1 //! Asynchronous green-threads.
2 //!
3 //! ## What are Tasks?
4 //!
5 //! A _task_ is a light weight, non-blocking unit of execution. A task is similar
6 //! to an OS thread, but rather than being managed by the OS scheduler, they are
7 //! managed by the [Tokio runtime][rt]. Another name for this general pattern is
8 //! [green threads]. If you are familiar with [Go's goroutines], [Kotlin's
9 //! coroutines], or [Erlang's processes], you can think of Tokio's tasks as
10 //! something similar.
11 //!
12 //! Key points about tasks include:
13 //!
14 //! * Tasks are **light weight**. Because tasks are scheduled by the Tokio
15 //!   runtime rather than the operating system, creating new tasks or switching
16 //!   between tasks does not require a context switch and has fairly low
17 //!   overhead. Creating, running, and destroying large numbers of tasks is
18 //!   quite cheap, especially compared to OS threads.
19 //!
20 //! * Tasks are scheduled **cooperatively**. Most operating systems implement
21 //!   _preemptive multitasking_. This is a scheduling technique where the
22 //!   operating system allows each thread to run for a period of time, and then
23 //!   _preempts_ it, temporarily pausing that thread and switching to another.
24 //!   Tasks, on the other hand, implement _cooperative multitasking_. In
25 //!   cooperative multitasking, a task is allowed to run until it _yields_,
26 //!   indicating to the Tokio runtime's scheduler that it cannot currently
27 //!   continue executing. When a task yields, the Tokio runtime switches to
28 //!   executing the next task.
29 //!
30 //! * Tasks are **non-blocking**. Typically, when an OS thread performs I/O or
31 //!   must synchronize with another thread, it _blocks_, allowing the OS to
32 //!   schedule another thread. When a task cannot continue executing, it must
33 //!   yield instead, allowing the Tokio runtime to schedule another task. Tasks
34 //!   should generally not perform system calls or other operations that could
35 //!   block a thread, as this would prevent other tasks running on the same
36 //!   thread from executing as well. Instead, this module provides APIs for
37 //!   running blocking operations in an asynchronous context.
38 //!
39 //! [rt]: crate::runtime
40 //! [green threads]: https://en.wikipedia.org/wiki/Green_threads
41 //! [Go's goroutines]: https://tour.golang.org/concurrency/1
42 //! [Kotlin's coroutines]: https://kotlinlang.org/docs/reference/coroutines-overview.html
43 //! [Erlang's processes]: http://erlang.org/doc/getting_started/conc_prog.html#processes
44 //!
45 //! ## Working with Tasks
46 //!
47 //! This module provides the following APIs for working with tasks:
48 //!
49 //! ### Spawning
50 //!
51 //! Perhaps the most important function in this module is [`task::spawn`]. This
52 //! function can be thought of as an async equivalent to the standard library's
53 //! [`thread::spawn`][`std::thread::spawn`]. It takes an `async` block or other
54 //! [future], and creates a new task to run that work concurrently:
55 //!
56 //! ```
57 //! use tokio::task;
58 //!
59 //! # async fn doc() {
60 //! task::spawn(async {
61 //!     // perform some work here...
62 //! });
63 //! # }
64 //! ```
65 //!
66 //! Like [`std::thread::spawn`], `task::spawn` returns a [`JoinHandle`] struct.
67 //! A `JoinHandle` is itself a future which may be used to await the output of
68 //! the spawned task. For example:
69 //!
70 //! ```
71 //! use tokio::task;
72 //!
73 //! # #[tokio::main] async fn main() -> Result<(), Box<dyn std::error::Error>> {
74 //! let join = task::spawn(async {
75 //!     // ...
76 //!     "hello world!"
77 //! });
78 //!
79 //! // ...
80 //!
81 //! // Await the result of the spawned task.
82 //! let result = join.await?;
83 //! assert_eq!(result, "hello world!");
84 //! # Ok(())
85 //! # }
86 //! ```
87 //!
