1 #[cfg(feature = "std")]
2 use core::fmt;
3 #[cfg(feature = "std")]
4 use core::iter;
5 use core::mem;
6 use core::slice;
7 
8 #[cfg(feature = "std")]
9 use byteorder::{BigEndian, LittleEndian};
10 use byteorder::{ByteOrder, NativeEndian};
11 #[cfg(feature = "std")]
12 use regex_syntax::ParserBuilder;
13 
14 use classes::ByteClasses;
15 #[cfg(feature = "std")]
16 use determinize::Determinizer;
17 use dfa::DFA;
18 #[cfg(feature = "std")]
19 use error::{Error, Result};
20 #[cfg(feature = "std")]
21 use minimize::Minimizer;
22 #[cfg(feature = "std")]
23 use nfa::{self, NFA};
24 #[cfg(feature = "std")]
25 use sparse::SparseDFA;
26 use state_id::{dead_id, StateID};
27 #[cfg(feature = "std")]
28 use state_id::{
29     next_state_id, premultiply_overflow_error, write_state_id_bytes,
30 };
31 
32 /// The size of the alphabet in a standard DFA.
33 ///
34 /// Specifically, this length controls the number of transitions present in
35 /// each DFA state. However, when the byte class optimization is enabled,
36 /// then each DFA maps the space of all possible 256 byte values to at most
37 /// 256 distinct equivalence classes. In this case, the number of distinct
38 /// equivalence classes corresponds to the internal alphabet of the DFA, in the
39 /// sense that each DFA state has a number of transitions equal to the number
40 /// of equivalence classes despite supporting matching on all possible byte
41 /// values.
42 const ALPHABET_LEN: usize = 256;
43 
44 /// Masks used in serialization of DFAs.
45 pub(crate) const MASK_PREMULTIPLIED: u16 = 0b0000_0000_0000_0001;
46 pub(crate) const MASK_ANCHORED: u16 = 0b0000_0000_0000_0010;
47 
48 /// A dense table-based deterministic finite automaton (DFA).
49 ///
50 /// A dense DFA represents the core matching primitive in this crate. That is,
51 /// logically, all DFAs have a single start state, one or more match states
52 /// and a transition table that maps the current state and the current byte of
53 /// input to the next state. A DFA can use this information to implement fast
54 /// searching. In particular, the use of a dense DFA generally makes the trade
55 /// off that match speed is the most valuable characteristic, even if building
56 /// the regex may take significant time *and* space. As such, the processing
57 /// of every byte of input is done with a small constant number of operations
58 /// that does not vary with the pattern, its size or the size of the alphabet.
59 /// If your needs don't line up with this trade off, then a dense DFA may not
60 /// be an adequate solution to your problem.
61 ///
62 /// In contrast, a [sparse DFA](enum.SparseDFA.html) makes the opposite
63 /// trade off: it uses less space but will execute a variable number of
64 /// instructions per byte at match time, which makes it slower for matching.
65 ///
66 /// A DFA can be built using the default configuration via the
67 /// [`DenseDFA::new`](enum.DenseDFA.html#method.new) constructor. Otherwise,
68 /// one can configure various aspects via the
69 /// [`dense::Builder`](dense/struct.Builder.html).
70 ///
71 /// A single DFA fundamentally supports the following operations:
72 ///
73 /// 1. Detection of a match.
74 /// 2. Location of the end of the first possible match.
75 /// 3. Location of the end of the leftmost-first match.
76 ///
77 /// A notable absence from the above list of capabilities is the location of
78 /// the *start* of a match. In order to provide both the start and end of a
79 /// match, *two* DFAs are required. This functionality is provided by a
80 /// [`Regex`](struct.Regex.html), which can be built with its basic
81 /// constructor, [`Regex::new`](struct.Regex.html#method.new), or with
82 /// a [`RegexBuilder`](struct.RegexBuilder.html).
83 ///
84 /// # State size
85 ///
86 /// A `DenseDFA` has two type parameters, `T` and `S`. `T` corresponds to
87 /// the type of the DFA's transition table while `S` corresponds to the
88 /// representation used for the DFA's state identifiers as described by the
89 /// [`StateID`](trait.StateID.html) trait. This type parameter is typically
90 /// `usize`, but other valid choices provided by this crate include `u8`,
91 /// `u16`, `u32` and `u64`. The primary reason for choosing a different state
92 /// identifier representation than the default is to reduce the amount of
93 /// memory used by a DFA. Note though, that if the chosen representation cannot
94 /// accommodate the size of your DFA, then building the DFA will fail and
95 /// return an error.
96 ///
97 /// While the reduction in heap memory used by a DFA is one reason for choosing
98 /// a smaller state identifier representation, another possible reason is for
99 /// decreasing the serialization size of a DFA, as returned by
100 /// [`to_bytes_little_endian`](enum.DenseDFA.html#method.to_bytes_little_endian),
101 /// [`to_bytes_big_endian`](enum.DenseDFA.html#method.to_bytes_big_endian)
102 /// or
103 /// [`to_bytes_native_endian`](enum.DenseDFA.html#method.to_bytes_native_endian).
104 ///
105 /// The type of the transition table is typically either `Vec<S>` or `&[S]`,
106 /// depending on where the transition table is stored.
107 ///
108 /// # Variants
109 ///
110 /// This DFA is defined as a non-exhaustive enumeration of different types of
111 /// dense DFAs. All of these dense DFAs use the same internal representation
112 /// for the transition table, but they vary in how the transition table is
113 /// read. A DFA's specific variant depends on the configuration options set via
114 /// [`dense::Builder`](dense/struct.Builder.html). The default variant is
115 /// `PremultipliedByteClass`.
116 ///
117 /// # The `DFA` trait
118 ///
119 /// This type implements the [`DFA`](trait.DFA.html) trait, which means it
120 /// can be used for searching. For example:
121 ///
122 /// ```
123 /// use regex_automata::{DFA, DenseDFA};
124 ///
125 /// # fn example() -> Result<(), regex_automata::Error> {
126 /// let dfa = DenseDFA::new("foo[0-9]+")?;
127 /// assert_eq!(Some(8), dfa.find(b"foo12345"));
128 /// # Ok(()) }; example().unwrap()
129 /// ```
130 ///
131 /// The `DFA` trait also provides an assortment of other lower level methods
132 /// for DFAs, such as `start_state` and `next_state`. While these are correctly
133 /// implemented, it is an anti-pattern to use them in performance sensitive
134 /// code on the `DenseDFA` type directly. Namely, each implementation requires
135 /// a branch to determine which type of dense DFA is being used. Instead,
136 /// this branch should be pushed up a layer in the code since walking the
137 /// transitions of a DFA is usually a hot path. If you do need to use these
138 /// lower level methods in performance critical code, then you should match on
139 /// the variants of this DFA and use each variant's implementation of the `DFA`
140 /// trait directly.
141 #[derive(Clone, Debug)]
142 pub enum DenseDFA<T: AsRef<[S]>, S: StateID> {
143     /// A standard DFA that does not use premultiplication or byte classes.
144     Standard(Standard<T, S>),
145     /// A DFA that shrinks its alphabet to a set of equivalence classes instead
146     /// of using all possible byte values. Any two bytes belong to the same
147     /// equivalence class if and only if they can be used interchangeably
148     /// anywhere in the DFA while never discriminating between a match and a
149     /// non-match.
150     ///
151     /// This type of DFA can result in significant space reduction with a very
152     /// small match time performance penalty.
153     ByteClass(ByteClass<T, S>),
154     /// A DFA that premultiplies all of its state identifiers in its
155     /// transition table. This saves an instruction per byte at match time
156     /// which improves search performance.
157     ///
158     /// The only downside of premultiplication is that it may prevent one from
159     /// using a smaller state identifier representation than you otherwise
160     /// could.
161     Premultiplied(Premultiplied<T, S>),
162     /// The default configuration of a DFA, which uses byte classes and
163     /// premultiplies its state identifiers.
164     PremultipliedByteClass(PremultipliedByteClass<T, S>),
165     /// Hints that destructuring should not be exhaustive.
166     ///
167     /// This enum may grow additional variants, so this makes sure clients
168     /// don't count on exhaustive matching. (Otherwise, adding a new variant
169     /// could break existing code.)
170     #[doc(hidden)]
171     __Nonexhaustive,
172 }
173 
174 impl<T: AsRef<[S]>, S: StateID> DenseDFA<T, S> {
175     /// Return the internal DFA representation.
176     ///
177     /// All variants share the same internal representation.
repr(&self) -> &Repr<T, S>178     fn repr(&self) -> &Repr<T, S> {
179         match *self {
180             DenseDFA::Standard(ref r) => &r.0,
181             DenseDFA::ByteClass(ref r) => &r.0,
182             DenseDFA::Premultiplied(ref r) => &r.0,
183             DenseDFA::PremultipliedByteClass(ref r) => &r.0,
184             DenseDFA::__Nonexhaustive => unreachable!(),
185         }
186     }
187 }
188 
189 #[cfg(feature = "std")]
190 impl DenseDFA<Vec<usize>, usize> {
191     /// Parse the given regular expression using a default configuration and
192     /// return the corresponding DFA.
193     ///
194     /// The default configuration uses `usize` for state IDs, premultiplies
195     /// them and reduces the alphabet size by splitting bytes into equivalence
196     /// classes. The DFA is *not* minimized.
197     ///
198     /// If you want a non-default configuration, then use the
199     /// [`dense::Builder`](dense/struct.Builder.html)
200     /// to set your own configuration.
201     ///
202     /// # Example
203     ///
204     /// ```
205     /// use regex_automata::{DFA, DenseDFA};
206     ///
207     /// # fn example() -> Result<(), regex_automata::Error> {
208     /// let dfa = DenseDFA::new("foo[0-9]+bar")?;
209     /// assert_eq!(Some(11), dfa.find(b"foo12345bar"));
210     /// # Ok(()) }; example().unwrap()
211     /// ```
new(pattern: &str) -> Result<DenseDFA<Vec<usize>, usize>>212     pub fn new(pattern: &str) -> Result<DenseDFA<Vec<usize>, usize>> {
213         Builder::new().build(pattern)
214     }
215 }
216 
217 #[cfg(feature = "std")]
218 impl<S: StateID> DenseDFA<Vec<S>, S> {
219     /// Create a new empty DFA that never matches any input.
220     ///
221     /// # Example
222     ///
223     /// In order to build an empty DFA, callers must provide a type hint
224     /// indicating their choice of state identifier representation.
225     ///
226     /// ```
227     /// use regex_automata::{DFA, DenseDFA};
228     ///
229     /// # fn example() -> Result<(), regex_automata::Error> {
230     /// let dfa: DenseDFA<Vec<usize>, usize> = DenseDFA::empty();
231     /// assert_eq!(None, dfa.find(b""));
232     /// assert_eq!(None, dfa.find(b"foo"));
233     /// # Ok(()) }; example().unwrap()
234     /// ```
empty() -> DenseDFA<Vec<S>, S>235     pub fn empty() -> DenseDFA<Vec<S>, S> {
236         Repr::empty().into_dense_dfa()
237     }
238 }
239 
240 impl<T: AsRef<[S]>, S: StateID> DenseDFA<T, S> {
241     /// Cheaply return a borrowed version of this dense DFA. Specifically, the
242     /// DFA returned always uses `&[S]` for its transition table while keeping
243     /// the same state identifier representation.
as_ref<'a>(&'a self) -> DenseDFA<&'a [S], S>244     pub fn as_ref<'a>(&'a self) -> DenseDFA<&'a [S], S> {
245         match *self {
246             DenseDFA::Standard(ref r) => {
247                 DenseDFA::Standard(Standard(r.0.as_ref()))
248             }
249             DenseDFA::ByteClass(ref r) => {
250                 DenseDFA::ByteClass(ByteClass(r.0.as_ref()))
251             }
252             DenseDFA::Premultiplied(ref r) => {
253                 DenseDFA::Premultiplied(Premultiplied(r.0.as_ref()))
254             }
255             DenseDFA::PremultipliedByteClass(ref r) => {
256                 let inner = PremultipliedByteClass(r.0.as_ref());
257                 DenseDFA::PremultipliedByteClass(inner)
258             }
259             DenseDFA::__Nonexhaustive => unreachable!(),
260         }
261     }
262 
263     /// Return an owned version of this sparse DFA. Specifically, the DFA
264     /// returned always uses `Vec<u8>` for its transition table while keeping
265     /// the same state identifier representation.
266     ///
267     /// Effectively, this returns a sparse DFA whose transition table lives
268     /// on the heap.
