1 #[cfg(target_arch = "x86")]
2 use core::arch::x86 as arch;
3 #[cfg(target_arch = "x86_64")]
4 use core::arch::x86_64 as arch;
5 
6 #[derive(Clone)]
7 pub struct State {
8     state: u32,
9 }
10 
11 impl State {
12     #[cfg(not(feature = "std"))]
new(state: u32) -> Option<Self>13     pub fn new(state: u32) -> Option<Self> {
14         if cfg!(target_feature = "pclmulqdq")
15             && cfg!(target_feature = "sse2")
16             && cfg!(target_feature = "sse4.1")
17         {
18             // SAFETY: The conditions above ensure that all
19             //         required instructions are supported by the CPU.
20             Some(Self { state })
21         } else {
22             None
23         }
24     }
25 
26     #[cfg(feature = "std")]
new(state: u32) -> Option<Self>27     pub fn new(state: u32) -> Option<Self> {
28         if is_x86_feature_detected!("pclmulqdq")
29             && is_x86_feature_detected!("sse2")
30             && is_x86_feature_detected!("sse4.1")
31         {
32             // SAFETY: The conditions above ensure that all
33             //         required instructions are supported by the CPU.
34             Some(Self { state })
35         } else {
36             None
37         }
38     }
39 
update(&mut self, buf: &[u8])40     pub fn update(&mut self, buf: &[u8]) {
41         // SAFETY: The `State::new` constructor ensures that all
42         //         required instructions are supported by the CPU.
43         self.state = unsafe { calculate(self.state, buf) }
44     }
45 
finalize(self) -> u3246     pub fn finalize(self) -> u32 {
47         self.state
48     }
49 
reset(&mut self)50     pub fn reset(&mut self) {
51         self.state = 0;
52     }
53 
combine(&mut self, other: u32, amount: u64)54     pub fn combine(&mut self, other: u32, amount: u64) {
55         self.state = ::combine::combine(self.state, other, amount);
56     }
57 }
58 
59 const K1: i64 = 0x154442bd4;
60 const K2: i64 = 0x1c6e41596;
61 const K3: i64 = 0x1751997d0;
62 const K4: i64 = 0x0ccaa009e;
63 const K5: i64 = 0x163cd6124;
64 const K6: i64 = 0x1db710640;
65 
66 const P_X: i64 = 0x1DB710641;
67 const U_PRIME: i64 = 0x1F7011641;
68 
69 #[cfg(feature = "std")]
debug(s: &str, a: arch::__m128i) -> arch::__m128i70 unsafe fn debug(s: &str, a: arch::__m128i) -> arch::__m128i {
71     if false {
72         union A {
73             a: arch::__m128i,
74             b: [u8; 16],
75         }
76         let x = A { a }.b;
77         print!(" {:20} | ", s);
78         for x in x.iter() {
79             print!("{:02x} ", x);
80         }
81         println!();
82     }
83     return a;
84 }
85 
86 #[cfg(not(feature = "std"))]
debug(_s: &str, a: arch::__m128i) -> arch::__m128i87 unsafe fn debug(_s: &str, a: arch::__m128i) -> arch::__m128i {
88     a
89 }
90 
91 #[target_feature(enable = "pclmulqdq", enable = "sse2", enable = "sse4.1")]
calculate(crc: u32, mut data: &[u8]) -> u3292 pub unsafe fn calculate(crc: u32, mut data: &[u8]) -> u32 {
93     // In theory we can accelerate smaller chunks too, but for now just rely on
94     // the fallback implementation as it's too much hassle and doesn't seem too
95     // beneficial.
96     if data.len() < 128 {
97         return ::baseline::update_fast_16(crc, data);
98     }
99 
100     // Step 1: fold by 4 loop
101     let mut x3 = get(&mut data);
102     let mut x2 = get(&mut data);
103     let mut x1 = get(&mut data);
104     let mut x0 = get(&mut data);
105 
106     // fold in our initial value, part of the incremental crc checksum
107     x3 = arch::_mm_xor_si128(x3, arch::_mm_cvtsi32_si128(!crc as i32));
108 
109     let k1k2 = arch::_mm_set_epi64x(K2, K1);
110     while data.len() >= 64 {
111         x3 = reduce128(x3, get(&mut data), k1k2);
112         x2 = reduce128(x2, get(&mut data), k1k2);
113         x1 = reduce128(x1, get(&mut data), k1k2);
114         x0 = reduce128(x0, get(&mut data), k1k2);
115     }
116 
117     let k3k4 = arch::_mm_set_epi64x(K4, K3);
118     let mut x = reduce128(x3, x2, k3k4);
119     x = reduce128(x, x1, k3k4);
120     x = reduce128(x, x0, k3k4);
121 
122     // Step 2: fold by 1 loop
123     while data.len() >= 16 {
124         x = reduce128(x, get(&mut data), k3k4);
125     }
126 
127     debug("128 > 64 init", x);
128 
129     // Perform step 3, reduction from 128 bits to 64 bits. This is
130     // significantly different from the paper and basically doesn't follow it
131     // at all. It's not really clear why, but implementations of this algorithm
132     // in Chrome/Linux diverge in the same way. It is beyond me why this is
133     // different than the paper, maybe the paper has like errata or something?
