1 //! Provide helpers for making ioctl system calls. 2 //! 3 //! This library is pretty low-level and messy. `ioctl` is not fun. 4 //! 5 //! What is an `ioctl`? 6 //! =================== 7 //! 8 //! The `ioctl` syscall is the grab-bag syscall on POSIX systems. Don't want to add a new 9 //! syscall? Make it an `ioctl`! `ioctl` refers to both the syscall, and the commands that can be 10 //! sent with it. `ioctl` stands for "IO control", and the commands are always sent to a file 11 //! descriptor. 12 //! 13 //! It is common to see `ioctl`s used for the following purposes: 14 //! 15 //! * Provide read/write access to out-of-band data related to a device such as configuration 16 //! (for instance, setting serial port options) 17 //! * Provide a mechanism for performing full-duplex data transfers (for instance, xfer on SPI 18 //! devices). 19 //! * Provide access to control functions on a device (for example, on Linux you can send 20 //! commands like pause, resume, and eject to the CDROM device. 21 //! * Do whatever else the device driver creator thought made most sense. 22 //! 23 //! `ioctl`s are synchronous system calls and are similar to read and write calls in that regard. 24 //! They operate on file descriptors and have an identifier that specifies what the ioctl is. 25 //! Additionally they may read or write data and therefore need to pass along a data pointer. 26 //! Besides the semantics of the ioctls being confusing, the generation of this identifer can also 27 //! be difficult. 28 //! 29 //! Historically `ioctl` numbers were arbitrary hard-coded values. In Linux (before 2.6) and some 30 //! unices this has changed to a more-ordered system where the ioctl numbers are partitioned into 31 //! subcomponents (For linux this is documented in 32 //! [`Documentation/ioctl/ioctl-number.rst`](https://elixir.bootlin.com/linux/latest/source/Documentation/userspace-api/ioctl/ioctl-number.rst)): 33 //! 34 //! * Number: The actual ioctl ID 35 //! * Type: A grouping of ioctls for a common purpose or driver 36 //! * Size: The size in bytes of the data that will be transferred 37 //! * Direction: Whether there is any data and if it's read, write, or both 38 //! 39 //! Newer drivers should not generate complete integer identifiers for their `ioctl`s instead 40 //! preferring to use the 4 components above to generate the final ioctl identifier. Because of 41 //! how old `ioctl`s are, however, there are many hard-coded `ioctl` identifiers. These are 42 //! commonly referred to as "bad" in `ioctl` documentation. 43 //! 44 //! Defining `ioctl`s 45 //! ================= 46 //! 47 //! This library provides several `ioctl_*!` macros for binding `ioctl`s. These generate public 48 //! unsafe functions that can then be used for calling the ioctl. This macro has a few different 49 //! ways it can be used depending on the specific ioctl you're working with. 50 //! 51 //! A simple `ioctl` is `SPI_IOC_RD_MODE`. This ioctl works with the SPI interface on Linux. This 52 //! specific `ioctl` reads the mode of the SPI device as a `u8`. It's declared in 53 //! `/include/uapi/linux/spi/spidev.h` as `_IOR(SPI_IOC_MAGIC, 1, __u8)`. Since it uses the `_IOR` 54 //! macro, we know it's a `read` ioctl and can use the `ioctl_read!` macro as follows: 55 //! 56 //! ``` 57 //! # #[macro_use] extern crate nix; 58 //! const SPI_IOC_MAGIC: u8 = b'k'; // Defined in linux/spi/spidev.h 59 //! const SPI_IOC_TYPE_MODE: u8 = 1; 60 //! ioctl_read!(spi_read_mode, SPI_IOC_MAGIC, SPI_IOC_TYPE_MODE, u8); 61 //! # fn main() {} 62 //! ``` 63 //! 64 //! This generates the function: 65 //! 