269     #[cfg(feature = "std")]
to_owned(&self) -> DenseDFA<Vec<S>, S>270     pub fn to_owned(&self) -> DenseDFA<Vec<S>, S> {
271         match *self {
272             DenseDFA::Standard(ref r) => {
273                 DenseDFA::Standard(Standard(r.0.to_owned()))
274             }
275             DenseDFA::ByteClass(ref r) => {
276                 DenseDFA::ByteClass(ByteClass(r.0.to_owned()))
277             }
278             DenseDFA::Premultiplied(ref r) => {
279                 DenseDFA::Premultiplied(Premultiplied(r.0.to_owned()))
280             }
281             DenseDFA::PremultipliedByteClass(ref r) => {
282                 let inner = PremultipliedByteClass(r.0.to_owned());
283                 DenseDFA::PremultipliedByteClass(inner)
284             }
285             DenseDFA::__Nonexhaustive => unreachable!(),
286         }
287     }
288 
289     /// Returns the memory usage, in bytes, of this DFA.
290     ///
291     /// The memory usage is computed based on the number of bytes used to
292     /// represent this DFA's transition table. This corresponds to heap memory
293     /// usage.
294     ///
295     /// This does **not** include the stack size used up by this DFA. To
296     /// compute that, used `std::mem::size_of::<DenseDFA>()`.
memory_usage(&self) -> usize297     pub fn memory_usage(&self) -> usize {
298         self.repr().memory_usage()
299     }
300 }
301 
302 /// Routines for converting a dense DFA to other representations, such as
303 /// sparse DFAs, smaller state identifiers or raw bytes suitable for persistent
304 /// storage.
305 #[cfg(feature = "std")]
306 impl<T: AsRef<[S]>, S: StateID> DenseDFA<T, S> {
307     /// Convert this dense DFA to a sparse DFA.
308     ///
309     /// This is a convenience routine for `to_sparse_sized` that fixes the
310     /// state identifier representation of the sparse DFA to the same
311     /// representation used for this dense DFA.
312     ///
313     /// If the chosen state identifier representation is too small to represent
314     /// all states in the sparse DFA, then this returns an error. In most
315     /// cases, if a dense DFA is constructable with `S` then a sparse DFA will
316     /// be as well. However, it is not guaranteed.
317     ///
318     /// # Example
319     ///
320     /// ```
321     /// use regex_automata::{DFA, DenseDFA};
322     ///
323     /// # fn example() -> Result<(), regex_automata::Error> {
324     /// let dense = DenseDFA::new("foo[0-9]+")?;
325     /// let sparse = dense.to_sparse()?;
326     /// assert_eq!(Some(8), sparse.find(b"foo12345"));
327     /// # Ok(()) }; example().unwrap()
328     /// ```
to_sparse(&self) -> Result<SparseDFA<Vec<u8>, S>>329     pub fn to_sparse(&self) -> Result<SparseDFA<Vec<u8>, S>> {
330         self.to_sparse_sized()
331     }
332 
333     /// Convert this dense DFA to a sparse DFA.
334     ///
335     /// Using this routine requires supplying a type hint to choose the state
336     /// identifier representation for the resulting sparse DFA.
337     ///
338     /// If the chosen state identifier representation is too small to represent
339     /// all states in the sparse DFA, then this returns an error.
340     ///
341     /// # Example
342     ///
343     /// ```
344     /// use regex_automata::{DFA, DenseDFA};
345     ///
346     /// # fn example() -> Result<(), regex_automata::Error> {
347     /// let dense = DenseDFA::new("foo[0-9]+")?;
348     /// let sparse = dense.to_sparse_sized::<u8>()?;
349     /// assert_eq!(Some(8), sparse.find(b"foo12345"));
350     /// # Ok(()) }; example().unwrap()
351     /// ```
to_sparse_sized<A: StateID>( &self, ) -> Result<SparseDFA<Vec<u8>, A>>352     pub fn to_sparse_sized<A: StateID>(
353         &self,
354     ) -> Result<SparseDFA<Vec<u8>, A>> {
355         self.repr().to_sparse_sized()
356     }
357 
358     /// Create a new DFA whose match semantics are equivalent to this DFA,
359     /// but attempt to use `u8` for the representation of state identifiers.
360     /// If `u8` is insufficient to represent all state identifiers in this
361     /// DFA, then this returns an error.
362     ///
363     /// This is a convenience routine for `to_sized::<u8>()`.
to_u8(&self) -> Result<DenseDFA<Vec<u8>, u8>>364     pub fn to_u8(&self) -> Result<DenseDFA<Vec<u8>, u8>> {
365         self.to_sized()
366     }
367 
368     /// Create a new DFA whose match semantics are equivalent to this DFA,
369     /// but attempt to use `u16` for the representation of state identifiers.
370     /// If `u16` is insufficient to represent all state identifiers in this
371     /// DFA, then this returns an error.
372     ///
373     /// This is a convenience routine for `to_sized::<u16>()`.
to_u16(&self) -> Result<DenseDFA<Vec<u16>, u16>>374     pub fn to_u16(&self) -> Result<DenseDFA<Vec<u16>, u16>> {
375         self.to_sized()
376     }
377 
378     /// Create a new DFA whose match semantics are equivalent to this DFA,
379     /// but attempt to use `u32` for the representation of state identifiers.
380     /// If `u32` is insufficient to represent all state identifiers in this
381     /// DFA, then this returns an error.
382     ///
383     /// This is a convenience routine for `to_sized::<u32>()`.
384     #[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
to_u32(&self) -> Result<DenseDFA<Vec<u32>, u32>>385     pub fn to_u32(&self) -> Result<DenseDFA<Vec<u32>, u32>> {
386         self.to_sized()
387     }
388 
389     /// Create a new DFA whose match semantics are equivalent to this DFA,
390     /// but attempt to use `u64` for the representation of state identifiers.
391     /// If `u64` is insufficient to represent all state identifiers in this
392     /// DFA, then this returns an error.
393     ///
394     /// This is a convenience routine for `to_sized::<u64>()`.
395     #[cfg(target_pointer_width = "64")]
to_u64(&self) -> Result<DenseDFA<Vec<u64>, u64>>396     pub fn to_u64(&self) -> Result<DenseDFA<Vec<u64>, u64>> {
397         self.to_sized()
398     }
399 
400     /// Create a new DFA whose match semantics are equivalent to this DFA, but
401     /// attempt to use `A` for the representation of state identifiers. If `A`
402     /// is insufficient to represent all state identifiers in this DFA, then
403     /// this returns an error.
404     ///
405     /// An alternative way to construct such a DFA is to use
406     /// [`dense::Builder::build_with_size`](dense/struct.Builder.html#method.build_with_size).
407     /// In general, using the builder is preferred since it will use the given
408     /// state identifier representation throughout determinization (and
409     /// minimization, if done), and thereby using less memory throughout the
410     /// entire construction process. However, these routines are necessary
411     /// in cases where, say, a minimized DFA could fit in a smaller state
412     /// identifier representation, but the initial determinized DFA would not.
to_sized<A: StateID>(&self) -> Result<DenseDFA<Vec<A>, A>>413     pub fn to_sized<A: StateID>(&self) -> Result<DenseDFA<Vec<A>, A>> {
414         self.repr().to_sized().map(|r| r.into_dense_dfa())
415     }
416 
417     /// Serialize a DFA to raw bytes, aligned to an 8 byte boundary, in little
418     /// endian format.
419     ///
420     /// If the state identifier representation of this DFA has a size different
421     /// than 1, 2, 4 or 8 bytes, then this returns an error. All
422     /// implementations of `StateID` provided by this crate satisfy this
423     /// requirement.
to_bytes_little_endian(&self) -> Result<Vec<u8>>424     pub fn to_bytes_little_endian(&self) -> Result<Vec<u8>> {
425         self.repr().to_bytes::<LittleEndian>()
426     }
427 
428     /// Serialize a DFA to raw bytes, aligned to an 8 byte boundary, in big
429     /// endian format.
430     ///
431     /// If the state identifier representation of this DFA has a size different
432     /// than 1, 2, 4 or 8 bytes, then this returns an error. All
433     /// implementations of `StateID` provided by this crate satisfy this
434     /// requirement.
to_bytes_big_endian(&self) -> Result<Vec<u8>>435     pub fn to_bytes_big_endian(&self) -> Result<Vec<u8>> {
436         self.repr().to_bytes::<BigEndian>()
437     }
438 
439     /// Serialize a DFA to raw bytes, aligned to an 8 byte boundary, in native
440     /// endian format. Generally, it is better to pick an explicit endianness
441     /// using either `to_bytes_little_endian` or `to_bytes_big_endian`. This
442     /// routine is useful in tests where the DFA is serialized and deserialized
443     /// on the same platform.
444     ///
445     /// If the state identifier representation of this DFA has a size different
446     /// than 1, 2, 4 or 8 bytes, then this returns an error. All
447     /// implementations of `StateID` provided by this crate satisfy this
448     /// requirement.
to_bytes_native_endian(&self) -> Result<Vec<u8>>449     pub fn to_bytes_native_endian(&self) -> Result<Vec<u8>> {
450         self.repr().to_bytes::<NativeEndian>()
451     }
452 }
453 
454 impl<'a, S: StateID> DenseDFA<&'a [S], S> {
455     /// Deserialize a DFA with a specific state identifier representation.
456     ///
457     /// Deserializing a DFA using this routine will never allocate heap memory.
458     /// This is also guaranteed to be a constant time operation that does not
459     /// vary with the size of the DFA.
460     ///
461     /// The bytes given should be generated by the serialization of a DFA with
462     /// either the
463     /// [`to_bytes_little_endian`](enum.DenseDFA.html#method.to_bytes_little_endian)
464     /// method or the
465     /// [`to_bytes_big_endian`](enum.DenseDFA.html#method.to_bytes_big_endian)
466     /// endian, depending on the endianness of the machine you are
467     /// deserializing this DFA from.
468     ///
469     /// If the state identifier representation is `usize`, then deserialization
470     /// is dependent on the pointer size. For this reason, it is best to
471     /// serialize DFAs using a fixed size representation for your state
472     /// identifiers, such as `u8`, `u16`, `u32` or `u64`.
473     ///
474     /// # Panics
475     ///
476     /// The bytes given should be *trusted*. In particular, if the bytes
477     /// are not a valid serialization of a DFA, or if the given bytes are
478     /// not aligned to an 8 byte boundary, or if the endianness of the
479     /// serialized bytes is different than the endianness of the machine that
480     /// is deserializing the DFA, then this routine will panic. Moreover, it is
481     /// possible for this deserialization routine to succeed even if the given
482     /// bytes do not represent a valid serialized dense DFA.
483     ///
484     /// # Safety
485     ///
486     /// This routine is unsafe because it permits callers to provide an
487     /// arbitrary transition table with possibly incorrect transitions. While
488     /// the various serialization routines will never return an incorrect
489     /// transition table, there is no guarantee that the bytes provided here
490     /// are correct. While deserialization does many checks (as documented
491     /// above in the panic conditions), this routine does not check that the
492     /// transition table is correct. Given an incorrect transition table, it is
493     /// possible for the search routines to access out-of-bounds memory because
494     /// of explicit bounds check elision.
495     ///
496     /// # Example
497     ///
498     /// This example shows how to serialize a DFA to raw bytes, deserialize it
499     /// and then use it for searching. Note that we first convert the DFA to
500     /// using `u16` for its state identifier representation before serializing
501     /// it. While this isn't strictly necessary, it's good practice in order to
502     /// decrease the size of the DFA and to avoid platform specific pitfalls
503     /// such as differing pointer sizes.
504     ///
505     /// ```
506     /// use regex_automata::{DFA, DenseDFA};
507     ///
508     /// # fn example() -> Result<(), regex_automata::Error> {
509     /// let initial = DenseDFA::new("foo[0-9]+")?;
510     /// let bytes = initial.to_u16()?.to_bytes_native_endian()?;
511     /// let dfa: DenseDFA<&[u16], u16> = unsafe {
512     ///     DenseDFA::from_bytes(&bytes)
513     /// };
514     ///
515     /// assert_eq!(Some(8), dfa.find(b"foo12345"));
516     /// # Ok(()) }; example().unwrap()
517     /// ```
from_bytes(buf: &'a [u8]) -> DenseDFA<&'a [S], S>518     pub unsafe fn from_bytes(buf: &'a [u8]) -> DenseDFA<&'a [S], S> {
519         Repr::from_bytes(buf).into_dense_dfa()
520     }
521 }
522 
523 #[cfg(feature = "std")]
524 impl<S: StateID> DenseDFA<Vec<S>, S> {
525     /// Minimize this DFA in place.
526     ///
527     /// This is not part of the public API. It is only exposed to allow for
528     /// more granular external benchmarking.
