1 /* ====================================================================
2  * Copyright (c) 2010 The OpenSSL Project.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in
13  *    the documentation and/or other materials provided with the
14  *    distribution.
15  *
16  * 3. All advertising materials mentioning features or use of this
17  *    software must display the following acknowledgment:
18  *    "This product includes software developed by the OpenSSL Project
19  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20  *
21  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22  *    endorse or promote products derived from this software without
23  *    prior written permission. For written permission, please contact
24  *    licensing@OpenSSL.org.
25  *
26  * 5. Products derived from this software may not be called "OpenSSL"
27  *    nor may "OpenSSL" appear in their names without prior written
28  *    permission of the OpenSSL Project.
29  *
30  * 6. Redistributions of any form whatsoever must retain the following
31  *    acknowledgment:
32  *    "This product includes software developed by the OpenSSL Project
33  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
39  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46  * OF THE POSSIBILITY OF SUCH DAMAGE.
47  * ==================================================================== */
48 
49 #include <openssl/cmac.h>
50 
51 #include <assert.h>
52 #include <string.h>
53 
54 #include <openssl/aes.h>
55 #include <openssl/cipher.h>
56 #include <openssl/mem.h>
57 
58 #include "../internal.h"
59 
60 
61 struct cmac_ctx_st {
62   EVP_CIPHER_CTX cipher_ctx;
63   // k1 and k2 are the CMAC subkeys. See
64   // https://tools.ietf.org/html/rfc4493#section-2.3
65   uint8_t k1[AES_BLOCK_SIZE];
66   uint8_t k2[AES_BLOCK_SIZE];
67   // Last (possibly partial) scratch
68   uint8_t block[AES_BLOCK_SIZE];
69   // block_used contains the number of valid bytes in |block|.
70   unsigned block_used;
71 };
72 
CMAC_CTX_init(CMAC_CTX * ctx)73 static void CMAC_CTX_init(CMAC_CTX *ctx) {
74   EVP_CIPHER_CTX_init(&ctx->cipher_ctx);
75 }
76 
CMAC_CTX_cleanup(CMAC_CTX * ctx)77 static void CMAC_CTX_cleanup(CMAC_CTX *ctx) {
78   EVP_CIPHER_CTX_cleanup(&ctx->cipher_ctx);
79   OPENSSL_cleanse(ctx->k1, sizeof(ctx->k1));
80   OPENSSL_cleanse(ctx->k2, sizeof(ctx->k2));
81   OPENSSL_cleanse(ctx->block, sizeof(ctx->block));
82 }
83 
AES_CMAC(uint8_t out[16],const uint8_t * key,size_t key_len,const uint8_t * in,size_t in_len)84 int AES_CMAC(uint8_t out[16], const uint8_t *key, size_t key_len,
85              const uint8_t *in, size_t in_len) {
86   const EVP_CIPHER *cipher;
87   switch (key_len) {
88     case 16:
89       cipher = EVP_aes_128_cbc();
90       break;
91     case 32:
92       cipher = EVP_aes_256_cbc();
93       break;
94     default:
95       return 0;
96   }
97 
98   size_t scratch_out_len;
99   CMAC_CTX ctx;
100   CMAC_CTX_init(&ctx);
101 
102   const int ok = CMAC_Init(&ctx, key, key_len, cipher, NULL /* engine */) &&
103                  CMAC_Update(&ctx, in, in_len) &&
104                  CMAC_Final(&ctx, out, &scratch_out_len);
105 
106   CMAC_CTX_cleanup(&ctx);
107   return ok;
108 }
109 
CMAC_CTX_new(void)110 CMAC_CTX *CMAC_CTX_new(void) {
111   CMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx));
112   if (ctx != NULL) {
113     CMAC_CTX_init(ctx);
114   }
115   return ctx;
116 }
117 
CMAC_CTX_free(CMAC_CTX * ctx)118 void CMAC_CTX_free(CMAC_CTX *ctx) {
119   if (ctx == NULL) {
120     return;
121   }
122 
123   CMAC_CTX_cleanup(ctx);
124   OPENSSL_free(ctx);
125 }
126 
CMAC_CTX_copy(CMAC_CTX * out,const CMAC_CTX * in)127 int CMAC_CTX_copy(CMAC_CTX *out, const CMAC_CTX *in) {
128   if (!EVP_CIPHER_CTX_copy(&out->cipher_ctx, &in->cipher_ctx)) {
129     return 0;
130   }
131   OPENSSL_memcpy(out->k1, in->k1, AES_BLOCK_SIZE);
132   OPENSSL_memcpy(out->k2, in->k2, AES_BLOCK_SIZE);
133   OPENSSL_memcpy(out->block, in->block, AES_BLOCK_SIZE);
134   out->block_used = in->block_used;
135   return 1;
136 }
137 
138 // binary_field_mul_x_128 treats the 128 bits at |in| as an element of GF(2¹²⁸)
139 // with a hard-coded reduction polynomial and sets |out| as x times the input.
140 //
141 // See https://tools.ietf.org/html/rfc4493#section-2.3
binary_field_mul_x_128(uint8_t out[16],const uint8_t in[16])142 static void binary_field_mul_x_128(uint8_t out[16], const uint8_t in[16]) {
143   unsigned i;
144 
145   // Shift |in| to left, including carry.
146   for (i = 0; i < 15; i++) {
147     out[i] = (in[i] << 1) | (in[i+1] >> 7);
148   }
149 
150   // If MSB set fixup with R.