66 //! ``` 67 //! # #[macro_use] extern crate nix; 68 //! # use std::mem; 69 //! # use nix::{libc, Result}; 70 //! # use nix::errno::Errno; 71 //! # use nix::libc::c_int as c_int; 72 //! # const SPI_IOC_MAGIC: u8 = b'k'; // Defined in linux/spi/spidev.h 73 //! # const SPI_IOC_TYPE_MODE: u8 = 1; 74 //! pub unsafe fn spi_read_mode(fd: c_int, data: *mut u8) -> Result<c_int> { 75 //! let res = libc::ioctl(fd, request_code_read!(SPI_IOC_MAGIC, SPI_IOC_TYPE_MODE, mem::size_of::<u8>()), data); 76 //! Errno::result(res) 77 //! } 78 //! # fn main() {} 79 //! ``` 80 //! 81 //! The return value for the wrapper functions generated by the `ioctl_*!` macros are `nix::Error`s. 82 //! These are generated by assuming the return value of the ioctl is `-1` on error and everything 83 //! else is a valid return value. If this is not the case, `Result::map` can be used to map some 84 //! of the range of "good" values (-Inf..-2, 0..Inf) into a smaller range in a helper function. 85 //! 86 //! Writing `ioctl`s generally use pointers as their data source and these should use the 87 //! `ioctl_write_ptr!`. But in some cases an `int` is passed directly. For these `ioctl`s use the 88 //! `ioctl_write_int!` macro. This variant does not take a type as the last argument: 89 //! 90 //! ``` 91 //! # #[macro_use] extern crate nix; 92 //! const HCI_IOC_MAGIC: u8 = b'k'; 93 //! const HCI_IOC_HCIDEVUP: u8 = 1; 94 //! ioctl_write_int!(hci_dev_up, HCI_IOC_MAGIC, HCI_IOC_HCIDEVUP); 95 //! # fn main() {} 96 //! ``` 97 //! 98 //! Some `ioctl`s don't transfer any data, and those should use `ioctl_none!`. This macro 99 //! doesn't take a type and so it is declared similar to the `write_int` variant shown above. 100 //! 101 //! The mode for a given `ioctl` should be clear from the documentation if it has good 102 //! documentation. Otherwise it will be clear based on the macro used to generate the `ioctl` 103 //! number where `_IO`, `_IOR`, `_IOW`, and `_IOWR` map to "none", "read", "write_*", and "readwrite" 104 //! respectively. To determine the specific `write_` variant to use you'll need to find 105 //! what the argument type is supposed to be. If it's an `int`, then `write_int` should be used, 106 //! otherwise it should be a pointer and `write_ptr` should be used. On Linux the 107 //! [`ioctl_list` man page](http://man7.org/linux/man-pages/man2/ioctl_list.2.html) describes a 108 //! large number of `ioctl`s and describes their argument data type. 109 //! 110 //! Using "bad" `ioctl`s 111 //! -------------------- 112 //! 113 //! As mentioned earlier, there are many old `ioctl`s that do not use the newer method of 114 //! generating `ioctl` numbers and instead use hardcoded values. These can be used with the 115 //! `ioctl_*_bad!` macros. This naming comes from the Linux kernel which refers to these 116 //! `ioctl`s as "bad". These are a different variant as they bypass calling the macro that generates 117 //! the ioctl number and instead use the defined value directly. 118 //! 119 //! For example the `TCGETS` `ioctl` reads a `termios` data structure for a given file descriptor. 120 //! It's defined as `0x5401` in `ioctls.h` on Linux and can be implemented as: 121 //! 122 //! ``` 123 //! # #[macro_use] extern crate nix; 124 //! # #[cfg(any(target_os = "android", target_os = "linux"))] 125 //! # use nix::libc::TCGETS as TCGETS; 126 //! # #[cfg(any(target_os = "android", target_os = "linux"))] 127 //! # use nix::libc::termios as termios; 128 //! # #[cfg(any(target_os = "android", target_os = "linux"))] 129 //! ioctl_read_bad!(tcgets, TCGETS, termios); 130 //! # fn main() {} 131 //! ``` 132 //! 133 //! The generated function has the same form as that generated by `ioctl_read!`: 134 //! 135 //! ```text 136 //! pub unsafe fn tcgets(fd: c_int, data: *mut termios) -> Result<c_int>; 137 //! ``` 138 //! 