88 //! Again, like `std::thread`'s [`JoinHandle` type][thread_join], if the spawned
89 //! task panics, awaiting its `JoinHandle` will return a [`JoinError`]`. For
90 //! example:
91 //!
92 //! ```
93 //! use tokio::task;
94 //!
95 //! # #[tokio::main] async fn main() {
96 //! let join = task::spawn(async {
97 //!     panic!("something bad happened!")
98 //! });
99 //!
100 //! // The returned result indicates that the task failed.
101 //! assert!(join.await.is_err());
102 //! # }
103 //! ```
104 //!
105 //! `spawn`, `JoinHandle`, and `JoinError` are present when the "rt"
106 //! feature flag is enabled.
107 //!
108 //! [`task::spawn`]: crate::task::spawn()
109 //! [future]: std::future::Future
110 //! [`std::thread::spawn`]: std::thread::spawn
111 //! [`JoinHandle`]: crate::task::JoinHandle
112 //! [thread_join]: std::thread::JoinHandle
113 //! [`JoinError`]: crate::task::JoinError
114 //!
115 //! ### Blocking and Yielding
116 //!
117 //! As we discussed above, code running in asynchronous tasks should not perform
118 //! operations that can block. A blocking operation performed in a task running
119 //! on a thread that is also running other tasks would block the entire thread,
120 //! preventing other tasks from running.
121 //!
122 //! Instead, Tokio provides two APIs for running blocking operations in an
123 //! asynchronous context: [`task::spawn_blocking`] and [`task::block_in_place`].
124 //!
125 //! #### spawn_blocking
126 //!
127 //! The `task::spawn_blocking` function is similar to the `task::spawn` function
128 //! discussed in the previous section, but rather than spawning an
129 //! _non-blocking_ future on the Tokio runtime, it instead spawns a
130 //! _blocking_ function on a dedicated thread pool for blocking tasks. For
131 //! example:
132 //!
133 //! ```
134 //! use tokio::task;
135 //!
136 //! # async fn docs() {
137 //! task::spawn_blocking(|| {
138 //!     // do some compute-heavy work or call synchronous code
139 //! });
140 //! # }
141 //! ```
142 //!
143 //! Just like `task::spawn`, `task::spawn_blocking` returns a `JoinHandle`
144 //! which we can use to await the result of the blocking operation:
145 //!
146 //! ```rust
147 //! # use tokio::task;
148 //! # async fn docs() -> Result<(), Box<dyn std::error::Error>>{
149 //! let join = task::spawn_blocking(|| {
150 //!     // do some compute-heavy work or call synchronous code
151 //!     "blocking completed"
152 //! });
153 //!
154 //! let result = join.await?;
155 //! assert_eq!(result, "blocking completed");
156 //! # Ok(())
157 //! # }
158 //! ```
159 //!
160 //! #### block_in_place
161 //!
162 //! When using the [multi-threaded runtime][rt-multi-thread], the [`task::block_in_place`]
163 //! function is also available. Like `task::spawn_blocking`, this function
164 //! allows running a blocking operation from an asynchronous context. Unlike
165 //! `spawn_blocking`, however, `block_in_place` works by transitioning the
166 //! _current_ worker thread to a blocking thread, moving other tasks running on
167 //! that thread to another worker thread. This can improve performance by avoiding
168 //! context switches.
169 //!
170 //! For example:
171 //!
172 //! ```
173 //! use tokio::task;
174 //!
175 //! # async fn docs() {
176 //! let result = task::block_in_place(|| {
177 //!     // do some compute-heavy work or call synchronous code
178 //!     "blocking completed"
179 //! });
180 //!
181 //! assert_eq!(result, "blocking completed");
182 //! # }
183 //! ```
184 //!
185 //! #### yield_now
186 //!
187 //! In addition, this module provides a [`task::yield_now`] async function
188 //! that is analogous to the standard library's [`thread::yield_now`]. Calling
189 //! and `await`ing this function will cause the current task to yield to the
190 //! Tokio runtime's scheduler, allowing other tasks to be
191 //! scheduled. Eventually, the yielding task will be polled again, allowing it
192 //! to execute. For example:
193 //!