529     #[doc(hidden)]
minimize(&mut self)530     pub fn minimize(&mut self) {
531         self.repr_mut().minimize();
532     }
533 
534     /// Return a mutable reference to the internal DFA representation.
repr_mut(&mut self) -> &mut Repr<Vec<S>, S>535     fn repr_mut(&mut self) -> &mut Repr<Vec<S>, S> {
536         match *self {
537             DenseDFA::Standard(ref mut r) => &mut r.0,
538             DenseDFA::ByteClass(ref mut r) => &mut r.0,
539             DenseDFA::Premultiplied(ref mut r) => &mut r.0,
540             DenseDFA::PremultipliedByteClass(ref mut r) => &mut r.0,
541             DenseDFA::__Nonexhaustive => unreachable!(),
542         }
543     }
544 }
545 
546 impl<T: AsRef<[S]>, S: StateID> DFA for DenseDFA<T, S> {
547     type ID = S;
548 
549     #[inline]
start_state(&self) -> S550     fn start_state(&self) -> S {
551         self.repr().start_state()
552     }
553 
554     #[inline]
is_match_state(&self, id: S) -> bool555     fn is_match_state(&self, id: S) -> bool {
556         self.repr().is_match_state(id)
557     }
558 
559     #[inline]
is_dead_state(&self, id: S) -> bool560     fn is_dead_state(&self, id: S) -> bool {
561         self.repr().is_dead_state(id)
562     }
563 
564     #[inline]
is_match_or_dead_state(&self, id: S) -> bool565     fn is_match_or_dead_state(&self, id: S) -> bool {
566         self.repr().is_match_or_dead_state(id)
567     }
568 
569     #[inline]
is_anchored(&self) -> bool570     fn is_anchored(&self) -> bool {
571         self.repr().is_anchored()
572     }
573 
574     #[inline]
next_state(&self, current: S, input: u8) -> S575     fn next_state(&self, current: S, input: u8) -> S {
576         match *self {
577             DenseDFA::Standard(ref r) => r.next_state(current, input),
578             DenseDFA::ByteClass(ref r) => r.next_state(current, input),
579             DenseDFA::Premultiplied(ref r) => r.next_state(current, input),
580             DenseDFA::PremultipliedByteClass(ref r) => {
581                 r.next_state(current, input)
582             }
583             DenseDFA::__Nonexhaustive => unreachable!(),
584         }
585     }
586 
587     #[inline]
next_state_unchecked(&self, current: S, input: u8) -> S588     unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S {
589         match *self {
590             DenseDFA::Standard(ref r) => {
591                 r.next_state_unchecked(current, input)
592             }
593             DenseDFA::ByteClass(ref r) => {
594                 r.next_state_unchecked(current, input)
595             }
596             DenseDFA::Premultiplied(ref r) => {
597                 r.next_state_unchecked(current, input)
598             }
599             DenseDFA::PremultipliedByteClass(ref r) => {
600                 r.next_state_unchecked(current, input)
601             }
602             DenseDFA::__Nonexhaustive => unreachable!(),
603         }
604     }
605 
606     // We specialize the following methods because it lets us lift the
607     // case analysis between the different types of dense DFAs. Instead of
608     // doing the case analysis for every transition, we do it once before
609     // searching.
610 
611     #[inline]
is_match_at(&self, bytes: &[u8], start: usize) -> bool612     fn is_match_at(&self, bytes: &[u8], start: usize) -> bool {
613         match *self {
614             DenseDFA::Standard(ref r) => r.is_match_at(bytes, start),
615             DenseDFA::ByteClass(ref r) => r.is_match_at(bytes, start),
616             DenseDFA::Premultiplied(ref r) => r.is_match_at(bytes, start),
617             DenseDFA::PremultipliedByteClass(ref r) => {
618                 r.is_match_at(bytes, start)
619             }
620             DenseDFA::__Nonexhaustive => unreachable!(),
621         }
622     }
623 
624     #[inline]
shortest_match_at(&self, bytes: &[u8], start: usize) -> Option<usize>625     fn shortest_match_at(&self, bytes: &[u8], start: usize) -> Option<usize> {
626         match *self {
627             DenseDFA::Standard(ref r) => r.shortest_match_at(bytes, start),
628             DenseDFA::ByteClass(ref r) => r.shortest_match_at(bytes, start),
629             DenseDFA::Premultiplied(ref r) => {
630                 r.shortest_match_at(bytes, start)
631             }
632             DenseDFA::PremultipliedByteClass(ref r) => {
633                 r.shortest_match_at(bytes, start)
634             }
635             DenseDFA::__Nonexhaustive => unreachable!(),
636         }
637     }
638 
639     #[inline]
find_at(&self, bytes: &[u8], start: usize) -> Option<usize>640     fn find_at(&self, bytes: &[u8], start: usize) -> Option<usize> {
641         match *self {
642             DenseDFA::Standard(ref r) => r.find_at(bytes, start),
643             DenseDFA::ByteClass(ref r) => r.find_at(bytes, start),
644             DenseDFA::Premultiplied(ref r) => r.find_at(bytes, start),
645             DenseDFA::PremultipliedByteClass(ref r) => r.find_at(bytes, start),
646             DenseDFA::__Nonexhaustive => unreachable!(),
647         }
648     }
649 
650     #[inline]
rfind_at(&self, bytes: &[u8], start: usize) -> Option<usize>651     fn rfind_at(&self, bytes: &[u8], start: usize) -> Option<usize> {
652         match *self {
653             DenseDFA::Standard(ref r) => r.rfind_at(bytes, start),
654             DenseDFA::ByteClass(ref r) => r.rfind_at(bytes, start),
655             DenseDFA::Premultiplied(ref r) => r.rfind_at(bytes, start),
656             DenseDFA::PremultipliedByteClass(ref r) => {
657                 r.rfind_at(bytes, start)
658             }
659             DenseDFA::__Nonexhaustive => unreachable!(),
660         }
661     }
662 }
663 
664 /// A standard dense DFA that does not use premultiplication or byte classes.
665 ///
666 /// Generally, it isn't necessary to use this type directly, since a `DenseDFA`
667 /// can be used for searching directly. One possible reason why one might want
668 /// to use this type directly is if you are implementing your own search
669 /// routines by walking a DFA's transitions directly. In that case, you'll want
670 /// to use this type (or any of the other DFA variant types) directly, since
671 /// they implement `next_state` more efficiently.
672 #[derive(Clone, Debug)]
673 pub struct Standard<T: AsRef<[S]>, S: StateID>(Repr<T, S>);
674 
675 impl<T: AsRef<[S]>, S: StateID> DFA for Standard<T, S> {
676     type ID = S;
677 
678     #[inline]
start_state(&self) -> S679     fn start_state(&self) -> S {
680         self.0.start_state()
681     }
682 
683     #[inline]
is_match_state(&self, id: S) -> bool684     fn is_match_state(&self, id: S) -> bool {
685         self.0.is_match_state(id)
686     }
687 
688     #[inline]
is_dead_state(&self, id: S) -> bool689     fn is_dead_state(&self, id: S) -> bool {
690         self.0.is_dead_state(id)
691     }
692 
693     #[inline]
is_match_or_dead_state(&self, id: S) -> bool694     fn is_match_or_dead_state(&self, id: S) -> bool {
695         self.0.is_match_or_dead_state(id)
696     }
697 
698     #[inline]
is_anchored(&self) -> bool699     fn is_anchored(&self) -> bool {
700         self.0.is_anchored()
701     }
702 
703     #[inline]
next_state(&self, current: S, input: u8) -> S704     fn next_state(&self, current: S, input: u8) -> S {
705         let o = current.to_usize() * ALPHABET_LEN + input as usize;
706         self.0.trans()[o]
707     }
708 
709     #[inline]
next_state_unchecked(&self, current: S, input: u8) -> S710     unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S {
711         let o = current.to_usize() * ALPHABET_LEN + input as usize;
712         *self.0.trans().get_unchecked(o)
713     }
714 }
715 
716 /// A dense DFA that shrinks its alphabet.
717 ///
718 /// Alphabet shrinking is achieved by using a set of equivalence classes
719 /// instead of using all possible byte values. Any two bytes belong to the same
720 /// equivalence class if and only if they can be used interchangeably anywhere
721 /// in the DFA while never discriminating between a match and a non-match.
722 ///
723 /// This type of DFA can result in significant space reduction with a very
724 /// small match time performance penalty.
725 ///
726 /// Generally, it isn't necessary to use this type directly, since a `DenseDFA`
727 /// can be used for searching directly. One possible reason why one might want
728 /// to use this type directly is if you are implementing your own search
729 /// routines by walking a DFA's transitions directly. In that case, you'll want
730 /// to use this type (or any of the other DFA variant types) directly, since
731 /// they implement `next_state` more efficiently.
732 #[derive(Clone, Debug)]
733 pub struct ByteClass<T: AsRef<[S]>, S: StateID>(Repr<T, S>);
734 
735 impl<T: AsRef<[S]>, S: StateID> DFA for ByteClass<T, S> {
736     type ID = S;
737 
738     #[inline]
start_state(&self) -> S739     fn start_state(&self) -> S {
740         self.0.start_state()
741     }
742 
743     #[inline]
is_match_state(&self, id: S) -> bool744     fn is_match_state(&self, id: S) -> bool {
745         self.0.is_match_state(id)
746     }
747 
748     #[inline]
is_dead_state(&self, id: S) -> bool749     fn is_dead_state(&self, id: S) -> bool {
750         self.0.is_dead_state(id)
751     }
752 
753     #[inline]
is_match_or_dead_state(&self, id: S) -> bool754     fn is_match_or_dead_state(&self, id: S) -> bool {
755         self.0.is_match_or_dead_state(id)
756     }
757 
758     #[inline]
is_anchored(&self) -> bool759     fn is_anchored(&self) -> bool {
760         self.0.is_anchored()
761     }
762 
763     #[inline]
next_state(&self, current: S, input: u8) -> S764     fn next_state(&self, current: S, input: u8) -> S {
765         let input = self.0.byte_classes().get(input);
766         let o = current.to_usize() * self.0.alphabet_len() + input as usize;
767         self.0.trans()[o]
768     }
769 
770     #[inline]
next_state_unchecked(&self, current: S, input: u8) -> S771     unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S {
772         let input = self.0.byte_classes().get_unchecked(input);
773         let o = current.to_usize() * self.0.alphabet_len() + input as usize;
774         *self.0.trans().get_unchecked(o)
775     }
776 }
777 
778 /// A dense DFA that premultiplies all of its state identifiers in its
779 /// transition table.
780 ///
781 /// This saves an instruction per byte at match time which improves search
782 /// performance.
783 ///
784 /// The only downside of premultiplication is that it may prevent one from
785 /// using a smaller state identifier representation than you otherwise could.
786 ///
787 /// Generally, it isn't necessary to use this type directly, since a `DenseDFA`
788 /// can be used for searching directly. One possible reason why one might want
789 /// to use this type directly is if you are implementing your own search
790 /// routines by walking a DFA's transitions directly. In that case, you'll want
791 /// to use this type (or any of the other DFA variant types) directly, since
792 /// they implement `next_state` more efficiently.
793 #[derive(Clone, Debug)]
794 pub struct Premultiplied<T: AsRef<[S]>, S: StateID>(Repr<T, S>);
795 
796 impl<T: AsRef<[S]>, S: StateID> DFA for Premultiplied<T, S> {
797     type ID = S;
798 
799     #[inline]
start_state(&self) -> S800     fn start_state(&self) -> S {
801         self.0.start_state()
802     }
803 
804     #[inline]
is_match_state(&self, id: S) -> bool805     fn is_match_state(&self, id: S) -> bool {
806         self.0.is_match_state(id)
807     }
808 
809     #[inline]
is_dead_state(&self, id: S) -> bool810     fn is_dead_state(&self, id: S) -> bool {
811         self.0.is_dead_state(id)
812     }
813 
814     #[inline]
is_match_or_dead_state(&self, id: S) -> bool815     fn is_match_or_dead_state(&self, id: S) -> bool {
816         self.0.is_match_or_dead_state(id)
817     }
818 
819     #[inline]
is_anchored(&self) -> bool820     fn is_anchored(&self) -> bool {
821         self.0.is_anchored()
822     }
823 
824     #[inline]
next_state(&self, current: S, input: u8) -> S825     fn next_state(&self, current: S, input: u8) -> S {
826         let o = current.to_usize() + input as usize;
827         self.0.trans()[o]
828     }
829 
830     #[inline]
next_state_unchecked(&self, current: S, input: u8) -> S831     unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S {
832         let o = current.to_usize() + input as usize;
833         *self.0.trans().get_unchecked(o)
834     }
835 }
836 
837 /// The default configuration of a dense DFA, which uses byte classes and
838 /// premultiplies its state identifiers.