139 //! Working with Arrays 140 //! ------------------- 141 //! 142 //! Some `ioctl`s work with entire arrays of elements. These are supported by the `ioctl_*_buf` 143 //! family of macros: `ioctl_read_buf`, `ioctl_write_buf`, and `ioctl_readwrite_buf`. Note that 144 //! there are no "bad" versions for working with buffers. The generated functions include a `len` 145 //! argument to specify the number of elements (where the type of each element is specified in the 146 //! macro). 147 //! 148 //! Again looking to the SPI `ioctl`s on Linux for an example, there is a `SPI_IOC_MESSAGE` `ioctl` 149 //! that queues up multiple SPI messages by writing an entire array of `spi_ioc_transfer` structs. 150 //! `linux/spi/spidev.h` defines a macro to calculate the `ioctl` number like: 151 //! 152 //! ```C 153 //! #define SPI_IOC_MAGIC 'k' 154 //! #define SPI_MSGSIZE(N) ... 155 //! #define SPI_IOC_MESSAGE(N) _IOW(SPI_IOC_MAGIC, 0, char[SPI_MSGSIZE(N)]) 156 //! ``` 157 //! 158 //! The `SPI_MSGSIZE(N)` calculation is already handled by the `ioctl_*!` macros, so all that's 159 //! needed to define this `ioctl` is: 160 //! 161 //! ``` 162 //! # #[macro_use] extern crate nix; 163 //! const SPI_IOC_MAGIC: u8 = b'k'; // Defined in linux/spi/spidev.h 164 //! const SPI_IOC_TYPE_MESSAGE: u8 = 0; 165 //! # pub struct spi_ioc_transfer(u64); 166 //! ioctl_write_buf!(spi_transfer, SPI_IOC_MAGIC, SPI_IOC_TYPE_MESSAGE, spi_ioc_transfer); 167 //! # fn main() {} 168 //! ``` 169 //! 170 //! This generates a function like: 171 //! 172 //! ``` 173 //! # #[macro_use] extern crate nix; 174 //! # use std::mem; 175 //! # use nix::{libc, Result}; 176 //! # use nix::errno::Errno; 177 //! # use nix::libc::c_int as c_int; 178 //! # const SPI_IOC_MAGIC: u8 = b'k'; 179 //! # const SPI_IOC_TYPE_MESSAGE: u8 = 0; 180 //! # pub struct spi_ioc_transfer(u64); 181 //! pub unsafe fn spi_message(fd: c_int, data: &mut [spi_ioc_transfer]) -> Result<c_int> { 182 //! let res = libc::ioctl(fd, 183 //! request_code_write!(SPI_IOC_MAGIC, SPI_IOC_TYPE_MESSAGE, data.len() * mem::size_of::<spi_ioc_transfer>()), 184 //! data); 185 //! Errno::result(res) 186 //! } 187 //! # fn main() {} 188 //! ``` 189 //! 190 //! Finding `ioctl` Documentation 191 //! ----------------------------- 192 //! 193 //! For Linux, look at your system's headers. For example, `/usr/include/linux/input.h` has a lot 194 //! of lines defining macros which use `_IO`, `_IOR`, `_IOW`, `_IOC`, and `_IOWR`. Some `ioctl`s are 195 //! documented directly in the headers defining their constants, but others have more extensive 196 //! documentation in man pages (like termios' `ioctl`s which are in `tty_ioctl(4)`). 197 //! 198 //! Documenting the Generated Functions 199 //! =================================== 200 //! 201 //! In many cases, users will wish for the functions generated by the `ioctl` 202 //! macro to be public and documented. For this reason, the generated functions 203 //! are public by default. If you wish to hide the ioctl, you will need to put 204 //! them in a private module. 205 //! 206 //! For documentation, it is possible to use doc comments inside the `ioctl_*!` macros. Here is an 207 //! example : 208 //! 209 //! ``` 210 //! # #[macro_use] extern crate nix; 211 //! # use nix::libc::c_int; 212 //! ioctl_read! { 213 //! /// Make the given terminal the controlling terminal of the calling process. The calling 214 //! /// process must be a session leader and not have a controlling terminal already. If the 215 //! /// terminal is already the controlling terminal of a different session group then the 216 //! /// ioctl will fail with **EPERM**, unless the caller is root (more precisely: has the 217 //! /// **CAP_SYS_ADMIN** capability) and arg equals 1, in which case the terminal is stolen 218 //! /// and all processes that had it as controlling terminal lose it. 219 //! tiocsctty, b't', 19, c_int 220 //! } 221 //! 