1 /*
2     tests/test_sequences_and_iterators.cpp -- supporting Pythons' sequence protocol, iterators,
3     etc.
4 
5     Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
6 
7     All rights reserved. Use of this source code is governed by a
8     BSD-style license that can be found in the LICENSE file.
9 */
10 
11 #include "pybind11_tests.h"
12 #include "constructor_stats.h"
13 #include <pybind11/operators.h>
14 #include <pybind11/stl.h>
15 
16 #include <algorithm>
17 
18 template<typename T>
19 class NonZeroIterator {
20     const T* ptr_;
21 public:
NonZeroIterator(const T * ptr)22     NonZeroIterator(const T* ptr) : ptr_(ptr) {}
operator *() const23     const T& operator*() const { return *ptr_; }
operator ++()24     NonZeroIterator& operator++() { ++ptr_; return *this; }
25 };
26 
27 class NonZeroSentinel {};
28 
29 template<typename A, typename B>
operator ==(const NonZeroIterator<std::pair<A,B>> & it,const NonZeroSentinel &)30 bool operator==(const NonZeroIterator<std::pair<A, B>>& it, const NonZeroSentinel&) {
31     return !(*it).first || !(*it).second;
32 }
33 
34 template <typename PythonType>
test_random_access_iterator(PythonType x)35 py::list test_random_access_iterator(PythonType x) {
36     if (x.size() < 5)
37         throw py::value_error("Please provide at least 5 elements for testing.");
38 
39     auto checks = py::list();
40     auto assert_equal = [&checks](py::handle a, py::handle b) {
41         auto result = PyObject_RichCompareBool(a.ptr(), b.ptr(), Py_EQ);
42         if (result == -1) { throw py::error_already_set(); }
43         checks.append(result != 0);
44     };
45 
46     auto it = x.begin();
47     assert_equal(x[0], *it);
48     assert_equal(x[0], it[0]);
49     assert_equal(x[1], it[1]);
50 
51     assert_equal(x[1], *(++it));
52     assert_equal(x[1], *(it++));
53     assert_equal(x[2], *it);
54     assert_equal(x[3], *(it += 1));
55     assert_equal(x[2], *(--it));
56     assert_equal(x[2], *(it--));
57     assert_equal(x[1], *it);
58     assert_equal(x[0], *(it -= 1));
59 
60     assert_equal(it->attr("real"), x[0].attr("real"));
61     assert_equal((it + 1)->attr("real"), x[1].attr("real"));
62 
63     assert_equal(x[1], *(it + 1));
64     assert_equal(x[1], *(1 + it));
65     it += 3;
66     assert_equal(x[1], *(it - 2));
67 
68     checks.append(static_cast<std::size_t>(x.end() - x.begin()) == x.size());
69     checks.append((x.begin() + static_cast<std::ptrdiff_t>(x.size())) == x.end());
70     checks.append(x.begin() < x.end());
71 
72     return checks;
73 }
74 
TEST_SUBMODULE(sequences_and_iterators,m)75 TEST_SUBMODULE(sequences_and_iterators, m) {
76     // test_sliceable
77     class Sliceable{
78     public:
79       Sliceable(int n): size(n) {}
80       int start,stop,step;
81       int size;
82     };
83     py::class_<Sliceable>(m,"Sliceable")
84         .def(py::init<int>())
85         .def("__getitem__",[](const Sliceable &s, py::slice slice) {
86           py::ssize_t start, stop, step, slicelength;
87           if (!slice.compute(s.size, &start, &stop, &step, &slicelength))
88               throw py::error_already_set();
89           int istart = static_cast<int>(start);
90           int istop =  static_cast<int>(stop);
91           int istep =  static_cast<int>(step);
92           return std::make_tuple(istart,istop,istep);
93         })
94         ;
95 
96     // test_sequence
97     class Sequence {
98     public:
99         Sequence(size_t size) : m_size(size) {
100             print_created(this, "of size", m_size);
101             m_data = new float[size];
102             memset(m_data, 0, sizeof(float) * size);
103         }
104         Sequence(const std::vector<float> &value) : m_size(value.size()) {
105             print_created(this, "of size", m_size, "from std::vector");
106             m_data = new float[m_size];
107             memcpy(m_data, &value[0], sizeof(float) * m_size);
108         }
109         Sequence(const Sequence &s) : m_size(s.m_size) {
110             print_copy_created(this);
111             m_data = new float[m_size];
112             memcpy(m_data, s.m_data, sizeof(float)*m_size);
113         }
114         Sequence(Sequence &&s) : m_size(s.m_size), m_data(s.m_data) {
115             print_move_created(this);
116             s.m_size = 0;
117             s.m_data = nullptr;
118         }
119 
120         ~Sequence() { print_destroyed(this); delete[] m_data; }
121 
122         Sequence &operator=(const Sequence &s) {
