999
115        >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
116        1.0
117
118   The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
119   typical case where the rounding mode is half-even.  On some non-Windows
120   builds, the underlying C library uses extended precision addition and may
121   occasionally double-round an intermediate sum causing it to be off in its
122   least significant bit.
123
124   For further discussion and two alternative approaches, see the `ASPN cookbook
125   recipes for accurate floating point summation
126   <https://code.activestate.com/recipes/393090/>`_\.
127
128
129.. function:: gcd(*integers)
130
131   Return the greatest common divisor of the specified integer arguments.
132   If any of the arguments is nonzero, then the returned value is the largest
133   positive integer that is a divisor of all arguments.  If all arguments
134   are zero, then the returned value is ``0``.  ``gcd()`` without arguments
135   returns ``0``.
136
137   .. versionadded:: 3.5
138
139   .. versionchanged:: 3.9
140      Added support for an arbitrary number of arguments. Formerly, only two
141      arguments were supported.
142
143
144.. function:: isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
145
146   Return ``True`` if the values *a* and *b* are close to each other and
147   ``False`` otherwise.
148
149   Whether or not two values are considered close is determined according to
150   given absolute and relative tolerances.
151
152   *rel_tol* is the relative tolerance -- it is the maximum allowed difference
153   between *a* and *b*, relative to the larger absolute value of *a* or *b*.
154   For example, to set a tolerance of 5%, pass ``rel_tol=0.05``.  The default
155   tolerance is ``1e-09``, which assures that the two values are the same
156   within about 9 decimal digits.  *rel_tol* must be greater than zero.
157
158   *abs_tol* is the minimum absolute tolerance -- useful for comparisons near
159   zero. *abs_tol* must be at least zero.
160
161   If no errors occur, the result will be:
162   ``abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)``.
163
164   The IEEE 754 special values of ``NaN``, ``inf``, and ``-inf`` will be
165   handled according to IEEE rules.  Specifically, ``NaN`` is not considered
166   close to any other value, including ``NaN``.  ``inf`` and ``-inf`` are only
167   considered close to themselves.
168
169   .. versionadded:: 3.5
170
171   .. seealso::
172
173      :pep:`485` -- A function for testing approximate equality
174
175
176.. function:: isfinite(x)
177
178   Return ``True`` if *x* is neither an infinity nor a NaN, and
179   ``False`` otherwise.  (Note that ``0.0`` *is* considered finite.)
180
181   .. versionadded:: 3.2
182
183
184.. function:: isinf(x)
185
186   Return ``True`` if *x* is a positive or negative infinity, and
187   ``False`` otherwise.
188
189
190.. function:: isnan(x)
191
192   Return ``True`` if *x* is a NaN (not a number), and ``False`` otherwise.
193
194
195.. function:: isqrt(n)
196
197   Return the integer square root of the nonnegative integer *n*. This is the
198   floor of the exact square root of *n*, or equivalently the greatest integer
199   *a* such that *a*\ ² |nbsp| ≤ |nbsp| *n*.
200
201   For some applications, it may be more convenient to have the least integer
202   *a* such that *n* |nbsp| ≤ |nbsp| *a*\ ², or in other words the ceiling of
203   the exact square root of *n*. For positive *n*, this can be computed using
204   ``a = 1 + isqrt(n - 1)``.
205
206   .. versionadded:: 3.8
207
208
209.. function:: lcm(*integers)
210
211   Return the least common multiple of the specified integer arguments.
212   If all arguments are nonzero, then the returned value is the smallest
213   positive integer that is a multiple of all arguments.  If any of the arguments
214   is zero, then the returned value is ``0``.  ``lcm()`` without arguments
215   returns ``1``.
216
217   .. versionadded:: 3.9
218
219
220.. function:: ldexp(x, i)
221
222   Return ``x * (2**i)``.  This is essentially the inverse of function
223   :func:`frexp`.
224
225
226.. function:: modf(x)
227
228   Return the fractional and integer parts of *x*.  Both results carry the sign
229   of *x* and are floats.
230
231
232.. function:: nextafter(x, y)
233
234   Return the next floating-point value after *x* towards *y*.
235
236   If *x* is equal to *y*, return *y*.
237
238   Examples:
239
240   * ``math.nextafter(x, math.inf)`` goes up: towards positive infinity.
241   * ``math.nextafter(x, -math.inf)`` goes down: towards minus infinity.