222 //! # fn main() {} 223 //! ``` 224 use cfg_if::cfg_if; 225 226 #[cfg(any(target_os = "android", target_os = "linux", target_os = "redox"))] 227 #[macro_use] 228 mod linux; 229 230 #[cfg(any(target_os = "android", target_os = "linux", target_os = "redox"))] 231 pub use self::linux::*; 232 233 #[cfg(any(target_os = "dragonfly", 234 target_os = "freebsd", 235 target_os = "ios", 236 target_os = "macos", 237 target_os = "netbsd", 238 target_os = "openbsd"))] 239 #[macro_use] 240 mod bsd; 241 242 #[cfg(any(target_os = "dragonfly", 243 target_os = "freebsd", 244 target_os = "ios", 245 target_os = "macos", 246 target_os = "netbsd", 247 target_os = "openbsd"))] 248 pub use self::bsd::*; 249 250 /// Convert raw ioctl return value to a Nix result 251 #[macro_export] 252 #[doc(hidden)] 253 macro_rules! convert_ioctl_res { 254 ($w:expr) => ( 255 { 256 $crate::errno::Errno::result($w) 257 } 258 ); 259 } 260 261 /// Generates a wrapper function for an ioctl that passes no data to the kernel. 262 /// 263 /// The arguments to this macro are: 264 /// 265 /// * The function name 266 /// * The ioctl identifier 267 /// * The ioctl sequence number 268 /// 269 /// The generated function has the following signature: 270 /// 271 /// ```rust,ignore 272 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int) -> Result<libc::c_int> 273 /// ``` 274 /// 275 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 276 /// 277 /// # Example 278 /// 279 /// The `videodev2` driver on Linux defines the `log_status` `ioctl` as: 280 /// 281 /// ```C 282 /// #define VIDIOC_LOG_STATUS _IO('V', 70) 283 /// ``` 284 /// 285 /// This can be implemented in Rust like: 286 /// 287 /// ```no_run 288 /// # #[macro_use] extern crate nix; 289 /// ioctl_none!(log_status, b'V', 70); 290 /// fn main() {} 291 /// ``` 292 #[macro_export(local_inner_macros)] 293 macro_rules! ioctl_none { 294 ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr) => ( 295 $(#[$attr])* 296 pub unsafe fn $name(fd: $crate::libc::c_int) 297 -> $crate::Result<$crate::libc::c_int> { 298 convert_ioctl_res!($crate::libc::ioctl(fd, request_code_none!($ioty, $nr) as $crate::sys::ioctl::ioctl_num_type)) 299 } 300 ) 301 } 302 303 /// Generates a wrapper function for a "bad" ioctl that passes no data to the kernel. 304 /// 305 /// The arguments to this macro are: 306 /// 307 /// * The function name 308 /// * The ioctl request code 309 /// 310 /// The generated function has the following signature: 311 /// 312 /// ```rust,ignore 313 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int) -> Result<libc::c_int> 314 /// ``` 315 /// 316 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 317 /// 318 /// # Example 319 /// 320 /// ```no_run 321 /// # #[macro_use] extern crate nix; 322 /// # use libc::TIOCNXCL; 323 /// # use std::fs::File; 324 /// # use std::os::unix::io::AsRawFd; 325 /// ioctl_none_bad!(tiocnxcl, TIOCNXCL); 326 /// fn main() { 327 /// let file = File::open("/dev/ttyUSB0").unwrap(); 328 /// unsafe { tiocnxcl(file.as_raw_fd()) }.unwrap(); 329 /// } 330 /// ``` 331 // TODO: add an example using request_code_*!() 332 #[macro_export(local_inner_macros)] 333 macro_rules! ioctl_none_bad { 334 ($(#[$attr:meta])* $name:ident, $nr:expr) => ( 335 $(#[$attr])* 336 pub unsafe fn $name(fd: $crate::libc::c_int) 337 -> $crate::Result<$crate::libc::c_int> { 338 convert_ioctl_res!($crate::libc::ioctl(fd, $nr as $crate::sys::ioctl::ioctl_num_type)) 339 } 340 ) 341 } 342 343 /// Generates a wrapper function for an ioctl that reads data from the kernel. 