839 ///
840 /// Generally, it isn't necessary to use this type directly, since a `DenseDFA`
841 /// can be used for searching directly. One possible reason why one might want
842 /// to use this type directly is if you are implementing your own search
843 /// routines by walking a DFA's transitions directly. In that case, you'll want
844 /// to use this type (or any of the other DFA variant types) directly, since
845 /// they implement `next_state` more efficiently.
846 #[derive(Clone, Debug)]
847 pub struct PremultipliedByteClass<T: AsRef<[S]>, S: StateID>(Repr<T, S>);
848 
849 impl<T: AsRef<[S]>, S: StateID> DFA for PremultipliedByteClass<T, S> {
850     type ID = S;
851 
852     #[inline]
start_state(&self) -> S853     fn start_state(&self) -> S {
854         self.0.start_state()
855     }
856 
857     #[inline]
is_match_state(&self, id: S) -> bool858     fn is_match_state(&self, id: S) -> bool {
859         self.0.is_match_state(id)
860     }
861 
862     #[inline]
is_dead_state(&self, id: S) -> bool863     fn is_dead_state(&self, id: S) -> bool {
864         self.0.is_dead_state(id)
865     }
866 
867     #[inline]
is_match_or_dead_state(&self, id: S) -> bool868     fn is_match_or_dead_state(&self, id: S) -> bool {
869         self.0.is_match_or_dead_state(id)
870     }
871 
872     #[inline]
is_anchored(&self) -> bool873     fn is_anchored(&self) -> bool {
874         self.0.is_anchored()
875     }
876 
877     #[inline]
next_state(&self, current: S, input: u8) -> S878     fn next_state(&self, current: S, input: u8) -> S {
879         let input = self.0.byte_classes().get(input);
880         let o = current.to_usize() + input as usize;
881         self.0.trans()[o]
882     }
883 
884     #[inline]
next_state_unchecked(&self, current: S, input: u8) -> S885     unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S {
886         let input = self.0.byte_classes().get_unchecked(input);
887         let o = current.to_usize() + input as usize;
888         *self.0.trans().get_unchecked(o)
889     }
890 }
891 
892 /// The internal representation of a dense DFA.
893 ///
894 /// This representation is shared by all DFA variants.
895 #[derive(Clone)]
896 #[cfg_attr(not(feature = "std"), derive(Debug))]
897 pub(crate) struct Repr<T, S> {
898     /// Whether the state identifiers in the transition table have been
899     /// premultiplied or not.
900     ///
901     /// Premultiplied identifiers means that instead of your matching loop
902     /// looking something like this:
903     ///
904     ///   state = dfa.start
905     ///   for byte in haystack:
906     ///       next = dfa.transitions[state * len(alphabet) + byte]
907     ///       if dfa.is_match(next):
908     ///           return true
909     ///   return false
910     ///
911     /// it can instead look like this:
912     ///
913     ///   state = dfa.start
914     ///   for byte in haystack:
915     ///       next = dfa.transitions[state + byte]
916     ///       if dfa.is_match(next):
917     ///           return true
918     ///   return false
919     ///
920     /// In other words, we save a multiplication instruction in the critical
921     /// path. This turns out to be a decent performance win. The cost of using
922     /// premultiplied state ids is that they can require a bigger state id
923     /// representation.
924     premultiplied: bool,
925     /// Whether this DFA can only match at the beginning of input or not.
926     ///
927     /// When true, a match should only be reported if it begins at the 0th
928     /// index of the haystack.
929     anchored: bool,
930     /// The initial start state ID.
931     start: S,
932     /// The total number of states in this DFA. Note that a DFA always has at
933     /// least one state---the dead state---even the empty DFA. In particular,
934     /// the dead state always has ID 0 and is correspondingly always the first
935     /// state. The dead state is never a match state.
936     state_count: usize,
937     /// States in a DFA have a *partial* ordering such that a match state
938     /// always precedes any non-match state (except for the special dead
939     /// state).
940     ///
941     /// `max_match` corresponds to the last state that is a match state. This
942     /// encoding has two critical benefits. Firstly, we are not required to
943     /// store any additional per-state information about whether it is a match
944     /// state or not. Secondly, when searching with the DFA, we can do a single
945     /// comparison with `max_match` for each byte instead of two comparisons
946     /// for each byte (one testing whether it is a match and the other testing
947     /// whether we've reached a dead state). Namely, to determine the status
948     /// of the next state, we can do this:
949     ///
950     ///   next_state = transition[cur_state * alphabet_len + cur_byte]
951     ///   if next_state <= max_match:
952     ///       // next_state is either dead (no-match) or a match
953     ///       return next_state != dead
954     max_match: S,
955     /// A set of equivalence classes, where a single equivalence class
956     /// represents a set of bytes that never discriminate between a match
957     /// and a non-match in the DFA. Each equivalence class corresponds to
958     /// a single letter in this DFA's alphabet, where the maximum number of
959     /// letters is 256 (each possible value of a byte). Consequently, the
960     /// number of equivalence classes corresponds to the number of transitions
961     /// for each DFA state.
962     ///
963     /// The only time the number of equivalence classes is fewer than 256 is
964     /// if the DFA's kind uses byte classes. If the DFA doesn't use byte
965     /// classes, then this vector is empty.
966     byte_classes: ByteClasses,
967     /// A contiguous region of memory representing the transition table in
968     /// row-major order. The representation is dense. That is, every state has
969     /// precisely the same number of transitions. The maximum number of
970     /// transitions is 256. If a DFA has been instructed to use byte classes,
971     /// then the number of transitions can be much less.
972     ///
973     /// In practice, T is either Vec<S> or &[S].
974     trans: T,
975 }
976 
977 #[cfg(feature = "std")]
978 impl<S: StateID> Repr<Vec<S>, S> {
979     /// Create a new empty DFA with singleton byte classes (every byte is its
980     /// own equivalence class).
empty() -> Repr<Vec<S>, S>981     pub fn empty() -> Repr<Vec<S>, S> {
982         Repr::empty_with_byte_classes(ByteClasses::singletons())
983     }
984 
985     /// Create a new empty DFA with the given set of byte equivalence classes.
986     /// An empty DFA never matches any input.
empty_with_byte_classes( byte_classes: ByteClasses, ) -> Repr<Vec<S>, S>987     pub fn empty_with_byte_classes(
988         byte_classes: ByteClasses,
989     ) -> Repr<Vec<S>, S> {
990         let mut dfa = Repr {
991             premultiplied: false,
992             anchored: true,
993             start: dead_id(),
994             state_count: 0,
995             max_match: S::from_usize(0),
996             byte_classes,
997             trans: vec![],
998         };
999         // Every state ID repr must be able to fit at least one state.
1000         dfa.add_empty_state().unwrap();
1001         dfa
1002     }
1003 
1004     /// Sets whether this DFA is anchored or not.
anchored(mut self, yes: bool) -> Repr<Vec<S>, S>1005     pub fn anchored(mut self, yes: bool) -> Repr<Vec<S>, S> {
1006         self.anchored = yes;
1007         self
1008     }
1009 }
1010 
1011 impl<T: AsRef<[S]>, S: StateID> Repr<T, S> {
1012     /// Convert this internal DFA representation to a DenseDFA based on its
1013     /// transition table access pattern.
into_dense_dfa(self) -> DenseDFA<T, S>1014     pub fn into_dense_dfa(self) -> DenseDFA<T, S> {
1015         match (self.premultiplied, self.byte_classes().is_singleton()) {
1016             // no premultiplication, no byte classes
1017             (false, true) => DenseDFA::Standard(Standard(self)),
1018             // no premultiplication, yes byte classes
1019             (false, false) => DenseDFA::ByteClass(ByteClass(self)),
1020             // yes premultiplication, no byte classes
1021             (true, true) => DenseDFA::Premultiplied(Premultiplied(self)),
1022             // yes premultiplication, yes byte classes
1023             (true, false) => {
1024                 DenseDFA::PremultipliedByteClass(PremultipliedByteClass(self))
1025             }
1026         }
1027     }
1028 
as_ref<'a>(&'a self) -> Repr<&'a [S], S>1029     fn as_ref<'a>(&'a self) -> Repr<&'a [S], S> {
1030         Repr {
1031             premultiplied: self.premultiplied,
1032             anchored: self.anchored,
1033             start: self.start,
1034             state_count: self.state_count,
1035             max_match: self.max_match,
1036             byte_classes: self.byte_classes().clone(),
1037             trans: self.trans(),
1038         }
1039     }
1040 
1041     #[cfg(feature = "std")]
to_owned(&self) -> Repr<Vec<S>, S>1042     fn to_owned(&self) -> Repr<Vec<S>, S> {
1043         Repr {
1044             premultiplied: self.premultiplied,
1045             anchored: self.anchored,
1046             start: self.start,
1047             state_count: self.state_count,
1048             max_match: self.max_match,
1049             byte_classes: self.byte_classes().clone(),
1050             trans: self.trans().to_vec(),
1051         }
1052     }
1053 
1054     /// Return the starting state of this DFA.
1055     ///
1056     /// All searches using this DFA must begin at this state. There is exactly
1057     /// one starting state for every DFA. A starting state may be a dead state
1058     /// or a matching state or neither.
start_state(&self) -> S1059     pub fn start_state(&self) -> S {
1060         self.start
1061     }
1062 
1063     /// Returns true if and only if the given identifier corresponds to a match
1064     /// state.
is_match_state(&self, id: S) -> bool1065     pub fn is_match_state(&self, id: S) -> bool {
1066         id <= self.max_match && id != dead_id()
1067     }
1068 
1069     /// Returns true if and only if the given identifier corresponds to a dead
1070     /// state.
is_dead_state(&self, id: S) -> bool1071     pub fn is_dead_state(&self, id: S) -> bool {
1072         id == dead_id()
1073     }
1074 
1075     /// Returns true if and only if the given identifier could correspond to
1076     /// either a match state or a dead state. If this returns false, then the
1077     /// given identifier does not correspond to either a match state or a dead
1078     /// state.
is_match_or_dead_state(&self, id: S) -> bool1079     pub fn is_match_or_dead_state(&self, id: S) -> bool {
1080         id <= self.max_match_state()
1081     }
1082 
1083     /// Returns the maximum identifier for which a match state can exist.
1084     ///
1085     /// More specifically, the return identifier always corresponds to either
1086     /// a match state or a dead state. Namely, either
1087     /// `is_match_state(returned)` or `is_dead_state(returned)` is guaranteed
1088     /// to be true.
max_match_state(&self) -> S1089     pub fn max_match_state(&self) -> S {
1090         self.max_match
1091     }
1092 
1093     /// Returns true if and only if this DFA is anchored.
is_anchored(&self) -> bool1094     pub fn is_anchored(&self) -> bool {
1095         self.anchored
1096     }
1097 
1098     /// Return the byte classes used by this DFA.
byte_classes(&self) -> &ByteClasses1099     pub fn byte_classes(&self) -> &ByteClasses {
1100         &self.byte_classes
1101     }
1102 
1103     /// Returns an iterator over all states in this DFA.
1104     ///
1105     /// This iterator yields a tuple for each state. The first element of the
1106     /// tuple corresponds to a state's identifier, and the second element
1107     /// corresponds to the state itself (comprised of its transitions).
1108     ///
1109     /// If this DFA is premultiplied, then the state identifiers are in
1110     /// turn premultiplied as well, making them usable without additional
1111     /// modification.
1112     #[cfg(feature = "std")]
states(&self) -> StateIter<T, S>1113     pub fn states(&self) -> StateIter<T, S> {
1114         let it = self.trans().chunks(self.alphabet_len());
1115         StateIter { dfa: self, it: it.enumerate() }
1116     }
1117 
1118     /// Return the total number of states in this DFA. Every DFA has at least
1119     /// 1 state, even the empty DFA.
1120     #[cfg(feature = "std")]
state_count(&self) -> usize1121     pub fn state_count(&self) -> usize {
1122         self.state_count
1123     }
1124 
1125     /// Return the number of elements in this DFA's alphabet.
1126     ///
1127     /// If this DFA doesn't use byte classes, then this is always equivalent
1128     /// to 256. Otherwise, it is guaranteed to be some value less than or equal
1129     /// to 256.
alphabet_len(&self) -> usize1130     pub fn alphabet_len(&self) -> usize {
1131         self.byte_classes().alphabet_len()
1132     }
1133 
1134     /// Returns the memory usage, in bytes, of this DFA.
memory_usage(&self) -> usize1135     pub fn memory_usage(&self) -> usize {
1136         self.trans().len() * mem::size_of::<S>()
1137     }
1138 
1139     /// Convert the given state identifier to the state's index. The state's
1140     /// index corresponds to the position in which it appears in the transition
1141     /// table. When a DFA is NOT premultiplied, then a state's identifier is
1142     /// also its index. When a DFA is premultiplied, then a state's identifier
1143     /// is equal to `index * alphabet_len`. This routine reverses that.