194 //! ```rust
195 //! use tokio::task;
196 //!
197 //! # #[tokio::main] async fn main() {
198 //! async {
199 //!     task::spawn(async {
200 //!         // ...
201 //!         println!("spawned task done!")
202 //!     });
203 //!
204 //!     // Yield, allowing the newly-spawned task to execute first.
205 //!     task::yield_now().await;
206 //!     println!("main task done!");
207 //! }
208 //! # .await;
209 //! # }
210 //! ```
211 //!
212 //! ### Cooperative scheduling
213 //!
214 //! A single call to [`poll`] on a top-level task may potentially do a lot of
215 //! work before it returns `Poll::Pending`. If a task runs for a long period of
216 //! time without yielding back to the executor, it can starve other tasks
217 //! waiting on that executor to execute them, or drive underlying resources.
218 //! Since Rust does not have a runtime, it is difficult to forcibly preempt a
219 //! long-running task. Instead, this module provides an opt-in mechanism for
220 //! futures to collaborate with the executor to avoid starvation.
221 //!
222 //! Consider a future like this one:
223 //!
224 //! ```
225 //! # use tokio_stream::{Stream, StreamExt};
226 //! async fn drop_all<I: Stream + Unpin>(mut input: I) {
227 //!     while let Some(_) = input.next().await {}
228 //! }
229 //! ```
230 //!
231 //! It may look harmless, but consider what happens under heavy load if the
232 //! input stream is _always_ ready. If we spawn `drop_all`, the task will never
233 //! yield, and will starve other tasks and resources on the same executor.
234 //!
235 //! To account for this, Tokio has explicit yield points in a number of library
236 //! functions, which force tasks to return to the executor periodically.
237 //!
238 //!
239 //! #### unconstrained
240 //!
241 //! If necessary, [`task::unconstrained`] lets you opt out a future of Tokio's cooperative
242 //! scheduling. When a future is wrapped with `unconstrained`, it will never be forced to yield to
243 //! Tokio. For example:
244 //!
245 //! ```
246 //! # #[tokio::main]
247 //! # async fn main() {
248 //! use tokio::{task, sync::mpsc};
249 //!
250 //! let fut = async {
251 //!     let (tx, mut rx) = mpsc::unbounded_channel();
252 //!
253 //!     for i in 0..1000 {
254 //!         let _ = tx.send(());
255 //!         // This will always be ready. If coop was in effect, this code would be forced to yield
256 //!         // periodically. However, if left unconstrained, then this code will never yield.
257 //!         rx.recv().await;
258 //!     }
259 //! };
260 //!
261 //! task::unconstrained(fut).await;
262 //! # }
263 //! ```
264 //!
265 //! [`task::spawn_blocking`]: crate::task::spawn_blocking
266 //! [`task::block_in_place`]: crate::task::block_in_place
267 //! [rt-multi-thread]: ../runtime/index.html#threaded-scheduler
268 //! [`task::yield_now`]: crate::task::yield_now()
269 //! [`thread::yield_now`]: std::thread::yield_now
270 //! [`task::unconstrained`]: crate::task::unconstrained()
271 //! [`poll`]: method@std::future::Future::poll
272 
273 cfg_rt! {
274     pub use crate::runtime::task::{JoinError, JoinHandle};
275 
276     mod blocking;
277     pub use blocking::spawn_blocking;
278 
279     mod spawn;
280     pub use spawn::spawn;
281 
282     cfg_rt_multi_thread! {
283         pub use blocking::block_in_place;
284     }
285 
286     mod yield_now;
287     pub use yield_now::yield_now;
288 
289     mod local;
290     pub use local::{spawn_local, LocalSet};
291 
292     mod task_local;
293     pub use task_local::LocalKey;
294 
295     mod unconstrained;
296     pub use unconstrained::{unconstrained, Unconstrained};
297 }
298