344 /// 345 /// The arguments to this macro are: 346 /// 347 /// * The function name 348 /// * The ioctl identifier 349 /// * The ioctl sequence number 350 /// * The data type passed by this ioctl 351 /// 352 /// The generated function has the following signature: 353 /// 354 /// ```rust,ignore 355 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: *mut DATA_TYPE) -> Result<libc::c_int> 356 /// ``` 357 /// 358 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 359 /// 360 /// # Example 361 /// 362 /// ``` 363 /// # #[macro_use] extern crate nix; 364 /// const SPI_IOC_MAGIC: u8 = b'k'; // Defined in linux/spi/spidev.h 365 /// const SPI_IOC_TYPE_MODE: u8 = 1; 366 /// ioctl_read!(spi_read_mode, SPI_IOC_MAGIC, SPI_IOC_TYPE_MODE, u8); 367 /// # fn main() {} 368 /// ``` 369 #[macro_export(local_inner_macros)] 370 macro_rules! ioctl_read { 371 ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr, $ty:ty) => ( 372 $(#[$attr])* 373 pub unsafe fn $name(fd: $crate::libc::c_int, 374 data: *mut $ty) 375 -> $crate::Result<$crate::libc::c_int> { 376 convert_ioctl_res!($crate::libc::ioctl(fd, request_code_read!($ioty, $nr, ::std::mem::size_of::<$ty>()) as $crate::sys::ioctl::ioctl_num_type, data)) 377 } 378 ) 379 } 380 381 /// Generates a wrapper function for a "bad" ioctl that reads data from the kernel. 382 /// 383 /// The arguments to this macro are: 384 /// 385 /// * The function name 386 /// * The ioctl request code 387 /// * The data type passed by this ioctl 388 /// 389 /// The generated function has the following signature: 390 /// 391 /// ```rust,ignore 392 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: *mut DATA_TYPE) -> Result<libc::c_int> 393 /// ``` 394 /// 395 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 396 /// 397 /// # Example 398 /// 399 /// ``` 400 /// # #[macro_use] extern crate nix; 401 /// # #[cfg(any(target_os = "android", target_os = "linux"))] 402 /// ioctl_read_bad!(tcgets, libc::TCGETS, libc::termios); 403 /// # fn main() {} 404 /// ``` 405 #[macro_export(local_inner_macros)] 406 macro_rules! ioctl_read_bad { 407 ($(#[$attr:meta])* $name:ident, $nr:expr, $ty:ty) => ( 408 $(#[$attr])* 409 pub unsafe fn $name(fd: $crate::libc::c_int, 410 data: *mut $ty) 411 -> $crate::Result<$crate::libc::c_int> { 412 convert_ioctl_res!($crate::libc::ioctl(fd, $nr as $crate::sys::ioctl::ioctl_num_type, data)) 413 } 414 ) 415 } 416 417 /// Generates a wrapper function for an ioctl that writes data through a pointer to the kernel. 418 /// 419 /// The arguments to this macro are: 420 /// 421 /// * The function name 422 /// * The ioctl identifier 423 /// * The ioctl sequence number 424 /// * The data type passed by this ioctl 425 /// 426 /// The generated function has the following signature: 427 /// 428 /// ```rust,ignore 429 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: *const DATA_TYPE) -> Result<libc::c_int> 430 /// ``` 431 /// 432 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 433 /// 434 /// # Example 435 /// 436 /// ``` 437 /// # #[macro_use] extern crate nix; 438 /// # pub struct v4l2_audio {} 439 /// ioctl_write_ptr!(s_audio, b'V', 34, v4l2_audio); 440 /// # fn main() {} 441 /// ``` 442 #[macro_export(local_inner_macros)] 443 macro_rules! ioctl_write_ptr { 444 ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr, $ty:ty) => ( 445 $(#[$attr])* 446 pub unsafe fn $name(fd: $crate::libc::c_int, 447 data: *const $ty) 448 -> $crate::Result<$crate::libc::c_int> { 449 convert_ioctl_res!($crate::libc::ioctl(fd, request_code_write!($ioty, $nr, ::std::mem::size_of::<$ty>()) as $crate::sys::ioctl::ioctl_num_type, data)) 450 } 451 ) 452 } 453 454 /// Generates a wrapper function for a "bad" ioctl that writes data through a pointer to the kernel. 