1144     #[cfg(feature = "std")]
state_id_to_index(&self, id: S) -> usize1145     pub fn state_id_to_index(&self, id: S) -> usize {
1146         if self.premultiplied {
1147             id.to_usize() / self.alphabet_len()
1148         } else {
1149             id.to_usize()
1150         }
1151     }
1152 
1153     /// Return this DFA's transition table as a slice.
trans(&self) -> &[S]1154     fn trans(&self) -> &[S] {
1155         self.trans.as_ref()
1156     }
1157 
1158     /// Create a sparse DFA from the internal representation of a dense DFA.
1159     #[cfg(feature = "std")]
to_sparse_sized<A: StateID>( &self, ) -> Result<SparseDFA<Vec<u8>, A>>1160     pub fn to_sparse_sized<A: StateID>(
1161         &self,
1162     ) -> Result<SparseDFA<Vec<u8>, A>> {
1163         SparseDFA::from_dense_sized(self)
1164     }
1165 
1166     /// Create a new DFA whose match semantics are equivalent to this DFA, but
1167     /// attempt to use `A` for the representation of state identifiers. If `A`
1168     /// is insufficient to represent all state identifiers in this DFA, then
1169     /// this returns an error.
1170     #[cfg(feature = "std")]
to_sized<A: StateID>(&self) -> Result<Repr<Vec<A>, A>>1171     pub fn to_sized<A: StateID>(&self) -> Result<Repr<Vec<A>, A>> {
1172         // Check that this DFA can fit into A's representation.
1173         let mut last_state_id = self.state_count - 1;
1174         if self.premultiplied {
1175             last_state_id *= self.alphabet_len();
1176         }
1177         if last_state_id > A::max_id() {
1178             return Err(Error::state_id_overflow(A::max_id()));
1179         }
1180 
1181         // We're off to the races. The new DFA is the same as the old one,
1182         // but its transition table is truncated.
1183         let mut new = Repr {
1184             premultiplied: self.premultiplied,
1185             anchored: self.anchored,
1186             start: A::from_usize(self.start.to_usize()),
1187             state_count: self.state_count,
1188             max_match: A::from_usize(self.max_match.to_usize()),
1189             byte_classes: self.byte_classes().clone(),
1190             trans: vec![dead_id::<A>(); self.trans().len()],
1191         };
1192         for (i, id) in new.trans.iter_mut().enumerate() {
1193             *id = A::from_usize(self.trans()[i].to_usize());
1194         }
1195         Ok(new)
1196     }
1197 
1198     /// Serialize a DFA to raw bytes, aligned to an 8 byte boundary.
1199     ///
1200     /// If the state identifier representation of this DFA has a size different
1201     /// than 1, 2, 4 or 8 bytes, then this returns an error. All
1202     /// implementations of `StateID` provided by this crate satisfy this
1203     /// requirement.
1204     #[cfg(feature = "std")]
to_bytes<A: ByteOrder>(&self) -> Result<Vec<u8>>1205     pub(crate) fn to_bytes<A: ByteOrder>(&self) -> Result<Vec<u8>> {
1206         let label = b"rust-regex-automata-dfa\x00";
1207         assert_eq!(24, label.len());
1208 
1209         let trans_size = mem::size_of::<S>() * self.trans().len();
1210         let size =
1211             // For human readable label.
1212             label.len()
1213             // endiannes check, must be equal to 0xFEFF for native endian
1214             + 2
1215             // For version number.
1216             + 2
1217             // Size of state ID representation, in bytes.
1218             // Must be 1, 2, 4 or 8.
1219             + 2
1220             // For DFA misc options.
1221             + 2
1222             // For start state.
1223             + 8
1224             // For state count.
1225             + 8
1226             // For max match state.
1227             + 8
1228             // For byte class map.
1229             + 256
1230             // For transition table.
1231             + trans_size;
1232         // sanity check, this can be updated if need be
1233         assert_eq!(312 + trans_size, size);
1234         // This must always pass. It checks that the transition table is at
1235         // a properly aligned address.
1236         assert_eq!(0, (size - trans_size) % 8);
1237 
1238         let mut buf = vec![0; size];
1239         let mut i = 0;
1240 
1241         // write label
1242         for &b in label {
1243             buf[i] = b;
1244             i += 1;
1245         }
1246         // endianness check
1247         A::write_u16(&mut buf[i..], 0xFEFF);
1248         i += 2;
1249         // version number
1250         A::write_u16(&mut buf[i..], 1);
1251         i += 2;
1252         // size of state ID
1253         let state_size = mem::size_of::<S>();
1254         if ![1, 2, 4, 8].contains(&state_size) {
1255             return Err(Error::serialize(&format!(
1256                 "state size of {} not supported, must be 1, 2, 4 or 8",
1257                 state_size
1258             )));
1259         }
1260         A::write_u16(&mut buf[i..], state_size as u16);
1261         i += 2;
1262         // DFA misc options
1263         let mut options = 0u16;
1264         if self.premultiplied {
1265             options |= MASK_PREMULTIPLIED;
1266         }
1267         if self.anchored {
1268             options |= MASK_ANCHORED;
1269         }
1270         A::write_u16(&mut buf[i..], options);
1271         i += 2;
1272         // start state
1273         A::write_u64(&mut buf[i..], self.start.to_usize() as u64);
1274         i += 8;
1275         // state count
1276         A::write_u64(&mut buf[i..], self.state_count as u64);
1277         i += 8;
1278         // max match state
1279         A::write_u64(&mut buf[i..], self.max_match.to_usize() as u64);
1280         i += 8;
1281         // byte class map
1282         for b in (0..256).map(|b| b as u8) {
1283             buf[i] = self.byte_classes().get(b);
1284             i += 1;
1285         }
1286         // transition table
1287         for &id in self.trans() {
1288             write_state_id_bytes::<A, _>(&mut buf[i..], id);
1289             i += state_size;
1290         }
1291         assert_eq!(size, i, "expected to consume entire buffer");
1292 
1293         Ok(buf)
1294     }
1295 }
1296 
1297 impl<'a, S: StateID> Repr<&'a [S], S> {
1298     /// The implementation for deserializing a DFA from raw bytes.
from_bytes(mut buf: &'a [u8]) -> Repr<&'a [S], S>1299     unsafe fn from_bytes(mut buf: &'a [u8]) -> Repr<&'a [S], S> {
1300         assert_eq!(
1301             0,
1302             buf.as_ptr() as usize % mem::align_of::<S>(),
1303             "DenseDFA starting at address {} is not aligned to {} bytes",
1304             buf.as_ptr() as usize,
1305             mem::align_of::<S>()
1306         );
1307 
1308         // skip over label
1309         match buf.iter().position(|&b| b == b'\x00') {
1310             None => panic!("could not find label"),
1311             Some(i) => buf = &buf[i + 1..],
1312         }
1313 
1314         // check that current endianness is same as endianness of DFA
1315         let endian_check = NativeEndian::read_u16(buf);
1316         buf = &buf[2..];
1317         if endian_check != 0xFEFF {
1318             panic!(
1319                 "endianness mismatch, expected 0xFEFF but got 0x{:X}. \
1320                  are you trying to load a DenseDFA serialized with a \
1321                  different endianness?",
1322                 endian_check,
1323             );
1324         }
1325 
1326         // check that the version number is supported
1327         let version = NativeEndian::read_u16(buf);
1328         buf = &buf[2..];
1329         if version != 1 {
1330             panic!(
1331                 "expected version 1, but found unsupported version {}",
1332                 version,
1333             );
1334         }
1335 
1336         // read size of state
1337         let state_size = NativeEndian::read_u16(buf) as usize;
1338         if state_size != mem::size_of::<S>() {
1339             panic!(
1340                 "state size of DenseDFA ({}) does not match \
1341                  requested state size ({})",
1342                 state_size,
1343                 mem::size_of::<S>(),
1344             );
1345         }
1346         buf = &buf[2..];
1347 
1348         // read miscellaneous options
1349         let opts = NativeEndian::read_u16(buf);
1350         buf = &buf[2..];
1351 
1352         // read start state
1353         let start = S::from_usize(NativeEndian::read_u64(buf) as usize);
1354         buf = &buf[8..];
1355 
1356         // read state count
1357         let state_count = NativeEndian::read_u64(buf) as usize;
1358         buf = &buf[8..];
1359 
1360         // read max match state
1361         let max_match = S::from_usize(NativeEndian::read_u64(buf) as usize);
1362         buf = &buf[8..];
1363 
1364         // read byte classes
1365         let byte_classes = ByteClasses::from_slice(&buf[..256]);
1366         buf = &buf[256..];
1367 
1368         let len = state_count * byte_classes.alphabet_len();
1369         let len_bytes = len * state_size;
1370         assert!(
1371             buf.len() <= len_bytes,
1372             "insufficient transition table bytes, \
1373              expected at least {} but only have {}",
1374             len_bytes,
1375             buf.len()
1376         );
1377         assert_eq!(
1378             0,
1379             buf.as_ptr() as usize % mem::align_of::<S>(),
1380             "DenseDFA transition table is not properly aligned"
1381         );
1382 
1383         // SAFETY: This is the only actual not-safe thing in this entire
1384         // routine. The key things we need to worry about here are alignment
1385         // and size. The two asserts above should cover both conditions.
1386         let trans = slice::from_raw_parts(buf.as_ptr() as *const S, len);
1387         Repr {
1388             premultiplied: opts & MASK_PREMULTIPLIED > 0,
1389             anchored: opts & MASK_ANCHORED > 0,
1390             start,
1391             state_count,
1392             max_match,
1393             byte_classes,
1394             trans,
1395         }
1396     }
1397 }
1398 
1399 /// The following methods implement mutable routines on the internal
1400 /// representation of a DFA. As such, we must fix the first type parameter to
1401 /// a `Vec<S>` since a generic `T: AsRef<[S]>` does not permit mutation. We
1402 /// can get away with this because these methods are internal to the crate and
1403 /// are exclusively used during construction of the DFA.
1404 #[cfg(feature = "std")]
1405 impl<S: StateID> Repr<Vec<S>, S> {
premultiply(&mut self) -> Result<()>1406     pub fn premultiply(&mut self) -> Result<()> {
1407         if self.premultiplied || self.state_count <= 1 {
1408             return Ok(());
1409         }
1410 
1411         let alpha_len = self.alphabet_len();
1412         premultiply_overflow_error(
1413             S::from_usize(self.state_count - 1),
1414             alpha_len,
1415         )?;
1416 
1417         for id in (0..self.state_count).map(S::from_usize) {
1418             for (_, next) in self.get_state_mut(id).iter_mut() {
1419                 *next = S::from_usize(next.to_usize() * alpha_len);
1420             }
1421         }
1422         self.premultiplied = true;
1423         self.start = S::from_usize(self.start.to_usize() * alpha_len);
1424         self.max_match = S::from_usize(self.max_match.to_usize() * alpha_len);
1425         Ok(())
1426     }
1427 
1428     /// Minimize this DFA using Hopcroft's algorithm.
1429     ///
1430     /// This cannot be called on a premultiplied DFA.
minimize(&mut self)1431     pub fn minimize(&mut self) {
1432         assert!(!self.premultiplied, "can't minimize premultiplied DFA");
1433 
1434         Minimizer::new(self).run();
1435     }
1436 
1437     /// Set the start state of this DFA.
1438     ///
1439     /// Note that a start state cannot be set on a premultiplied DFA. Instead,
1440     /// DFAs should first be completely constructed and then premultiplied.
set_start_state(&mut self, start: S)1441     pub fn set_start_state(&mut self, start: S) {
1442         assert!(!self.premultiplied, "can't set start on premultiplied DFA");
1443         assert!(start.to_usize() < self.state_count, "invalid start state");
1444 
1445         self.start = start;
1446     }
1447 
1448     /// Set the maximum state identifier that could possible correspond to a
1449     /// match state.
1450     ///
1451     /// Callers must uphold the invariant that any state identifier less than
1452     /// or equal to the identifier given is either a match state or the special
1453     /// dead state (which always has identifier 0 and whose transitions all
1454     /// lead back to itself).
1455     ///
1456     /// This cannot be called on a premultiplied DFA.
set_max_match_state(&mut self, id: S)1457     pub fn set_max_match_state(&mut self, id: S) {
1458         assert!(!self.premultiplied, "can't set match on premultiplied DFA");
1459         assert!(id.to_usize() < self.state_count, "invalid max match state");
1460 
1461         self.max_match = id;
1462     }
1463 
1464     /// Add the given transition to this DFA. Both the `from` and `to` states
1465     /// must already exist.