242   * ``math.nextafter(x, 0.0)`` goes towards zero.
243   * ``math.nextafter(x, math.copysign(math.inf, x))`` goes away from zero.
244
245   See also :func:`math.ulp`.
246
247   .. versionadded:: 3.9
248
249.. function:: perm(n, k=None)
250
251   Return the number of ways to choose *k* items from *n* items
252   without repetition and with order.
253
254   Evaluates to ``n! / (n - k)!`` when ``k <= n`` and evaluates
255   to zero when ``k > n``.
256
257   If *k* is not specified or is None, then *k* defaults to *n*
258   and the function returns ``n!``.
259
260   Raises :exc:`TypeError` if either of the arguments are not integers.
261   Raises :exc:`ValueError` if either of the arguments are negative.
262
263   .. versionadded:: 3.8
264
265
266.. function:: prod(iterable, *, start=1)
267
268   Calculate the product of all the elements in the input *iterable*.
269   The default *start* value for the product is ``1``.
270
271   When the iterable is empty, return the start value.  This function is
272   intended specifically for use with numeric values and may reject
273   non-numeric types.
274
275   .. versionadded:: 3.8
276
277
278.. function:: remainder(x, y)
279
280   Return the IEEE 754-style remainder of *x* with respect to *y*.  For
281   finite *x* and finite nonzero *y*, this is the difference ``x - n*y``,
282   where ``n`` is the closest integer to the exact value of the quotient ``x /
283   y``.  If ``x / y`` is exactly halfway between two consecutive integers, the
284   nearest *even* integer is used for ``n``.  The remainder ``r = remainder(x,
285   y)`` thus always satisfies ``abs(r) <= 0.5 * abs(y)``.
286
287   Special cases follow IEEE 754: in particular, ``remainder(x, math.inf)`` is
288   *x* for any finite *x*, and ``remainder(x, 0)`` and
289   ``remainder(math.inf, x)`` raise :exc:`ValueError` for any non-NaN *x*.
290   If the result of the remainder operation is zero, that zero will have
291   the same sign as *x*.
292
293   On platforms using IEEE 754 binary floating-point, the result of this
294   operation is always exactly representable: no rounding error is introduced.
295
296   .. versionadded:: 3.7
297
298
299.. function:: trunc(x)
300
301   Return the :class:`~numbers.Real` value *x* truncated to an
302   :class:`~numbers.Integral` (usually an integer). Delegates to
303   :meth:`x.__trunc__() <object.__trunc__>`.
304
305.. function:: ulp(x)
306
307   Return the value of the least significant bit of the float *x*:
308
309   * If *x* is a NaN (not a number), return *x*.
310   * If *x* is negative, return ``ulp(-x)``.
311   * If *x* is a positive infinity, return *x*.
312   * If *x* is equal to zero, return the smallest positive
313     *denormalized* representable float (smaller than the minimum positive
314     *normalized* float, :data:`sys.float_info.min <sys.float_info>`).
315   * If *x* is equal to the largest positive representable float,
316     return the value of the least significant bit of *x*, such that the first
317     float smaller than *x* is ``x - ulp(x)``.
318   * Otherwise (*x* is a positive finite number), return the value of the least
319     significant bit of *x*, such that the first float bigger than *x*
320     is ``x + ulp(x)``.
321
322   ULP stands for "Unit in the Last Place".
323
324   See also :func:`math.nextafter` and :data:`sys.float_info.epsilon
325   <sys.float_info>`.
326
327   .. versionadded:: 3.9
328
329
330Note that :func:`frexp` and :func:`modf` have a different call/return pattern
331than their C equivalents: they take a single argument and return a pair of
332values, rather than returning their second return value through an 'output
333parameter' (there is no such thing in Python).
334
335For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
336floating-point numbers of sufficiently large magnitude are exact integers.
337Python floats typically carry no more than 53 bits of precision (the same as the
338platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
339necessarily has no fractional bits.
340
341
342Power and logarithmic functions
343-------------------------------
344
345.. function:: exp(x)
346
347   Return *e* raised to the power *x*, where *e* = 2.718281... is the base
348   of natural logarithms.  This is usually more accurate than ``math.e ** x``
349   or ``pow(math.e, x)``.