455 /// 456 /// The arguments to this macro are: 457 /// 458 /// * The function name 459 /// * The ioctl request code 460 /// * The data type passed by this ioctl 461 /// 462 /// The generated function has the following signature: 463 /// 464 /// ```rust,ignore 465 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: *const DATA_TYPE) -> Result<libc::c_int> 466 /// ``` 467 /// 468 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 469 /// 470 /// # Example 471 /// 472 /// ``` 473 /// # #[macro_use] extern crate nix; 474 /// # #[cfg(any(target_os = "android", target_os = "linux"))] 475 /// ioctl_write_ptr_bad!(tcsets, libc::TCSETS, libc::termios); 476 /// # fn main() {} 477 /// ``` 478 #[macro_export(local_inner_macros)] 479 macro_rules! ioctl_write_ptr_bad { 480 ($(#[$attr:meta])* $name:ident, $nr:expr, $ty:ty) => ( 481 $(#[$attr])* 482 pub unsafe fn $name(fd: $crate::libc::c_int, 483 data: *const $ty) 484 -> $crate::Result<$crate::libc::c_int> { 485 convert_ioctl_res!($crate::libc::ioctl(fd, $nr as $crate::sys::ioctl::ioctl_num_type, data)) 486 } 487 ) 488 } 489 490 cfg_if!{ 491 if #[cfg(any(target_os = "dragonfly", target_os = "freebsd"))] { 492 /// Generates a wrapper function for a ioctl that writes an integer to the kernel. 493 /// 494 /// The arguments to this macro are: 495 /// 496 /// * The function name 497 /// * The ioctl identifier 498 /// * The ioctl sequence number 499 /// 500 /// The generated function has the following signature: 501 /// 502 /// ```rust,ignore 503 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: nix::sys::ioctl::ioctl_param_type) -> Result<libc::c_int> 504 /// ``` 505 /// 506 /// `nix::sys::ioctl::ioctl_param_type` depends on the OS: 507 /// * BSD - `libc::c_int` 508 /// * Linux - `libc::c_ulong` 509 /// 510 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 511 /// 512 /// # Example 513 /// 514 /// ``` 515 /// # #[macro_use] extern crate nix; 516 /// ioctl_write_int!(vt_activate, b'v', 4); 517 /// # fn main() {} 518 /// ``` 519 #[macro_export(local_inner_macros)] 520 macro_rules! ioctl_write_int { 521 ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr) => ( 522 $(#[$attr])* 523 pub unsafe fn $name(fd: $crate::libc::c_int, 524 data: $crate::sys::ioctl::ioctl_param_type) 525 -> $crate::Result<$crate::libc::c_int> { 526 convert_ioctl_res!($crate::libc::ioctl(fd, request_code_write_int!($ioty, $nr) as $crate::sys::ioctl::ioctl_num_type, data)) 527 } 528 ) 529 } 530 } else { 531 /// Generates a wrapper function for a ioctl that writes an integer to the kernel. 532 /// 533 /// The arguments to this macro are: 534 /// 535 /// * The function name 536 /// * The ioctl identifier 537 /// * The ioctl sequence number 538 /// 539 /// The generated function has the following signature: 540 /// 541 /// ```rust,ignore 542 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: nix::sys::ioctl::ioctl_param_type) -> Result<libc::c_int> 543 /// ``` 544 /// 545 /// `nix::sys::ioctl::ioctl_param_type` depends on the OS: 546 /// * BSD - `libc::c_int` 547 /// * Linux - `libc::c_ulong` 548 /// 549 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 550 /// 551 /// # Example 552 /// 553 /// ``` 554 /// # #[macro_use] extern crate nix; 555 /// const HCI_IOC_MAGIC: u8 = b'k'; 556 /// const HCI_IOC_HCIDEVUP: u8 = 1; 557 /// ioctl_write_int!(hci_dev_up, HCI_IOC_MAGIC, HCI_IOC_HCIDEVUP); 558 /// # fn main() {} 559 /// ``` 560 #[macro_export(local_inner_macros)] 561 macro_rules! ioctl_write_int { 562 ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr) => ( 563 $(#[$attr])* 564 pub unsafe fn $name(fd: $crate::libc::c_int, 565 data: $crate::sys::ioctl::ioctl_param_type) 566 -> $crate::Result<$crate::libc::c_int> { 567 convert_ioctl_res!