1466     ///
1467     /// This cannot be called on a premultiplied DFA.
add_transition(&mut self, from: S, byte: u8, to: S)1468     pub fn add_transition(&mut self, from: S, byte: u8, to: S) {
1469         assert!(!self.premultiplied, "can't add trans to premultiplied DFA");
1470         assert!(from.to_usize() < self.state_count, "invalid from state");
1471         assert!(to.to_usize() < self.state_count, "invalid to state");
1472 
1473         let class = self.byte_classes().get(byte);
1474         let offset = from.to_usize() * self.alphabet_len() + class as usize;
1475         self.trans[offset] = to;
1476     }
1477 
1478     /// An an empty state (a state where all transitions lead to a dead state)
1479     /// and return its identifier. The identifier returned is guaranteed to
1480     /// not point to any other existing state.
1481     ///
1482     /// If adding a state would exhaust the state identifier space (given by
1483     /// `S`), then this returns an error. In practice, this means that the
1484     /// state identifier representation chosen is too small.
1485     ///
1486     /// This cannot be called on a premultiplied DFA.
add_empty_state(&mut self) -> Result<S>1487     pub fn add_empty_state(&mut self) -> Result<S> {
1488         assert!(!self.premultiplied, "can't add state to premultiplied DFA");
1489 
1490         let id = if self.state_count == 0 {
1491             S::from_usize(0)
1492         } else {
1493             next_state_id(S::from_usize(self.state_count - 1))?
1494         };
1495         let alphabet_len = self.alphabet_len();
1496         self.trans.extend(iter::repeat(dead_id::<S>()).take(alphabet_len));
1497         // This should never panic, since state_count is a usize. The
1498         // transition table size would have run out of room long ago.
1499         self.state_count = self.state_count.checked_add(1).unwrap();
1500         Ok(id)
1501     }
1502 
1503     /// Return a mutable representation of the state corresponding to the given
1504     /// id. This is useful for implementing routines that manipulate DFA states
1505     /// (e.g., swapping states).
1506     ///
1507     /// This cannot be called on a premultiplied DFA.
get_state_mut(&mut self, id: S) -> StateMut<S>1508     pub fn get_state_mut(&mut self, id: S) -> StateMut<S> {
1509         assert!(!self.premultiplied, "can't get state in premultiplied DFA");
1510 
1511         let alphabet_len = self.alphabet_len();
1512         let offset = id.to_usize() * alphabet_len;
1513         StateMut {
1514             transitions: &mut self.trans[offset..offset + alphabet_len],
1515         }
1516     }
1517 
1518     /// Swap the two states given in the transition table.
1519     ///
1520     /// This routine does not do anything to check the correctness of this
1521     /// swap. Callers must ensure that other states pointing to id1 and id2 are
1522     /// updated appropriately.
1523     ///
1524     /// This cannot be called on a premultiplied DFA.
swap_states(&mut self, id1: S, id2: S)1525     pub fn swap_states(&mut self, id1: S, id2: S) {
1526         assert!(!self.premultiplied, "can't swap states in premultiplied DFA");
1527 
1528         let o1 = id1.to_usize() * self.alphabet_len();
1529         let o2 = id2.to_usize() * self.alphabet_len();
1530         for b in 0..self.alphabet_len() {
1531             self.trans.swap(o1 + b, o2 + b);
1532         }
1533     }
1534 
1535     /// Truncate the states in this DFA to the given count.
1536     ///
1537     /// This routine does not do anything to check the correctness of this
1538     /// truncation. Callers must ensure that other states pointing to truncated
1539     /// states are updated appropriately.
1540     ///
1541     /// This cannot be called on a premultiplied DFA.
truncate_states(&mut self, count: usize)1542     pub fn truncate_states(&mut self, count: usize) {
1543         assert!(!self.premultiplied, "can't truncate in premultiplied DFA");
1544 
1545         let alphabet_len = self.alphabet_len();
1546         self.trans.truncate(count * alphabet_len);
1547         self.state_count = count;
1548     }
1549 
1550     /// This routine shuffles all match states in this DFA---according to the
1551     /// given map---to the beginning of the DFA such that every non-match state
1552     /// appears after every match state. (With one exception: the special dead
1553     /// state remains as the first state.) The given map should have length
1554     /// exactly equivalent to the number of states in this DFA.
1555     ///
1556     /// The purpose of doing this shuffling is to avoid the need to store
1557     /// additional state to determine whether a state is a match state or not.
1558     /// It also enables a single conditional in the core matching loop instead
1559     /// of two.
1560     ///
1561     /// This updates `self.max_match` to point to the last matching state as
1562     /// well as `self.start` if the starting state was moved.
shuffle_match_states(&mut self, is_match: &[bool])1563     pub fn shuffle_match_states(&mut self, is_match: &[bool]) {
1564         assert!(
1565             !self.premultiplied,
1566             "cannot shuffle match states of premultiplied DFA"
1567         );
1568         assert_eq!(self.state_count, is_match.len());
1569 
1570         if self.state_count <= 1 {
1571             return;
1572         }
1573 
1574         let mut first_non_match = 1;
1575         while first_non_match < self.state_count && is_match[first_non_match] {
1576             first_non_match += 1;
1577         }
1578 
1579         let mut swaps: Vec<S> = vec![dead_id(); self.state_count];
1580         let mut cur = self.state_count - 1;
1581         while cur > first_non_match {
1582             if is_match[cur] {
1583                 self.swap_states(
1584                     S::from_usize(cur),
1585                     S::from_usize(first_non_match),
1586                 );
1587                 swaps[cur] = S::from_usize(first_non_match);
1588                 swaps[first_non_match] = S::from_usize(cur);
1589 
1590                 first_non_match += 1;
1591                 while first_non_match < cur && is_match[first_non_match] {
1592                     first_non_match += 1;
1593                 }
1594             }
1595             cur -= 1;
1596         }
1597         for id in (0..self.state_count).map(S::from_usize) {
1598             for (_, next) in self.get_state_mut(id).iter_mut() {
1599                 if swaps[next.to_usize()] != dead_id() {
1600                     *next = swaps[next.to_usize()];
1601                 }
1602             }
1603         }
1604         if swaps[self.start.to_usize()] != dead_id() {
1605             self.start = swaps[self.start.to_usize()];
1606         }
1607         self.max_match = S::from_usize(first_non_match - 1);
1608     }
1609 }
1610 
1611 #[cfg(feature = "std")]
1612 impl<T: AsRef<[S]>, S: StateID> fmt::Debug for Repr<T, S> {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1613     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1614         fn state_status<T: AsRef<[S]>, S: StateID>(
1615             dfa: &Repr<T, S>,
1616             id: S,
1617         ) -> &'static str {
1618             if id == dead_id() {
1619                 if dfa.is_match_state(id) {
1620                     "D*"
1621                 } else {
1622                     "D "
1623                 }
1624             } else if id == dfa.start_state() {
1625                 if dfa.is_match_state(id) {
1626                     ">*"
1627                 } else {
1628                     "> "
1629                 }
1630             } else {
1631                 if dfa.is_match_state(id) {
1632                     " *"
1633                 } else {
1634                     "  "
1635                 }
1636             }
1637         }
1638 
1639         writeln!(f, "DenseDFA(")?;
1640         for (id, state) in self.states() {
1641             let status = state_status(self, id);
1642             writeln!(f, "{}{:06}: {:?}", status, id.to_usize(), state)?;
1643         }
1644         writeln!(f, ")")?;
1645         Ok(())
1646     }
1647 }
1648 
1649 /// An iterator over all states in a DFA.
1650 ///
1651 /// This iterator yields a tuple for each state. The first element of the
1652 /// tuple corresponds to a state's identifier, and the second element
1653 /// corresponds to the state itself (comprised of its transitions).
1654 ///
1655 /// If this DFA is premultiplied, then the state identifiers are in turn
1656 /// premultiplied as well, making them usable without additional modification.
1657 ///
1658 /// `'a` corresponding to the lifetime of original DFA, `T` corresponds to
1659 /// the type of the transition table itself and `S` corresponds to the state
1660 /// identifier representation.
1661 #[cfg(feature = "std")]
1662 pub(crate) struct StateIter<'a, T: 'a, S: 'a> {
1663     dfa: &'a Repr<T, S>,
1664     it: iter::Enumerate<slice::Chunks<'a, S>>,
1665 }
1666 
1667 #[cfg(feature = "std")]
1668 impl<'a, T: AsRef<[S]>, S: StateID> Iterator for StateIter<'a, T, S> {
1669     type Item = (S, State<'a, S>);
1670 
next(&mut self) -> Option<(S, State<'a, S>)>1671     fn next(&mut self) -> Option<(S, State<'a, S>)> {
1672         self.it.next().map(|(id, chunk)| {
1673             let state = State { transitions: chunk };
1674             let id = if self.dfa.premultiplied {
1675                 id * self.dfa.alphabet_len()
1676             } else {
1677                 id
1678             };
1679             (S::from_usize(id), state)
1680         })
1681     }
1682 }
1683 
1684 /// An immutable representation of a single DFA state.
1685 ///
1686 /// `'a` correspondings to the lifetime of a DFA's transition table and `S`
1687 /// corresponds to the state identifier representation.
1688 #[cfg(feature = "std")]
1689 pub(crate) struct State<'a, S: 'a> {
1690     transitions: &'a [S],
1691 }
1692 
1693 #[cfg(feature = "std")]
1694 impl<'a, S: StateID> State<'a, S> {
1695     /// Return an iterator over all transitions in this state. This yields
1696     /// a number of transitions equivalent to the alphabet length of the
1697     /// corresponding DFA.
1698     ///
1699     /// Each transition is represented by a tuple. The first element is
1700     /// the input byte for that transition and the second element is the
1701     /// transitions itself.
transitions(&self) -> StateTransitionIter<S>1702     pub fn transitions(&self) -> StateTransitionIter<S> {
1703         StateTransitionIter { it: self.transitions.iter().enumerate() }
1704     }
1705 
1706     /// Return an iterator over a sparse representation of the transitions in
1707     /// this state. Only non-dead transitions are returned.
1708     ///
1709     /// The "sparse" representation in this case corresponds to a sequence of
1710     /// triples. The first two elements of the triple comprise an inclusive
1711     /// byte range while the last element corresponds to the transition taken
1712     /// for all bytes in the range.
1713     ///
1714     /// This is somewhat more condensed than the classical sparse
1715     /// representation (where you have an element for every non-dead
1716     /// transition), but in practice, checking if a byte is in a range is very
1717     /// cheap and using ranges tends to conserve quite a bit more space.
sparse_transitions(&self) -> StateSparseTransitionIter<S>1718     pub fn sparse_transitions(&self) -> StateSparseTransitionIter<S> {
1719         StateSparseTransitionIter { dense: self.transitions(), cur: None }
1720     }
1721 }
1722 
1723 #[cfg(feature = "std")]
1724 impl<'a, S: StateID> fmt::Debug for State<'a, S> {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1725     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1726         let mut transitions = vec![];
1727         for (start, end, next_id) in self.sparse_transitions() {
1728             let line = if start == end {
1729                 format!("{} => {}", escape(start), next_id.to_usize())
1730             } else {
1731                 format!(
1732                     "{}-{} => {}",
1733                     escape(start),
1734                     escape(end),
1735                     next_id.to_usize(),
1736                 )
1737             };
1738             transitions.push(line);
1739         }
1740         write!(f, "{}", transitions.join(", "))?;
1741         Ok(())
1742     }
1743 }
1744 
1745 /// An iterator over all transitions in a single DFA state. This yields
1746 /// a number of transitions equivalent to the alphabet length of the
1747 /// corresponding DFA.
1748 ///
1749 /// Each transition is represented by a tuple. The first element is the input
1750 /// byte for that transition and the second element is the transitions itself.
1751 #[cfg(feature = "std")]
1752 #[derive(Debug)]
1753 pub(crate) struct StateTransitionIter<'a, S: 'a> {
1754     it: iter::Enumerate<slice::Iter<'a, S>>,
1755 }
1756 
1757 #[cfg(feature = "std")]
1758 impl<'a, S: StateID> Iterator for StateTransitionIter<'a, S> {
1759     type Item = (u8, S);
1760 
next(&mut self) -> Option<(u8, S)>1761     fn next(&mut self) -> Option<(u8, S)> {
1762         self.it.next().map(|(i, &id)| (i as u8, id))
1763     }
1764 }
1765 
1766 /// An iterator over all transitions in a single DFA state using a sparse
1767 /// representation.
1768 ///
1769 /// Each transition is represented by a triple. The first two elements of the
1770 /// triple comprise an inclusive byte range while the last element corresponds
1771 /// to the transition taken for all bytes in the range.