350
351
352.. function:: expm1(x)
353
354   Return *e* raised to the power *x*, minus 1.  Here *e* is the base of natural
355   logarithms.  For small floats *x*, the subtraction in ``exp(x) - 1``
356   can result in a `significant loss of precision
357   <https://en.wikipedia.org/wiki/Loss_of_significance>`_\; the :func:`expm1`
358   function provides a way to compute this quantity to full precision::
359
360      >>> from math import exp, expm1
361      >>> exp(1e-5) - 1  # gives result accurate to 11 places
362      1.0000050000069649e-05
363      >>> expm1(1e-5)    # result accurate to full precision
364      1.0000050000166668e-05
365
366   .. versionadded:: 3.2
367
368
369.. function:: log(x[, base])
370
371   With one argument, return the natural logarithm of *x* (to base *e*).
372
373   With two arguments, return the logarithm of *x* to the given *base*,
374   calculated as ``log(x)/log(base)``.
375
376
377.. function:: log1p(x)
378
379   Return the natural logarithm of *1+x* (base *e*). The
380   result is calculated in a way which is accurate for *x* near zero.
381
382
383.. function:: log2(x)
384
385   Return the base-2 logarithm of *x*. This is usually more accurate than
386   ``log(x, 2)``.
387
388   .. versionadded:: 3.3
389
390   .. seealso::
391
392      :meth:`int.bit_length` returns the number of bits necessary to represent
393      an integer in binary, excluding the sign and leading zeros.
394
395
396.. function:: log10(x)
397
398   Return the base-10 logarithm of *x*.  This is usually more accurate
399   than ``log(x, 10)``.
400
401
402.. function:: pow(x, y)
403
404   Return ``x`` raised to the power ``y``.  Exceptional cases follow
405   Annex 'F' of the C99 standard as far as possible.  In particular,
406   ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
407   when ``x`` is a zero or a NaN.  If both ``x`` and ``y`` are finite,
408   ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
409   is undefined, and raises :exc:`ValueError`.
410
411   Unlike the built-in ``**`` operator, :func:`math.pow` converts both
412   its arguments to type :class:`float`.  Use ``**`` or the built-in
413   :func:`pow` function for computing exact integer powers.
414
415
416.. function:: sqrt(x)
417
418   Return the square root of *x*.
419
420
421Trigonometric functions
422-----------------------
423
424.. function:: acos(x)
425
426   Return the arc cosine of *x*, in radians. The result is between ``0`` and
427   ``pi``.
428
429
430.. function:: asin(x)
431
432   Return the arc sine of *x*, in radians. The result is between ``-pi/2`` and
433   ``pi/2``.
434
435
436.. function:: atan(x)
437
438   Return the arc tangent of *x*, in radians. The result is between ``-pi/2`` and
439   ``pi/2``.
440
441
442.. function:: atan2(y, x)
443
444   Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
445   The vector in the plane from the origin to point ``(x, y)`` makes this angle
446   with the positive X axis. The point of :func:`atan2` is that the signs of both
447   inputs are known to it, so it can compute the correct quadrant for the angle.
448   For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
449   -1)`` is ``-3*pi/4``.
450
451
452.. function:: cos(x)
453
454   Return the cosine of *x* radians.
455
456
457.. function:: dist(p, q)
458
459   Return the Euclidean distance between two points *p* and *q*, each
460   given as a sequence (or iterable) of coordinates.  The two points
461   must have the same dimension.
462
463   Roughly equivalent to::
464
465       sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
466
467   .. versionadded:: 3.8
468
469
470.. function:: hypot(*coordinates)
471
472   Return the Euclidean norm, ``sqrt(sum(x**2 for x in coordinates))``.
473   This is the length of the vector from the origin to the point
474   given by the coordinates.
475
476   For a two dimensional point ``(x, y)``, this is equivalent to computing
477   the hypotenuse of a right triangle using the Pythagorean theorem,
478   ``sqrt(x*x + y*y)``.
479
480   .. versionchanged:: 3.8
481      Added support for n-dimensional points. Formerly, only the two
482      dimensional case was supported.
483
484
485.. function:: sin(x)
486
487   Return the sine of *x* radians.
488
489
490.. function:: tan(x)
491
492   Return the tangent of *x* radians.
493
494
495Angular conversion
496------------------
497
498.. function:: degrees(x)
499
500   Convert angle *x* from radians to degrees.
501
502
503.. function:: radians(x)
504
505   Convert angle *x* from degrees to radians.
506
507
508Hyperbolic functions
509--------------------
510
511`Hyperbolic functions <https://en.wikipedia.org/wiki/Hyperbolic_function>`_
512are analogs of trigonometric functions that are based on hyperbolas
513instead of circles.