($crate::libc::ioctl(fd, request_code_write!($ioty, $nr, ::std::mem::size_of::<$crate::libc::c_int>()) as $crate::sys::ioctl::ioctl_num_type, data)) 568 } 569 ) 570 } 571 } 572 } 573 574 /// Generates a wrapper function for a "bad" ioctl that writes an integer to the kernel. 575 /// 576 /// The arguments to this macro are: 577 /// 578 /// * The function name 579 /// * The ioctl request code 580 /// 581 /// The generated function has the following signature: 582 /// 583 /// ```rust,ignore 584 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: libc::c_int) -> Result<libc::c_int> 585 /// ``` 586 /// 587 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 588 /// 589 /// # Examples 590 /// 591 /// ``` 592 /// # #[macro_use] extern crate nix; 593 /// # #[cfg(any(target_os = "android", target_os = "linux"))] 594 /// ioctl_write_int_bad!(tcsbrk, libc::TCSBRK); 595 /// # fn main() {} 596 /// ``` 597 /// 598 /// ```rust 599 /// # #[macro_use] extern crate nix; 600 /// const KVMIO: u8 = 0xAE; 601 /// ioctl_write_int_bad!(kvm_create_vm, request_code_none!(KVMIO, 0x03)); 602 /// # fn main() {} 603 /// ``` 604 #[macro_export(local_inner_macros)] 605 macro_rules! ioctl_write_int_bad { 606 ($(#[$attr:meta])* $name:ident, $nr:expr) => ( 607 $(#[$attr])* 608 pub unsafe fn $name(fd: $crate::libc::c_int, 609 data: $crate::libc::c_int) 610 -> $crate::Result<$crate::libc::c_int> { 611 convert_ioctl_res!($crate::libc::ioctl(fd, $nr as $crate::sys::ioctl::ioctl_num_type, data)) 612 } 613 ) 614 } 615 616 /// Generates a wrapper function for an ioctl that reads and writes data to the kernel. 617 /// 618 /// The arguments to this macro are: 619 /// 620 /// * The function name 621 /// * The ioctl identifier 622 /// * The ioctl sequence number 623 /// * The data type passed by this ioctl 624 /// 625 /// The generated function has the following signature: 626 /// 627 /// ```rust,ignore 628 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: *mut DATA_TYPE) -> Result<libc::c_int> 629 /// ``` 630 /// 631 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 632 /// 633 /// # Example 634 /// 635 /// ``` 636 /// # #[macro_use] extern crate nix; 637 /// # pub struct v4l2_audio {} 638 /// ioctl_readwrite!(enum_audio, b'V', 65, v4l2_audio); 639 /// # fn main() {} 640 /// ``` 641 #[macro_export(local_inner_macros)] 642 macro_rules! ioctl_readwrite { 643 ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr, $ty:ty) => ( 644 $(#[$attr])* 645 pub unsafe fn $name(fd: $crate::libc::c_int, 646 data: *mut $ty) 647 -> $crate::Result<$crate::libc::c_int> { 648 convert_ioctl_res!($crate::libc::ioctl(fd, request_code_readwrite!($ioty, $nr, ::std::mem::size_of::<$ty>()) as $crate::sys::ioctl::ioctl_num_type, data)) 649 } 650 ) 651 } 652 653 /// Generates a wrapper function for a "bad" ioctl that reads and writes data to the kernel. 654 /// 655 /// The arguments to this macro are: 656 /// 657 /// * The function name 658 /// * The ioctl request code 659 /// * The data type passed by this ioctl 660 /// 661 /// The generated function has the following signature: 662 /// 663 /// ```rust,ignore 664 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: *mut DATA_TYPE) -> Result<libc::c_int> 665 /// ``` 666 /// 667 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 668 // TODO: Find an example for ioctl_readwrite_bad 669 #[macro_export(local_inner_macros)] 670 macro_rules! ioctl_readwrite_bad { 671 ($(#[$attr:meta])* $name:ident, $nr:expr, $ty:ty) => ( 672 $(#[$attr])* 673 pub unsafe fn $name(fd: $crate::libc::c_int, 674 data: *mut $ty) 675 -> $crate::Result<$crate::libc::c_int> { 676 convert_ioctl_res!