1772 #[cfg(feature = "std")]
1773 #[derive(Debug)]
1774 pub(crate) struct StateSparseTransitionIter<'a, S: 'a> {
1775     dense: StateTransitionIter<'a, S>,
1776     cur: Option<(u8, u8, S)>,
1777 }
1778 
1779 #[cfg(feature = "std")]
1780 impl<'a, S: StateID> Iterator for StateSparseTransitionIter<'a, S> {
1781     type Item = (u8, u8, S);
1782 
next(&mut self) -> Option<(u8, u8, S)>1783     fn next(&mut self) -> Option<(u8, u8, S)> {
1784         while let Some((b, next)) = self.dense.next() {
1785             let (prev_start, prev_end, prev_next) = match self.cur {
1786                 Some(t) => t,
1787                 None => {
1788                     self.cur = Some((b, b, next));
1789                     continue;
1790                 }
1791             };
1792             if prev_next == next {
1793                 self.cur = Some((prev_start, b, prev_next));
1794             } else {
1795                 self.cur = Some((b, b, next));
1796                 if prev_next != dead_id() {
1797                     return Some((prev_start, prev_end, prev_next));
1798                 }
1799             }
1800         }
1801         if let Some((start, end, next)) = self.cur.take() {
1802             if next != dead_id() {
1803                 return Some((start, end, next));
1804             }
1805         }
1806         None
1807     }
1808 }
1809 
1810 /// A mutable representation of a single DFA state.
1811 ///
1812 /// `'a` correspondings to the lifetime of a DFA's transition table and `S`
1813 /// corresponds to the state identifier representation.
1814 #[cfg(feature = "std")]
1815 pub(crate) struct StateMut<'a, S: 'a> {
1816     transitions: &'a mut [S],
1817 }
1818 
1819 #[cfg(feature = "std")]
1820 impl<'a, S: StateID> StateMut<'a, S> {
1821     /// Return an iterator over all transitions in this state. This yields
1822     /// a number of transitions equivalent to the alphabet length of the
1823     /// corresponding DFA.
1824     ///
1825     /// Each transition is represented by a tuple. The first element is the
1826     /// input byte for that transition and the second element is a mutable
1827     /// reference to the transition itself.
iter_mut(&mut self) -> StateTransitionIterMut<S>1828     pub fn iter_mut(&mut self) -> StateTransitionIterMut<S> {
1829         StateTransitionIterMut { it: self.transitions.iter_mut().enumerate() }
1830     }
1831 }
1832 
1833 #[cfg(feature = "std")]
1834 impl<'a, S: StateID> fmt::Debug for StateMut<'a, S> {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1835     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1836         fmt::Debug::fmt(&State { transitions: self.transitions }, f)
1837     }
1838 }
1839 
1840 /// A mutable iterator over all transitions in a DFA state.
1841 ///
1842 /// Each transition is represented by a tuple. The first element is the
1843 /// input byte for that transition and the second element is a mutable
1844 /// reference to the transition itself.
1845 #[cfg(feature = "std")]
1846 #[derive(Debug)]
1847 pub(crate) struct StateTransitionIterMut<'a, S: 'a> {
1848     it: iter::Enumerate<slice::IterMut<'a, S>>,
1849 }
1850 
1851 #[cfg(feature = "std")]
1852 impl<'a, S: StateID> Iterator for StateTransitionIterMut<'a, S> {
1853     type Item = (u8, &'a mut S);
1854 
next(&mut self) -> Option<(u8, &'a mut S)>1855     fn next(&mut self) -> Option<(u8, &'a mut S)> {
1856         self.it.next().map(|(i, id)| (i as u8, id))
1857     }
1858 }
1859 
1860 /// A builder for constructing a deterministic finite automaton from regular
1861 /// expressions.
1862 ///
1863 /// This builder permits configuring several aspects of the construction
1864 /// process such as case insensitivity, Unicode support and various options
1865 /// that impact the size of the generated DFA. In some cases, options (like
1866 /// performing DFA minimization) can come with a substantial additional cost.
1867 ///
1868 /// This builder always constructs a *single* DFA. As such, this builder can
1869 /// only be used to construct regexes that either detect the presence of a
1870 /// match or find the end location of a match. A single DFA cannot produce both
1871 /// the start and end of a match. For that information, use a
1872 /// [`Regex`](struct.Regex.html), which can be similarly configured using
1873 /// [`RegexBuilder`](struct.RegexBuilder.html).
1874 #[cfg(feature = "std")]
1875 #[derive(Clone, Debug)]
1876 pub struct Builder {
1877     parser: ParserBuilder,
1878     nfa: nfa::Builder,
1879     anchored: bool,
1880     minimize: bool,
1881     premultiply: bool,
1882     byte_classes: bool,
1883     reverse: bool,
1884     longest_match: bool,
1885 }
1886 
1887 #[cfg(feature = "std")]
1888 impl Builder {
1889     /// Create a new DenseDFA builder with the default configuration.
new() -> Builder1890     pub fn new() -> Builder {
1891         let mut nfa = nfa::Builder::new();
1892         // This is enabled by default, but we set it here anyway. Since we're
1893         // building a DFA, shrinking the NFA is always a good idea.
1894         nfa.shrink(true);
1895         Builder {
1896             parser: ParserBuilder::new(),
1897             nfa,
1898             anchored: false,
1899             minimize: false,
1900             premultiply: true,
1901             byte_classes: true,
1902             reverse: false,
1903             longest_match: false,
1904         }
1905     }
1906 
1907     /// Build a DFA from the given pattern.
1908     ///
1909     /// If there was a problem parsing or compiling the pattern, then an error
1910     /// is returned.
build(&self, pattern: &str) -> Result<DenseDFA<Vec<usize>, usize>>1911     pub fn build(&self, pattern: &str) -> Result<DenseDFA<Vec<usize>, usize>> {
1912         self.build_with_size::<usize>(pattern)
1913     }
1914 
1915     /// Build a DFA from the given pattern using a specific representation for
1916     /// the DFA's state IDs.
1917     ///
1918     /// If there was a problem parsing or compiling the pattern, then an error
1919     /// is returned.
1920     ///
1921     /// The representation of state IDs is determined by the `S` type
1922     /// parameter. In general, `S` is usually one of `u8`, `u16`, `u32`, `u64`
1923     /// or `usize`, where `usize` is the default used for `build`. The purpose
1924     /// of specifying a representation for state IDs is to reduce the memory
1925     /// footprint of a DFA.
1926     ///
1927     /// When using this routine, the chosen state ID representation will be
1928     /// used throughout determinization and minimization, if minimization
1929     /// was requested. Even if the minimized DFA can fit into the chosen
1930     /// state ID representation but the initial determinized DFA cannot,
1931     /// then this will still return an error. To get a minimized DFA with a
1932     /// smaller state ID representation, first build it with a bigger state ID
1933     /// representation, and then shrink the size of the DFA using one of its
1934     /// conversion routines, such as
1935     /// [`DenseDFA::to_u16`](enum.DenseDFA.html#method.to_u16).
build_with_size<S: StateID>( &self, pattern: &str, ) -> Result<DenseDFA<Vec<S>, S>>1936     pub fn build_with_size<S: StateID>(
1937         &self,
1938         pattern: &str,
1939     ) -> Result<DenseDFA<Vec<S>, S>> {
1940         self.build_from_nfa(&self.build_nfa(pattern)?)
1941     }
1942 
1943     /// An internal only (for now) API for building a dense DFA directly from
1944     /// an NFA.
build_from_nfa<S: StateID>( &self, nfa: &NFA, ) -> Result<DenseDFA<Vec<S>, S>>1945     pub(crate) fn build_from_nfa<S: StateID>(
1946         &self,
1947         nfa: &NFA,
1948     ) -> Result<DenseDFA<Vec<S>, S>> {
1949         if self.longest_match && !self.anchored {
1950             return Err(Error::unsupported_longest_match());
1951         }
1952 
1953         let mut dfa = if self.byte_classes {
1954             Determinizer::new(nfa)
1955                 .with_byte_classes()
1956                 .longest_match(self.longest_match)
1957                 .build()
1958         } else {
1959             Determinizer::new(nfa).longest_match(self.longest_match).build()
1960         }?;
1961         if self.minimize {
1962             dfa.minimize();
1963         }
1964         if self.premultiply {
1965             dfa.premultiply()?;
1966         }
1967         Ok(dfa.into_dense_dfa())
1968     }
1969 
1970     /// Builds an NFA from the given pattern.
build_nfa(&self, pattern: &str) -> Result<NFA>1971     pub(crate) fn build_nfa(&self, pattern: &str) -> Result<NFA> {
1972         let hir = self.parser.build().parse(pattern).map_err(Error::syntax)?;
1973         Ok(self.nfa.build(&hir)?)
1974     }
1975 
1976     /// Set whether matching must be anchored at the beginning of the input.
1977     ///
1978     /// When enabled, a match must begin at the start of the input. When
1979     /// disabled, the DFA will act as if the pattern started with a `.*?`,
1980     /// which enables a match to appear anywhere.
1981     ///
1982     /// By default this is disabled.
anchored(&mut self, yes: bool) -> &mut Builder1983     pub fn anchored(&mut self, yes: bool) -> &mut Builder {
1984         self.anchored = yes;
1985         self.nfa.anchored(yes);
1986         self
1987     }
1988 
1989     /// Enable or disable the case insensitive flag by default.
1990     ///
1991     /// By default this is disabled. It may alternatively be selectively
1992     /// enabled in the regular expression itself via the `i` flag.
case_insensitive(&mut self, yes: bool) -> &mut Builder1993     pub fn case_insensitive(&mut self, yes: bool) -> &mut Builder {
1994         self.parser.case_insensitive(yes);
1995         self
1996     }
1997 
1998     /// Enable verbose mode in the regular expression.
1999     ///
2000     /// When enabled, verbose mode permits insigificant whitespace in many
2001     /// places in the regular expression, as well as comments. Comments are
2002     /// started using `#` and continue until the end of the line.
2003     ///
2004     /// By default, this is disabled. It may be selectively enabled in the
2005     /// regular expression by using the `x` flag regardless of this setting.
ignore_whitespace(&mut self, yes: bool) -> &mut Builder2006     pub fn ignore_whitespace(&mut self, yes: bool) -> &mut Builder {
2007         self.parser.ignore_whitespace(yes);
2008         self
2009     }
2010 
2011     /// Enable or disable the "dot matches any character" flag by default.
2012     ///
2013     /// By default this is disabled. It may alternatively be selectively
2014     /// enabled in the regular expression itself via the `s` flag.
dot_matches_new_line(&mut self, yes: bool) -> &mut Builder2015     pub fn dot_matches_new_line(&mut self, yes: bool) -> &mut Builder {
2016         self.parser.dot_matches_new_line(yes);
2017         self
2018     }
2019 
2020     /// Enable or disable the "swap greed" flag by default.
2021     ///
2022     /// By default this is disabled. It may alternatively be selectively
2023     /// enabled in the regular expression itself via the `U` flag.
swap_greed(&mut self, yes: bool) -> &mut Builder2024     pub fn swap_greed(&mut self, yes: bool) -> &mut Builder {
2025         self.parser.swap_greed(yes);
2026         self
2027     }
2028 
2029     /// Enable or disable the Unicode flag (`u`) by default.
2030     ///
2031     /// By default this is **enabled**. It may alternatively be selectively
2032     /// disabled in the regular expression itself via the `u` flag.
2033     ///
2034     /// Note that unless `allow_invalid_utf8` is enabled (it's disabled by
2035     /// default), a regular expression will fail to parse if Unicode mode is
2036     /// disabled and a sub-expression could possibly match invalid UTF-8.
unicode(&mut self, yes: bool) -> &mut Builder2037     pub fn unicode(&mut self, yes: bool) -> &mut Builder {
2038         self.parser.unicode(yes);
2039         self
2040     }
2041 
2042     /// When enabled, the builder will permit the construction of a regular
2043     /// expression that may match invalid UTF-8.
2044     ///
2045     /// When disabled (the default), the builder is guaranteed to produce a
2046     /// regex that will only ever match valid UTF-8 (otherwise, the builder
2047     /// will return an error).
allow_invalid_utf8(&mut self, yes: bool) -> &mut Builder2048     pub fn allow_invalid_utf8(&mut self, yes: bool) -> &mut Builder {
2049         self.parser.allow_invalid_utf8(yes);
2050         self.nfa.allow_invalid_utf8(yes);
2051         self
2052     }
2053 
2054     /// Set the nesting limit used for the regular expression parser.
2055     ///
2056     /// The nesting limit controls how deep the abstract syntax tree is allowed
2057     /// to be. If the AST exceeds the given limit (e.g., with too many nested
2058     /// groups), then an error is returned by the parser.
2059     ///
2060     /// The purpose of this limit is to act as a heuristic to prevent stack
2061     /// overflow when building a finite automaton from a regular expression's
2062     /// abstract syntax tree. In particular, construction currently uses
2063     /// recursion. In the future, the implementation may stop using recursion
2064     /// and this option will no longer be necessary.
