1 /*
2  * Copyright 2008 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/core/SkMathPriv.h"
9 #include "src/core/SkPointPriv.h"
10 
11 ///////////////////////////////////////////////////////////////////////////////
12 
scale(SkScalar scale,SkPoint * dst) const13 void SkPoint::scale(SkScalar scale, SkPoint* dst) const {
14     SkASSERT(dst);
15     dst->set(fX * scale, fY * scale);
16 }
17 
normalize()18 bool SkPoint::normalize() {
19     return this->setLength(fX, fY, SK_Scalar1);
20 }
21 
setNormalize(SkScalar x,SkScalar y)22 bool SkPoint::setNormalize(SkScalar x, SkScalar y) {
23     return this->setLength(x, y, SK_Scalar1);
24 }
25 
setLength(SkScalar length)26 bool SkPoint::setLength(SkScalar length) {
27     return this->setLength(fX, fY, length);
28 }
29 
30 /*
31  *  We have to worry about 2 tricky conditions:
32  *  1. underflow of mag2 (compared against nearlyzero^2)
33  *  2. overflow of mag2 (compared w/ isfinite)
34  *
35  *  If we underflow, we return false. If we overflow, we compute again using
36  *  doubles, which is much slower (3x in a desktop test) but will not overflow.
37  */
set_point_length(SkPoint * pt,float x,float y,float length,float * orig_length=nullptr)38 template <bool use_rsqrt> bool set_point_length(SkPoint* pt, float x, float y, float length,
39                                                 float* orig_length = nullptr) {
40     SkASSERT(!use_rsqrt || (orig_length == nullptr));
41 
42     // our mag2 step overflowed to infinity, so use doubles instead.
43     // much slower, but needed when x or y are very large, other wise we
44     // divide by inf. and return (0,0) vector.
45     double xx = x;
46     double yy = y;
47     double dmag = sqrt(xx * xx + yy * yy);
48     double dscale = sk_ieee_double_divide(length, dmag);
49     x *= dscale;
50     y *= dscale;
51     // check if we're not finite, or we're zero-length
52     if (!sk_float_isfinite(x) || !sk_float_isfinite(y) || (x == 0 && y == 0)) {
53         pt->set(0, 0);
54         return false;
55     }
56     float mag = 0;
57     if (orig_length) {
58         mag = sk_double_to_float(dmag);
59     }
60     pt->set(x, y);
61     if (orig_length) {
62         *orig_length = mag;
63     }
64     return true;
65 }
66 
Normalize(SkPoint * pt)67 SkScalar SkPoint::Normalize(SkPoint* pt) {
68     float mag;
69     if (set_point_length<false>(pt, pt->fX, pt->fY, 1.0f, &mag)) {
70         return mag;
71     }
72     return 0;
73 }
74 
Length(SkScalar dx,SkScalar dy)75 SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) {
76     float mag2 = dx * dx + dy * dy;
77     if (SkScalarIsFinite(mag2)) {
78         return sk_float_sqrt(mag2);
79     } else {
80         double xx = dx;
81         double yy = dy;
82         return sk_double_to_float(sqrt(xx * xx + yy * yy));
83     }
84 }
85 
setLength(float x,float y,float length)86 bool SkPoint::setLength(float x, float y, float length) {
87     return set_point_length<false>(this, x, y, length);
88 }
89 
SetLengthFast(SkPoint * pt,float length)90 bool SkPointPriv::SetLengthFast(SkPoint* pt, float length) {
91     return set_point_length<true>(pt, pt->fX, pt->fY, length);
92 }
93 
94 
95 ///////////////////////////////////////////////////////////////////////////////
96 
DistanceToLineBetweenSqd(const SkPoint & pt,const SkPoint & a,const SkPoint & b,Side * side)97 SkScalar SkPointPriv::DistanceToLineBetweenSqd(const SkPoint& pt, const SkPoint& a,
98                                                const SkPoint& b,
99                                                Side* side) {
100 
101     SkVector u = b - a;
102     SkVector v = pt - a;
103 
104     SkScalar uLengthSqd = LengthSqd(u);
105     SkScalar det = u.cross(v);
106     if (side) {
107         SkASSERT(-1 == kLeft_Side &&
108                   0 == kOn_Side &&
109                   1 == kRight_Side);
110         *side = (Side) SkScalarSignAsInt(det);
111     }
112     SkScalar temp = sk_ieee_float_divide(det, uLengthSqd);
113     temp *= det;
114     // It's possible we have a degenerate line vector, or we're so far away it looks degenerate
115     // In this case, return squared distance to point A.
116     if (!SkScalarIsFinite(temp)) {
117         return LengthSqd(v);
118     }
119     return temp;
120 }
121 
DistanceToLineSegmentBetweenSqd(const SkPoint & pt,const SkPoint & a,const SkPoint & b)122 SkScalar SkPointPriv::DistanceToLineSegmentBetweenSqd(const SkPoint& pt, const SkPoint& a,
123                                                       const SkPoint& b) {
124     // See comments to distanceToLineBetweenSqd. If the projection of c onto
125     // u is between a and b then this returns the same result as that
126     // function. Otherwise, it returns the distance to the closer of a and
127     // b. Let the projection of v onto u be v'.  There are three cases:
128     //    1. v' points opposite to u. c is not between a and b and is closer
129     //       to a than b.
130     //    2. v' points along u and has magnitude less than y. c is between
131     //       a and b and the distance to the segment is the same as distance
132     //       to the line ab.
133     //    3. v' points along u and has greater magnitude than u. c is not
134     //       not between a and b and is closer to b than a.
135     // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're
136     // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise
137     // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to
138     // avoid a sqrt to compute |u|.
139 
140     SkVector u = b - a;
141     SkVector v = pt - a;
142 
143     SkScalar uLengthSqd = LengthSqd(u);
144     SkScalar uDotV = SkPoint::DotProduct(u, v);
145 
146     // closest point is point A
147     if (uDotV <= 0) {
148         return LengthSqd(v);
149     // closest point is point B
150     } else if (uDotV > uLengthSqd) {
151         return DistanceToSqd(b, pt);
152     // closest point is inside segment
153     } else {
154         SkScalar det = u.cross(v);
155         SkScalar temp = sk_ieee_float_divide(det, uLengthSqd);
156         temp *= det;
157         // It's possible we have a degenerate segment, or we're so far away it looks degenerate
158         // In this case, return squared distance to point A.
159         if (!SkScalarIsFinite(temp)) {
160             return LengthSqd(v);
161         }
162         return temp;
163     }
164 }
165