1 /* origin: FreeBSD /usr/src/lib/msun/src/k_tan.c */
2 /*
3  * ====================================================
4  * Copyright 2004 Sun Microsystems, Inc.  All Rights Reserved.
5  *
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /* |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). */
13 const T: [f64; 6] = [
14     0.333331395030791399758,   /* 0x15554d3418c99f.0p-54 */
15     0.133392002712976742718,   /* 0x1112fd38999f72.0p-55 */
16     0.0533812378445670393523,  /* 0x1b54c91d865afe.0p-57 */
17     0.0245283181166547278873,  /* 0x191df3908c33ce.0p-58 */
18     0.00297435743359967304927, /* 0x185dadfcecf44e.0p-61 */
19     0.00946564784943673166728, /* 0x1362b9bf971bcd.0p-59 */
20 ];
21 
22 #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
k_tanf(x: f64, odd: bool) -> f3223 pub(crate) fn k_tanf(x: f64, odd: bool) -> f32 {
24     let z = x * x;
25     /*
26      * Split up the polynomial into small independent terms to give
27      * opportunities for parallel evaluation.  The chosen splitting is
28      * micro-optimized for Athlons (XP, X64).  It costs 2 multiplications
29      * relative to Horner's method on sequential machines.
30      *
31      * We add the small terms from lowest degree up for efficiency on
32      * non-sequential machines (the lowest degree terms tend to be ready
33      * earlier).  Apart from this, we don't care about order of
34      * operations, and don't need to to care since we have precision to
35      * spare.  However, the chosen splitting is good for accuracy too,
36      * and would give results as accurate as Horner's method if the
37      * small terms were added from highest degree down.
38      */
39     let mut r = T[4] + z * T[5];
40     let t = T[2] + z * T[3];
41     let w = z * z;
42     let s = z * x;
43     let u = T[0] + z * T[1];
44     r = (x + s * u) + (s * w) * (t + w * r);
45     (if odd { -1. / r } else { r }) as f32
46 }
47