2065     ///
2066     /// This limit is not checked until the entire AST is parsed. Therefore,
2067     /// if callers want to put a limit on the amount of heap space used, then
2068     /// they should impose a limit on the length, in bytes, of the concrete
2069     /// pattern string. In particular, this is viable since the parser will
2070     /// limit itself to heap space proportional to the lenth of the pattern
2071     /// string.
2072     ///
2073     /// Note that a nest limit of `0` will return a nest limit error for most
2074     /// patterns but not all. For example, a nest limit of `0` permits `a` but
2075     /// not `ab`, since `ab` requires a concatenation AST item, which results
2076     /// in a nest depth of `1`. In general, a nest limit is not something that
2077     /// manifests in an obvious way in the concrete syntax, therefore, it
2078     /// should not be used in a granular way.
nest_limit(&mut self, limit: u32) -> &mut Builder2079     pub fn nest_limit(&mut self, limit: u32) -> &mut Builder {
2080         self.parser.nest_limit(limit);
2081         self
2082     }
2083 
2084     /// Minimize the DFA.
2085     ///
2086     /// When enabled, the DFA built will be minimized such that it is as small
2087     /// as possible.
2088     ///
2089     /// Whether one enables minimization or not depends on the types of costs
2090     /// you're willing to pay and how much you care about its benefits. In
2091     /// particular, minimization has worst case `O(n*k*logn)` time and `O(k*n)`
2092     /// space, where `n` is the number of DFA states and `k` is the alphabet
2093     /// size. In practice, minimization can be quite costly in terms of both
2094     /// space and time, so it should only be done if you're willing to wait
2095     /// longer to produce a DFA. In general, you might want a minimal DFA in
2096     /// the following circumstances:
2097     ///
2098     /// 1. You would like to optimize for the size of the automaton. This can
2099     ///    manifest in one of two ways. Firstly, if you're converting the
2100     ///    DFA into Rust code (or a table embedded in the code), then a minimal
2101     ///    DFA will translate into a corresponding reduction in code  size, and
2102     ///    thus, also the final compiled binary size. Secondly, if you are
2103     ///    building many DFAs and putting them on the heap, you'll be able to
2104     ///    fit more if they are smaller. Note though that building a minimal
2105     ///    DFA itself requires additional space; you only realize the space
2106     ///    savings once the minimal DFA is constructed (at which point, the
2107     ///    space used for minimization is freed).
2108     /// 2. You've observed that a smaller DFA results in faster match
2109     ///    performance. Naively, this isn't guaranteed since there is no
2110     ///    inherent difference between matching with a bigger-than-minimal
2111     ///    DFA and a minimal DFA. However, a smaller DFA may make use of your
2112     ///    CPU's cache more efficiently.
2113     /// 3. You are trying to establish an equivalence between regular
2114     ///    languages. The standard method for this is to build a minimal DFA
2115     ///    for each language and then compare them. If the DFAs are equivalent
2116     ///    (up to state renaming), then the languages are equivalent.
2117     ///
2118     /// This option is disabled by default.
minimize(&mut self, yes: bool) -> &mut Builder2119     pub fn minimize(&mut self, yes: bool) -> &mut Builder {
2120         self.minimize = yes;
2121         self
2122     }
2123 
2124     /// Premultiply state identifiers in the DFA's transition table.
2125     ///
2126     /// When enabled, state identifiers are premultiplied to point to their
2127     /// corresponding row in the DFA's transition table. That is, given the
2128     /// `i`th state, its corresponding premultiplied identifier is `i * k`
2129     /// where `k` is the alphabet size of the DFA. (The alphabet size is at
2130     /// most 256, but is in practice smaller if byte classes is enabled.)
2131     ///
2132     /// When state identifiers are not premultiplied, then the identifier of
2133     /// the `i`th state is `i`.
2134     ///
2135     /// The advantage of premultiplying state identifiers is that is saves
2136     /// a multiplication instruction per byte when searching with the DFA.
2137     /// This has been observed to lead to a 20% performance benefit in
2138     /// micro-benchmarks.
2139     ///
2140     /// The primary disadvantage of premultiplying state identifiers is
2141     /// that they require a larger integer size to represent. For example,
2142     /// if your DFA has 200 states, then its premultiplied form requires
2143     /// 16 bits to represent every possible state identifier, where as its
2144     /// non-premultiplied form only requires 8 bits.
2145     ///
2146     /// This option is enabled by default.
premultiply(&mut self, yes: bool) -> &mut Builder2147     pub fn premultiply(&mut self, yes: bool) -> &mut Builder {
2148         self.premultiply = yes;
2149         self
2150     }
2151 
2152     /// Shrink the size of the DFA's alphabet by mapping bytes to their
2153     /// equivalence classes.
2154     ///
2155     /// When enabled, each DFA will use a map from all possible bytes to their
2156     /// corresponding equivalence class. Each equivalence class represents a
2157     /// set of bytes that does not discriminate between a match and a non-match
2158     /// in the DFA. For example, the pattern `[ab]+` has at least two
2159     /// equivalence classes: a set containing `a` and `b` and a set containing
2160     /// every byte except for `a` and `b`. `a` and `b` are in the same
2161     /// equivalence classes because they never discriminate between a match
2162     /// and a non-match.
2163     ///
2164     /// The advantage of this map is that the size of the transition table can
2165     /// be reduced drastically from `#states * 256 * sizeof(id)` to
2166     /// `#states * k * sizeof(id)` where `k` is the number of equivalence
2167     /// classes. As a result, total space usage can decrease substantially.
2168     /// Moreover, since a smaller alphabet is used, compilation becomes faster
2169     /// as well.
2170     ///
2171     /// The disadvantage of this map is that every byte searched must be
2172     /// passed through this map before it can be used to determine the next
2173     /// transition. This has a small match time performance cost.
2174     ///
2175     /// This option is enabled by default.
byte_classes(&mut self, yes: bool) -> &mut Builder2176     pub fn byte_classes(&mut self, yes: bool) -> &mut Builder {
2177         self.byte_classes = yes;
2178         self
2179     }
2180 
2181     /// Reverse the DFA.
2182     ///
2183     /// A DFA reversal is performed by reversing all of the concatenated
2184     /// sub-expressions in the original pattern, recursively. The resulting
2185     /// DFA can be used to match the pattern starting from the end of a string
2186     /// instead of the beginning of a string.
2187     ///
2188     /// Generally speaking, a reversed DFA is most useful for finding the start
2189     /// of a match, since a single forward DFA is only capable of finding the
2190     /// end of a match. This start of match handling is done for you
2191     /// automatically if you build a [`Regex`](struct.Regex.html).
reverse(&mut self, yes: bool) -> &mut Builder2192     pub fn reverse(&mut self, yes: bool) -> &mut Builder {
2193         self.reverse = yes;
2194         self.nfa.reverse(yes);
2195         self
2196     }
2197 
2198     /// Find the longest possible match.
2199     ///
2200     /// This is distinct from the default leftmost-first match semantics in
2201     /// that it treats all NFA states as having equivalent priority. In other
2202     /// words, the longest possible match is always found and it is not
2203     /// possible to implement non-greedy match semantics when this is set. That
2204     /// is, `a+` and `a+?` are equivalent when this is enabled.
2205     ///
2206     /// In particular, a practical issue with this option at the moment is that
2207     /// it prevents unanchored searches from working correctly, since
2208     /// unanchored searches are implemented by prepending an non-greedy `.*?`
2209     /// to the beginning of the pattern. As stated above, non-greedy match
2210     /// semantics aren't supported. Therefore, if this option is enabled and
2211     /// an unanchored search is requested, then building a DFA will return an
2212     /// error.
2213     ///
2214     /// This option is principally useful when building a reverse DFA for
2215     /// finding the start of a match. If you are building a regex with
2216     /// [`RegexBuilder`](struct.RegexBuilder.html), then this is handled for
2217     /// you automatically. The reason why this is necessary for start of match
2218     /// handling is because we want to find the earliest possible starting
2219     /// position of a match to satisfy leftmost-first match semantics. When
2220     /// matching in reverse, this means finding the longest possible match,
2221     /// hence, this option.
2222     ///
2223     /// By default this is disabled.
longest_match(&mut self, yes: bool) -> &mut Builder2224     pub fn longest_match(&mut self, yes: bool) -> &mut Builder {
2225         // There is prior art in RE2 that shows how this can support unanchored
2226         // searches. Instead of treating all NFA states as having equivalent
2227         // priority, we instead group NFA states into sets, and treat members
2228         // of each set as having equivalent priority, but having greater
2229         // priority than all following members of different sets. We then
2230         // essentially assign a higher priority to everything over the prefix
2231         // `.*?`.
2232         self.longest_match = yes;
2233         self
2234     }
2235 
2236     /// Apply best effort heuristics to shrink the NFA at the expense of more
2237     /// time/memory.
2238     ///
2239     /// This may be exposed in the future, but for now is exported for use in
2240     /// the `regex-automata-debug` tool.
2241     #[doc(hidden)]
shrink(&mut self, yes: bool) -> &mut Builder2242     pub fn shrink(&mut self, yes: bool) -> &mut Builder {
2243         self.nfa.shrink(yes);
2244         self
2245     }
2246 }
2247 
2248 #[cfg(feature = "std")]
2249 impl Default for Builder {
default() -> Builder2250     fn default() -> Builder {
2251         Builder::new()
2252     }
2253 }
2254 
2255 /// Return the given byte as its escaped string form.
2256 #[cfg(feature = "std")]
escape(b: u8) -> String2257 fn escape(b: u8) -> String {
2258     use std::ascii;
2259 
2260     String::from_utf8(ascii::escape_default(b).collect::<Vec<_>>()).unwrap()
2261 }
2262 
2263 #[cfg(all(test, feature = "std"))]
2264 mod tests {
2265     use super::*;
2266 
2267     #[test]
errors_when_converting_to_smaller_dfa()2268     fn errors_when_converting_to_smaller_dfa() {
2269         let pattern = r"\w{10}";
2270         let dfa = Builder::new()
2271             .byte_classes(false)
2272             .anchored(true)
2273             .premultiply(false)
2274             .build_with_size::<u16>(pattern)
2275             .unwrap();
2276         assert!(dfa.to_u8().is_err());
2277     }
2278 
2279     #[test]
errors_when_determinization_would_overflow()2280     fn errors_when_determinization_would_overflow() {
2281         let pattern = r"\w{10}";
2282 
2283         let mut builder = Builder::new();
2284         builder.byte_classes(false).anchored(true).premultiply(false);
2285         // using u16 is fine
2286         assert!(builder.build_with_size::<u16>(pattern).is_ok());
2287         // // ... but u8 results in overflow (because there are >256 states)
2288         assert!(builder.build_with_size::<u8>(pattern).is_err());
2289     }
2290 
2291     #[test]
errors_when_premultiply_would_overflow()2292     fn errors_when_premultiply_would_overflow() {
2293         let pattern = r"[a-z]";
2294 
2295         let mut builder = Builder::new();
2296         builder.byte_classes(false).anchored(true).premultiply(false);
2297         // without premultiplication is OK
2298         assert!(builder.build_with_size::<u8>(pattern).is_ok());
2299         // ... but with premultiplication overflows u8
2300         builder.premultiply(true);
2301         assert!(builder.build_with_size::<u8>(pattern).is_err());
2302     }
2303 
2304     // let data = ::std::fs::read_to_string("/usr/share/dict/words").unwrap();
2305     // let mut words: Vec<&str> = data.lines().collect();
2306     // println!("{} words", words.len());
2307     // words.sort_by(|w1, w2| w1.len().cmp(&w2.len()).reverse());
2308     // let pattern = words.join("|");
2309     // print_automata_counts(&pattern);
2310     // print_automata(&pattern);
2311 
2312     // print_automata(r"[01]*1[01]{5}");
2313     // print_automata(r"X(.?){0,8}Y");
2314     // print_automata_counts(r"\p{alphabetic}");
2315     // print_automata(r"a*b+|cdefg");
2316     // print_automata(r"(..)*(...)*");
2317 
2318     // let pattern = r"\p{any}*?\p{Other_Uppercase}";
2319     // let pattern = r"\p{any}*?\w+";
2320     // print_automata_counts(pattern);
2321     // print_automata_counts(r"(?-u:\w)");
2322 
2323     // let pattern = r"\p{Greek}";
2324     // let pattern = r"zZzZzZzZzZ";
2325     // let pattern = grapheme_pattern();
2326     // let pattern = r"\p{Ideographic}";
2327     // let pattern = r"\w{10}"; // 51784 --> 41264
2328     // let pattern = r"\w"; // 5182
2329     // let pattern = r"a*";
2330     // print_automata(pattern);
2331     // let (_, _, dfa) = build_automata(pattern);
2332 }
2333