151   const uint8_t carry = in[0] >> 7;
152   out[i] = (in[i] << 1) ^ ((0 - carry) & 0x87);
153 }
154 
155 // binary_field_mul_x_64 behaves like |binary_field_mul_x_128| but acts on an
156 // element of GF(2⁶⁴).
157 //
158 // See https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf
binary_field_mul_x_64(uint8_t out[8],const uint8_t in[8])159 static void binary_field_mul_x_64(uint8_t out[8], const uint8_t in[8]) {
160   unsigned i;
161 
162   // Shift |in| to left, including carry.
163   for (i = 0; i < 7; i++) {
164     out[i] = (in[i] << 1) | (in[i+1] >> 7);
165   }
166 
167   // If MSB set fixup with R.
168   const uint8_t carry = in[0] >> 7;
169   out[i] = (in[i] << 1) ^ ((0 - carry) & 0x1b);
170 }
171 
172 static const uint8_t kZeroIV[AES_BLOCK_SIZE] = {0};
173 
CMAC_Init(CMAC_CTX * ctx,const void * key,size_t key_len,const EVP_CIPHER * cipher,ENGINE * engine)174 int CMAC_Init(CMAC_CTX *ctx, const void *key, size_t key_len,
175               const EVP_CIPHER *cipher, ENGINE *engine) {
176   uint8_t scratch[AES_BLOCK_SIZE];
177 
178   size_t block_size = EVP_CIPHER_block_size(cipher);
179   if ((block_size != AES_BLOCK_SIZE && block_size != 8 /* 3-DES */) ||
180       EVP_CIPHER_key_length(cipher) != key_len ||
181       !EVP_EncryptInit_ex(&ctx->cipher_ctx, cipher, NULL, key, kZeroIV) ||
182       !EVP_Cipher(&ctx->cipher_ctx, scratch, kZeroIV, block_size) ||
183       // Reset context again ready for first data.
184       !EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV)) {
185     return 0;
186   }
187 
188   if (block_size == AES_BLOCK_SIZE) {
189     binary_field_mul_x_128(ctx->k1, scratch);
190     binary_field_mul_x_128(ctx->k2, ctx->k1);
191   } else {
192     binary_field_mul_x_64(ctx->k1, scratch);
193     binary_field_mul_x_64(ctx->k2, ctx->k1);
194   }
195   ctx->block_used = 0;
196 
197   return 1;
198 }
199 
CMAC_Reset(CMAC_CTX * ctx)200 int CMAC_Reset(CMAC_CTX *ctx) {
201   ctx->block_used = 0;
202   return EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV);
203 }
204 
CMAC_Update(CMAC_CTX * ctx,const uint8_t * in,size_t in_len)205 int CMAC_Update(CMAC_CTX *ctx, const uint8_t *in, size_t in_len) {
206   size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx);
207   assert(block_size <= AES_BLOCK_SIZE);
208   uint8_t scratch[AES_BLOCK_SIZE];
209 
210   if (ctx->block_used > 0) {
211     size_t todo = block_size - ctx->block_used;
212     if (in_len < todo) {
213       todo = in_len;
214     }
215 
216     OPENSSL_memcpy(ctx->block + ctx->block_used, in, todo);
217     in += todo;
218     in_len -= todo;
219     ctx->block_used += todo;
220 
221     // If |in_len| is zero then either |ctx->block_used| is less than
222     // |block_size|, in which case we can stop here, or |ctx->block_used| is
223     // exactly |block_size| but there's no more data to process. In the latter
224     // case we don't want to process this block now because it might be the last
225     // block and that block is treated specially.
226     if (in_len == 0) {
227       return 1;
228     }
229 
230     assert(ctx->block_used == block_size);
231 
232     if (!EVP_Cipher(&ctx->cipher_ctx, scratch, ctx->block, block_size)) {
233       return 0;
234     }
235   }
236 
237   // Encrypt all but one of the remaining blocks.
238   while (in_len > block_size) {
239     if (!EVP_Cipher(&ctx->cipher_ctx, scratch, in, block_size)) {
240       return 0;
241     }
242     in += block_size;
243     in_len -= block_size;
244   }
245 
246   OPENSSL_memcpy(ctx->block, in, in_len);
247   ctx->block_used = in_len;
248 
249   return 1;
250 }
251 
CMAC_Final(CMAC_CTX * ctx,uint8_t * out,size_t * out_len)252 int CMAC_Final(CMAC_CTX *ctx, uint8_t *out, size_t *out_len) {
253   size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx);
254   assert(block_size <= AES_BLOCK_SIZE);
255 
256   *out_len = block_size;
257   if (out == NULL) {
258     return 1;
259   }
260 
261   const uint8_t *mask = ctx->k1;
262 
263   if (ctx->block_used != block_size) {
264     // If the last block is incomplete, terminate it with a single 'one' bit
265     // followed by zeros.
266     ctx->block[ctx->block_used] = 0x80;
267     OPENSSL_memset(ctx->block + ctx->block_used + 1, 0,
268                    block_size - (ctx->block_used + 1));
269 
270     mask = ctx->k2;
271   }
272 
273   for (unsigned i = 0; i < block_size; i++) {
274     out[i] = ctx->block[i] ^ mask[i];
275   }
276 
277   return EVP_Cipher(&ctx->cipher_ctx, out, out, block_size);
278 }
279