123             if (&s != this) {
124                 delete[] m_data;
125                 m_size = s.m_size;
126                 m_data = new float[m_size];
127                 memcpy(m_data, s.m_data, sizeof(float)*m_size);
128             }
129             print_copy_assigned(this);
130             return *this;
131         }
132 
133         Sequence &operator=(Sequence &&s) {
134             if (&s != this) {
135                 delete[] m_data;
136                 m_size = s.m_size;
137                 m_data = s.m_data;
138                 s.m_size = 0;
139                 s.m_data = nullptr;
140             }
141             print_move_assigned(this);
142             return *this;
143         }
144 
145         bool operator==(const Sequence &s) const {
146             if (m_size != s.size()) return false;
147             for (size_t i = 0; i < m_size; ++i)
148                 if (m_data[i] != s[i])
149                     return false;
150             return true;
151         }
152         bool operator!=(const Sequence &s) const { return !operator==(s); }
153 
154         float operator[](size_t index) const { return m_data[index]; }
155         float &operator[](size_t index) { return m_data[index]; }
156 
157         bool contains(float v) const {
158             for (size_t i = 0; i < m_size; ++i)
159                 if (v == m_data[i])
160                     return true;
161             return false;
162         }
163 
164         Sequence reversed() const {
165             Sequence result(m_size);
166             for (size_t i = 0; i < m_size; ++i)
167                 result[m_size - i - 1] = m_data[i];
168             return result;
169         }
170 
171         size_t size() const { return m_size; }
172 
173         const float *begin() const { return m_data; }
174         const float *end() const { return m_data+m_size; }
175 
176     private:
177         size_t m_size;
178         float *m_data;
179     };
180     py::class_<Sequence>(m, "Sequence")
181         .def(py::init<size_t>())
182         .def(py::init<const std::vector<float>&>())
183         /// Bare bones interface
184         .def("__getitem__", [](const Sequence &s, size_t i) {
185             if (i >= s.size()) throw py::index_error();
186             return s[i];
187         })
188         .def("__setitem__", [](Sequence &s, size_t i, float v) {
189             if (i >= s.size()) throw py::index_error();
190             s[i] = v;
191         })
192         .def("__len__", &Sequence::size)
193         /// Optional sequence protocol operations
194         .def("__iter__", [](const Sequence &s) { return py::make_iterator(s.begin(), s.end()); },
195                          py::keep_alive<0, 1>() /* Essential: keep object alive while iterator exists */)
196         .def("__contains__", [](const Sequence &s, float v) { return s.contains(v); })
197         .def("__reversed__", [](const Sequence &s) -> Sequence { return s.reversed(); })
198         /// Slicing protocol (optional)
199         .def("__getitem__", [](const Sequence &s, py::slice slice) -> Sequence* {
200             size_t start, stop, step, slicelength;
201             if (!slice.compute(s.size(), &start, &stop, &step, &slicelength))
202                 throw py::error_already_set();
203             auto *seq = new Sequence(slicelength);
204             for (size_t i = 0; i < slicelength; ++i) {
205                 (*seq)[i] = s[start]; start += step;
206             }
207             return seq;
208         })
209         .def("__setitem__", [](Sequence &s, py::slice slice, const Sequence &value) {
210             size_t start, stop, step, slicelength;
211             if (!slice.compute(s.size(), &start, &stop, &step, &slicelength))
212                 throw py::error_already_set();
213             if (slicelength != value.size())
214                 throw std::runtime_error("Left and right hand size of slice assignment have different sizes!");
215             for (size_t i = 0; i < slicelength; ++i) {
216                 s[start] = value[i]; start += step;
217             }
218         })
219         /// Comparisons
220         .def(py::self == py::self)
221         .def(py::self != py::self)
222         // Could also define py::self + py::self for concatenation, etc.
223         ;
224 
225     // test_map_iterator
226     // Interface of a map-like object that isn't (directly) an unordered_map, but provides some basic
227     // map-like functionality.
