1 /*
2  * Copyright 2018 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/core/SkCubicMap.h"
9 #include "include/private/SkNx.h"
10 #include "include/private/SkTPin.h"
11 #include "src/core/SkOpts.h"
12 
13 //#define CUBICMAP_TRACK_MAX_ERROR
14 
15 #ifdef CUBICMAP_TRACK_MAX_ERROR
16 #include "src/pathops/SkPathOpsCubic.h"
17 #endif
18 
nearly_zero(SkScalar x)19 static inline bool nearly_zero(SkScalar x) {
20     SkASSERT(x >= 0);
21     return x <= 0.0000000001f;
22 }
23 
24 #ifdef CUBICMAP_TRACK_MAX_ERROR
25     static int max_iters;
26 #endif
27 
28 #ifdef CUBICMAP_TRACK_MAX_ERROR
compute_slow(float A,float B,float C,float x)29 static float compute_slow(float A, float B, float C, float x) {
30     double roots[3];
31     SkDEBUGCODE(int count =) SkDCubic::RootsValidT(A, B, C, -x, roots);
32     SkASSERT(count == 1);
33     return (float)roots[0];
34 }
35 
36 static float max_err;
37 #endif
38 
compute_t_from_x(float A,float B,float C,float x)39 static float compute_t_from_x(float A, float B, float C, float x) {
40 #ifdef CUBICMAP_TRACK_MAX_ERROR
41     float answer = compute_slow(A, B, C, x);
42 #endif
43     float answer2 = SkOpts::cubic_solver(A, B, C, -x);
44 
45 #ifdef CUBICMAP_TRACK_MAX_ERROR
46     float err = sk_float_abs(answer - answer2);
47     if (err > max_err) {
48         max_err = err;
49         SkDebugf("max error %g\n", max_err);
50     }
51 #endif
52     return answer2;
53 }
54 
computeYFromX(float x) const55 float SkCubicMap::computeYFromX(float x) const {
56     x = SkTPin(x, 0.0f, 1.0f);
57 
58     if (nearly_zero(x) || nearly_zero(1 - x)) {
59         return x;
60     }
61     if (fType == kLine_Type) {
62         return x;
63     }
64     float t;
65     if (fType == kCubeRoot_Type) {
66         t = sk_float_pow(x / fCoeff[0].fX, 1.0f / 3);
67     } else {
68         t = compute_t_from_x(fCoeff[0].fX, fCoeff[1].fX, fCoeff[2].fX, x);
69     }
70     float a = fCoeff[0].fY;
71     float b = fCoeff[1].fY;
72     float c = fCoeff[2].fY;
73     float y = ((a * t + b) * t + c) * t;
74 
75     return y;
76 }
77 
coeff_nearly_zero(float delta)78 static inline bool coeff_nearly_zero(float delta) {
79     return sk_float_abs(delta) <= 0.0000001f;
80 }
81 
SkCubicMap(SkPoint p1,SkPoint p2)82 SkCubicMap::SkCubicMap(SkPoint p1, SkPoint p2) {
83     // Clamp X values only (we allow Ys outside [0..1]).
84     p1.fX = std::min(std::max(p1.fX, 0.0f), 1.0f);
85     p2.fX = std::min(std::max(p2.fX, 0.0f), 1.0f);
86 
87     Sk2s s1 = Sk2s::Load(&p1) * 3;
88     Sk2s s2 = Sk2s::Load(&p2) * 3;
89 
90     (Sk2s(1) + s1 - s2).store(&fCoeff[0]);
91     (s2 - s1 - s1).store(&fCoeff[1]);
92     s1.store(&fCoeff[2]);
93 
94     fType = kSolver_Type;
95     if (SkScalarNearlyEqual(p1.fX, p1.fY) && SkScalarNearlyEqual(p2.fX, p2.fY)) {
96         fType = kLine_Type;
97     } else if (coeff_nearly_zero(fCoeff[1].fX) && coeff_nearly_zero(fCoeff[2].fX)) {
98         fType = kCubeRoot_Type;
99     }
100 }
101 
computeFromT(float t) const102 SkPoint SkCubicMap::computeFromT(float t) const {
103     Sk2s a = Sk2s::Load(&fCoeff[0]);
104     Sk2s b = Sk2s::Load(&fCoeff[1]);
105     Sk2s c = Sk2s::Load(&fCoeff[2]);
106 
107     SkPoint result;
108     (((a * t + b) * t + c) * t).store(&result);
109     return result;
110 }
111