134     // Unclear.
135     //
136     // It's also not clear to me what's actually happening here and/or why, but
137     // algebraically what's happening is:
138     //
139     // x = (x[0:63] • K4) ^ x[64:127]           // 96 bit result
140     // x = ((x[0:31] as u64) • K5) ^ x[32:95]   // 64 bit result
141     //
142     // It's... not clear to me what's going on here. The paper itself is pretty
143     // vague on this part but definitely uses different constants at least.
144     // It's not clear to me, reading the paper, where the xor operations are
145     // happening or why things are shifting around. This implementation...
146     // appears to work though!
147     drop(K6);
148     let x = arch::_mm_xor_si128(
149         arch::_mm_clmulepi64_si128(x, k3k4, 0x10),
150         arch::_mm_srli_si128(x, 8),
151     );
152     let x = arch::_mm_xor_si128(
153         arch::_mm_clmulepi64_si128(
154             arch::_mm_and_si128(x, arch::_mm_set_epi32(0, 0, 0, !0)),
155             arch::_mm_set_epi64x(0, K5),
156             0x00,
157         ),
158         arch::_mm_srli_si128(x, 4),
159     );
160     debug("128 > 64 xx", x);
161 
162     // Perform a Barrett reduction from our now 64 bits to 32 bits. The
163     // algorithm for this is described at the end of the paper, and note that
164     // this also implements the "bit reflected input" variant.
165     let pu = arch::_mm_set_epi64x(U_PRIME, P_X);
166 
167     // T1(x) = ⌊(R(x) % x^32)⌋ • μ
168     let t1 = arch::_mm_clmulepi64_si128(
169         arch::_mm_and_si128(x, arch::_mm_set_epi32(0, 0, 0, !0)),
170         pu,
171         0x10,
172     );
173     // T2(x) = ⌊(T1(x) % x^32)⌋ • P(x)
174     let t2 = arch::_mm_clmulepi64_si128(
175         arch::_mm_and_si128(t1, arch::_mm_set_epi32(0, 0, 0, !0)),
176         pu,
177         0x00,
178     );
179     // We're doing the bit-reflected variant, so get the upper 32-bits of the
180     // 64-bit result instead of the lower 32-bits.
181     //
182     // C(x) = R(x) ^ T2(x) / x^32
183     let c = arch::_mm_extract_epi32(arch::_mm_xor_si128(x, t2), 1) as u32;
184 
185     if !data.is_empty() {
186         ::baseline::update_fast_16(!c, data)
187     } else {
188         !c
189     }
190 }
191 
reduce128(a: arch::__m128i, b: arch::__m128i, keys: arch::__m128i) -> arch::__m128i192 unsafe fn reduce128(a: arch::__m128i, b: arch::__m128i, keys: arch::__m128i) -> arch::__m128i {
193     let t1 = arch::_mm_clmulepi64_si128(a, keys, 0x00);
194     let t2 = arch::_mm_clmulepi64_si128(a, keys, 0x11);
195     arch::_mm_xor_si128(arch::_mm_xor_si128(b, t1), t2)
196 }
197 
get(a: &mut &[u8]) -> arch::__m128i198 unsafe fn get(a: &mut &[u8]) -> arch::__m128i {
199     debug_assert!(a.len() >= 16);
200     let r = arch::_mm_loadu_si128(a.as_ptr() as *const arch::__m128i);
201     *a = &a[16..];
202     return r;
203 }
204 
205 #[cfg(test)]
206 mod test {
207     quickcheck! {
208         fn check_against_baseline(init: u32, chunks: Vec<(Vec<u8>, usize)>) -> bool {
209             let mut baseline = super::super::super::baseline::State::new(init);
210             let mut pclmulqdq = super::State::new(init).expect("not supported");
211             for (chunk, mut offset) in chunks {
212                 // simulate random alignments by offsetting the slice by up to 15 bytes
213                 offset &= 0xF;
214                 if chunk.len() <= offset {
215                     baseline.update(&chunk);
216                     pclmulqdq.update(&chunk);
217                 } else {
218                     baseline.update(&chunk[offset..]);
219                     pclmulqdq.update(&chunk[offset..]);
220                 }
221             }
222             pclmulqdq.finalize() == baseline.finalize()
223         }
224     }
225 }
226