228     class StringMap {
229     public:
230         StringMap() = default;
231         StringMap(std::unordered_map<std::string, std::string> init)
232             : map(std::move(init)) {}
233 
234         void set(std::string key, std::string val) { map[key] = val; }
235         std::string get(std::string key) const { return map.at(key); }
236         size_t size() const { return map.size(); }
237     private:
238         std::unordered_map<std::string, std::string> map;
239     public:
240         decltype(map.cbegin()) begin() const { return map.cbegin(); }
241         decltype(map.cend()) end() const { return map.cend(); }
242     };
243     py::class_<StringMap>(m, "StringMap")
244         .def(py::init<>())
245         .def(py::init<std::unordered_map<std::string, std::string>>())
246         .def("__getitem__", [](const StringMap &map, std::string key) {
247                 try { return map.get(key); }
248                 catch (const std::out_of_range&) {
249                     throw py::key_error("key '" + key + "' does not exist");
250                 }
251         })
252         .def("__setitem__", &StringMap::set)
253         .def("__len__", &StringMap::size)
254         .def("__iter__", [](const StringMap &map) { return py::make_key_iterator(map.begin(), map.end()); },
255                 py::keep_alive<0, 1>())
256         .def("items", [](const StringMap &map) { return py::make_iterator(map.begin(), map.end()); },
257                 py::keep_alive<0, 1>())
258         ;
259 
260     // test_generalized_iterators
261     class IntPairs {
262     public:
263         IntPairs(std::vector<std::pair<int, int>> data) : data_(std::move(data)) {}
264         const std::pair<int, int>* begin() const { return data_.data(); }
265     private:
266         std::vector<std::pair<int, int>> data_;
267     };
268     py::class_<IntPairs>(m, "IntPairs")
269         .def(py::init<std::vector<std::pair<int, int>>>())
270         .def("nonzero", [](const IntPairs& s) {
271                 return py::make_iterator(NonZeroIterator<std::pair<int, int>>(s.begin()), NonZeroSentinel());
272         }, py::keep_alive<0, 1>())
273         .def("nonzero_keys", [](const IntPairs& s) {
274             return py::make_key_iterator(NonZeroIterator<std::pair<int, int>>(s.begin()), NonZeroSentinel());
275         }, py::keep_alive<0, 1>())
276         ;
277 
278 
279 #if 0
280     // Obsolete: special data structure for exposing custom iterator types to python
281     // kept here for illustrative purposes because there might be some use cases which
282     // are not covered by the much simpler py::make_iterator
283 
284     struct PySequenceIterator {
285         PySequenceIterator(const Sequence &seq, py::object ref) : seq(seq), ref(ref) { }
286 
287         float next() {
288             if (index == seq.size())
289                 throw py::stop_iteration();
290             return seq[index++];
291         }
292 
293         const Sequence &seq;
294         py::object ref; // keep a reference
295         size_t index = 0;
296     };
297 
298     py::class_<PySequenceIterator>(seq, "Iterator")
299         .def("__iter__", [](PySequenceIterator &it) -> PySequenceIterator& { return it; })
300         .def("__next__", &PySequenceIterator::next);
301 
302     On the actual Sequence object, the iterator would be constructed as follows:
303     .def("__iter__", [](py::object s) { return PySequenceIterator(s.cast<const Sequence &>(), s); })
304 #endif
305 
306     // test_python_iterator_in_cpp
307     m.def("object_to_list", [](py::object o) {
308         auto l = py::list();
309         for (auto item : o) {
310             l.append(item);
311         }
312         return l;
313     });
314 
315     m.def("iterator_to_list", [](py::iterator it) {
316         auto l = py::list();
317         while (it != py::iterator::sentinel()) {
318             l.append(*it);
319             ++it;
320         }
321         return l;
322     });
323 
324     // test_sequence_length: check that Python sequences can be converted to py::sequence.
325     m.def("sequence_length", [](py::sequence seq) { return seq.size(); });
326 
327     // Make sure that py::iterator works with std algorithms
328     m.def("count_none", [](py::object o) {
329         return std::count_if(o.begin(), o.end(), [](py::handle h) { return h.is_none(); });
330     });
331 
332     m.def("find_none", [](py::object o) {
333         auto it = std::find_if(o.begin(), o.end(), [](py::handle h) { return h.is_none(); });
334         return it->is_none();
335     });
336 
337     m.def("count_nonzeros", [](py::dict d) {
338        return std::count_if(d.begin(), d.end(), [](std::pair<py::handle, py::handle> p) {
339            return p.second.cast<int>() != 0;
340        });
341     });
342 
343     m.def("tuple_iterator", &test_random_access_iterator<py::tuple>);
344     m.def("list_iterator", &test_random_access_iterator<py::list>);
345     m.def("sequence_iterator", &test_random_access_iterator<py::sequence>);
346 
347     // test_iterator_passthrough
348     // #181: iterator passthrough did not compile
349     m.def("iterator_passthrough", [](py::iterator s) -> py::iterator {
350         return py::make_iterator(std::begin(s), std::end(s));
351     });
352 
353     // test_iterator_rvp
354     // #388: Can't make iterators via make_iterator() with different r/v policies
355     static std::vector<int> list = { 1, 2, 3 };
356     m.def("make_iterator_1", []() { return py::make_iterator<py::return_value_policy::copy>(list); });
357     m.def("make_iterator_2", []() { return py::make_iterator<py::return_value_policy::automatic>(list); });
358 }
359