($crate::libc::ioctl(fd, $nr as $crate::sys::ioctl::ioctl_num_type, data)) 677 } 678 ) 679 } 680 681 /// Generates a wrapper function for an ioctl that reads an array of elements from the kernel. 682 /// 683 /// The arguments to this macro are: 684 /// 685 /// * The function name 686 /// * The ioctl identifier 687 /// * The ioctl sequence number 688 /// * The data type passed by this ioctl 689 /// 690 /// The generated function has the following signature: 691 /// 692 /// ```rust,ignore 693 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: &mut [DATA_TYPE]) -> Result<libc::c_int> 694 /// ``` 695 /// 696 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 697 // TODO: Find an example for ioctl_read_buf 698 #[macro_export(local_inner_macros)] 699 macro_rules! ioctl_read_buf { 700 ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr, $ty:ty) => ( 701 $(#[$attr])* 702 pub unsafe fn $name(fd: $crate::libc::c_int, 703 data: &mut [$ty]) 704 -> $crate::Result<$crate::libc::c_int> { 705 convert_ioctl_res!($crate::libc::ioctl(fd, request_code_read!($ioty, $nr, data.len() * ::std::mem::size_of::<$ty>()) as $crate::sys::ioctl::ioctl_num_type, data)) 706 } 707 ) 708 } 709 710 /// Generates a wrapper function for an ioctl that writes an array of elements to the kernel. 711 /// 712 /// The arguments to this macro are: 713 /// 714 /// * The function name 715 /// * The ioctl identifier 716 /// * The ioctl sequence number 717 /// * The data type passed by this ioctl 718 /// 719 /// The generated function has the following signature: 720 /// 721 /// ```rust,ignore 722 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: &[DATA_TYPE]) -> Result<libc::c_int> 723 /// ``` 724 /// 725 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 726 /// 727 /// # Examples 728 /// 729 /// ``` 730 /// # #[macro_use] extern crate nix; 731 /// const SPI_IOC_MAGIC: u8 = b'k'; // Defined in linux/spi/spidev.h 732 /// const SPI_IOC_TYPE_MESSAGE: u8 = 0; 733 /// # pub struct spi_ioc_transfer(u64); 734 /// ioctl_write_buf!(spi_transfer, SPI_IOC_MAGIC, SPI_IOC_TYPE_MESSAGE, spi_ioc_transfer); 735 /// # fn main() {} 736 /// ``` 737 #[macro_export(local_inner_macros)] 738 macro_rules! ioctl_write_buf { 739 ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr, $ty:ty) => ( 740 $(#[$attr])* 741 pub unsafe fn $name(fd: $crate::libc::c_int, 742 data: &[$ty]) 743 -> $crate::Result<$crate::libc::c_int> { 744 convert_ioctl_res!($crate::libc::ioctl(fd, request_code_write!($ioty, $nr, data.len() * ::std::mem::size_of::<$ty>()) as $crate::sys::ioctl::ioctl_num_type, data)) 745 } 746 ) 747 } 748 749 /// Generates a wrapper function for an ioctl that reads and writes an array of elements to the kernel. 750 /// 751 /// The arguments to this macro are: 752 /// 753 /// * The function name 754 /// * The ioctl identifier 755 /// * The ioctl sequence number 756 /// * The data type passed by this ioctl 757 /// 758 /// The generated function has the following signature: 759 /// 760 /// ```rust,ignore 761 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: &mut [DATA_TYPE]) -> Result<libc::c_int> 762 /// ``` 763 /// 764 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 765 // TODO: Find an example for readwrite_buf 766 #[macro_export(local_inner_macros)] 767 macro_rules! ioctl_readwrite_buf { 768 ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr, $ty:ty) => ( 769 $(#[$attr])* 770 pub unsafe fn $name(fd: $crate::libc::c_int, 771 data: &mut [$ty]) 772 -> $crate::Result<$crate::libc::c_int> { 773 convert_ioctl_res!($crate::libc::ioctl(fd, request_code_readwrite!($ioty, $nr, data.len() * ::std::mem::size_of::<$ty>()) as $crate::sys::ioctl::ioctl_num_type, data)) 774 } 775 ) 776 } 777