514
515.. function:: acosh(x)
516
517   Return the inverse hyperbolic cosine of *x*.
518
519
520.. function:: asinh(x)
521
522   Return the inverse hyperbolic sine of *x*.
523
524
525.. function:: atanh(x)
526
527   Return the inverse hyperbolic tangent of *x*.
528
529
530.. function:: cosh(x)
531
532   Return the hyperbolic cosine of *x*.
533
534
535.. function:: sinh(x)
536
537   Return the hyperbolic sine of *x*.
538
539
540.. function:: tanh(x)
541
542   Return the hyperbolic tangent of *x*.
543
544
545Special functions
546-----------------
547
548.. function:: erf(x)
549
550   Return the `error function <https://en.wikipedia.org/wiki/Error_function>`_ at
551   *x*.
552
553   The :func:`erf` function can be used to compute traditional statistical
554   functions such as the `cumulative standard normal distribution
555   <https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function>`_::
556
557     def phi(x):
558         'Cumulative distribution function for the standard normal distribution'
559         return (1.0 + erf(x / sqrt(2.0))) / 2.0
560
561   .. versionadded:: 3.2
562
563
564.. function:: erfc(x)
565
566   Return the complementary error function at *x*.  The `complementary error
567   function <https://en.wikipedia.org/wiki/Error_function>`_ is defined as
568   ``1.0 - erf(x)``.  It is used for large values of *x* where a subtraction
569   from one would cause a `loss of significance
570   <https://en.wikipedia.org/wiki/Loss_of_significance>`_\.
571
572   .. versionadded:: 3.2
573
574
575.. function:: gamma(x)
576
577   Return the `Gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ at
578   *x*.
579
580   .. versionadded:: 3.2
581
582
583.. function:: lgamma(x)
584
585   Return the natural logarithm of the absolute value of the Gamma
586   function at *x*.
587
588   .. versionadded:: 3.2
589
590
591Constants
592---------
593
594.. data:: pi
595
596   The mathematical constant *π* = 3.141592..., to available precision.
597
598
599.. data:: e
600
601   The mathematical constant *e* = 2.718281..., to available precision.
602
603
604.. data:: tau
605
606   The mathematical constant *τ* = 6.283185..., to available precision.
607   Tau is a circle constant equal to 2\ *π*, the ratio of a circle's circumference to
608   its radius. To learn more about Tau, check out Vi Hart's video `Pi is (still)
609   Wrong <https://www.youtube.com/watch?v=jG7vhMMXagQ>`_, and start celebrating
610   `Tau day <https://tauday.com/>`_ by eating twice as much pie!
611
612   .. versionadded:: 3.6
613
614
615.. data:: inf
616
617   A floating-point positive infinity.  (For negative infinity, use
618   ``-math.inf``.)  Equivalent to the output of ``float('inf')``.
619
620   .. versionadded:: 3.5
621
622
623.. data:: nan
624
625   A floating-point "not a number" (NaN) value.  Equivalent to the output of
626   ``float('nan')``.
627
628   .. versionadded:: 3.5
629
630
631.. impl-detail::
632
633   The :mod:`math` module consists mostly of thin wrappers around the platform C
634   math library functions.  Behavior in exceptional cases follows Annex F of
635   the C99 standard where appropriate.  The current implementation will raise
636   :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
637   (where C99 Annex F recommends signaling invalid operation or divide-by-zero),
638   and :exc:`OverflowError` for results that overflow (for example,
639   ``exp(1000.0)``).  A NaN will not be returned from any of the functions
640   above unless one or more of the input arguments was a NaN; in that case,
641   most functions will return a NaN, but (again following C99 Annex F) there
642   are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
643   ``hypot(float('nan'), float('inf'))``.
644
645   Note that Python makes no effort to distinguish signaling NaNs from
646   quiet NaNs, and behavior for signaling NaNs remains unspecified.
647   Typical behavior is to treat all NaNs as though they were quiet.
648
649
650.. seealso::
651
652   Module :mod:`cmath`
653      Complex number versions of many of these functions.
654
655.. |nbsp| unicode:: 0xA0
656   :trim:
657