1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkTSort_DEFINED
9 #define SkTSort_DEFINED
10 
11 #include "include/core/SkTypes.h"
12 #include "include/private/SkTo.h"
13 #include "src/core/SkMathPriv.h"
14 
15 #include <utility>
16 
17 ///////////////////////////////////////////////////////////////////////////////
18 
19 /*  Sifts a broken heap. The input array is a heap from root to bottom
20  *  except that the root entry may be out of place.
21  *
22  *  Sinks a hole from array[root] to leaf and then sifts the original array[root] element
23  *  from the leaf level up.
24  *
25  *  This version does extra work, in that it copies child to parent on the way down,
26  *  then copies parent to child on the way back up. When copies are inexpensive,
27  *  this is an optimization as this sift variant should only be used when
28  *  the potentially out of place root entry value is expected to be small.
29  *
30  *  @param root the one based index into array of the out-of-place root of the heap.
31  *  @param bottom the one based index in the array of the last entry in the heap.
32  */
33 template <typename T, typename C>
SkTHeapSort_SiftUp(T array[],size_t root,size_t bottom,const C & lessThan)34 void SkTHeapSort_SiftUp(T array[], size_t root, size_t bottom, const C& lessThan) {
35     T x = array[root-1];
36     size_t start = root;
37     size_t j = root << 1;
38     while (j <= bottom) {
39         if (j < bottom && lessThan(array[j-1], array[j])) {
40             ++j;
41         }
42         array[root-1] = array[j-1];
43         root = j;
44         j = root << 1;
45     }
46     j = root >> 1;
47     while (j >= start) {
48         if (lessThan(array[j-1], x)) {
49             array[root-1] = array[j-1];
50             root = j;
51             j = root >> 1;
52         } else {
53             break;
54         }
55     }
56     array[root-1] = x;
57 }
58 
59 /*  Sifts a broken heap. The input array is a heap from root to bottom
60  *  except that the root entry may be out of place.
61  *
62  *  Sifts the array[root] element from the root down.
63  *
64  *  @param root the one based index into array of the out-of-place root of the heap.
65  *  @param bottom the one based index in the array of the last entry in the heap.
66  */
67 template <typename T, typename C>
SkTHeapSort_SiftDown(T array[],size_t root,size_t bottom,const C & lessThan)68 void SkTHeapSort_SiftDown(T array[], size_t root, size_t bottom, const C& lessThan) {
69     T x = array[root-1];
70     size_t child = root << 1;
71     while (child <= bottom) {
72         if (child < bottom && lessThan(array[child-1], array[child])) {
73             ++child;
74         }
75         if (lessThan(x, array[child-1])) {
76             array[root-1] = array[child-1];
77             root = child;
78             child = root << 1;
79         } else {
80             break;
81         }
82     }
83     array[root-1] = x;
84 }
85 
86 /** Sorts the array of size count using comparator lessThan using a Heap Sort algorithm. Be sure to
87  *  specialize swap if T has an efficient swap operation.
88  *
89  *  @param array the array to be sorted.
90  *  @param count the number of elements in the array.
91  *  @param lessThan a functor with bool operator()(T a, T b) which returns true if a comes before b.
92  */
SkTHeapSort(T array[],size_t count,const C & lessThan)93 template <typename T, typename C> void SkTHeapSort(T array[], size_t count, const C& lessThan) {
94     for (size_t i = count >> 1; i > 0; --i) {
95         SkTHeapSort_SiftDown(array, i, count, lessThan);
96     }
97 
98     for (size_t i = count - 1; i > 0; --i) {
99         using std::swap;
100         swap(array[0], array[i]);
101         SkTHeapSort_SiftUp(array, 1, i, lessThan);
102     }
103 }
104 
105 /** Sorts the array of size count using comparator '<' using a Heap Sort algorithm. */
SkTHeapSort(T array[],size_t count)106 template <typename T> void SkTHeapSort(T array[], size_t count) {
107     SkTHeapSort(array, count, [](const T& a, const T& b) { return a < b; });
108 }
109 
110 ///////////////////////////////////////////////////////////////////////////////
111 
112 /** Sorts the array of size count using comparator lessThan using an Insertion Sort algorithm. */
113 template <typename T, typename C>
SkTInsertionSort(T * left,int count,const C & lessThan)114 static void SkTInsertionSort(T* left, int count, const C& lessThan) {
115     T* right = left + count - 1;
116     for (T* next = left + 1; next <= right; ++next) {
117         if (!lessThan(*next, *(next - 1))) {
118             continue;
119         }
120         T insert = std::move(*next);
121         T* hole = next;
122         do {
123             *hole = std::move(*(hole - 1));
124             --hole;
125         } while (left < hole && lessThan(insert, *(hole - 1)));
126         *hole = std::move(insert);
127     }
128 }
129 
130 ///////////////////////////////////////////////////////////////////////////////
131 
132 template <typename T, typename C>
SkTQSort_Partition(T * left,int count,T * pivot,const C & lessThan)133 static T* SkTQSort_Partition(T* left, int count, T* pivot, const C& lessThan) {
134     T* right = left + count - 1;
135     using std::swap;
136     T pivotValue = *pivot;
137     swap(*pivot, *right);
138     T* newPivot = left;
139     while (left < right) {
140         if (lessThan(*left, pivotValue)) {
141             swap(*left, *newPivot);
142             newPivot += 1;
143         }
144         left += 1;
145     }
146     swap(*newPivot, *right);
147     return newPivot;
148 }
149 
150 /*  Introsort is a modified Quicksort.
151  *  When the region to be sorted is a small constant size, it uses Insertion Sort.
152  *  When depth becomes zero, it switches over to Heap Sort.
153  *  This implementation recurses on the left region after pivoting and loops on the right,
154  *    we already limit the stack depth by switching to heap sort,
155  *    and cache locality on the data appears more important than saving a few stack frames.
156  *
157  *  @param depth at this recursion depth, switch to Heap Sort.
158  *  @param left points to the beginning of the region to be sorted
159  *  @param count number of items to be sorted
160  *  @param lessThan  a functor/lambda which returns true if a comes before b.
161  */
162 template <typename T, typename C>
SkTIntroSort(int depth,T * left,int count,const C & lessThan)163 void SkTIntroSort(int depth, T* left, int count, const C& lessThan) {
164     for (;;) {
165         if (count <= 32) {
166             SkTInsertionSort(left, count, lessThan);
167             return;
168         }
169 
170         if (depth == 0) {
171             SkTHeapSort<T>(left, count, lessThan);
172             return;
173         }
174         --depth;
175 
176         T* middle = left + ((count - 1) >> 1);
177         T* pivot = SkTQSort_Partition(left, count, middle, lessThan);
178         int pivotCount = pivot - left;
179 
180         SkTIntroSort(depth, left, pivotCount, lessThan);
181         left += pivotCount + 1;
182         count -= pivotCount + 1;
183     }
184 }
185 
186 /** Sorts the region from left to right using comparator lessThan using Introsort.
187  *  Be sure to specialize `swap` if T has an efficient swap operation.
188  *
189  *  @param begin points to the beginning of the region to be sorted
190  *  @param end points past the end of the region to be sorted
191  *  @param lessThan a functor/lambda which returns true if a comes before b.
192  */
193 template <typename T, typename C>
SkTQSort(T * begin,T * end,const C & lessThan)194 void SkTQSort(T* begin, T* end, const C& lessThan) {
195     int n = SkToInt(end - begin);
196     if (n <= 1) {
197         return;
198     }
199     // Limit Introsort recursion depth to no more than 2 * ceil(log2(n-1)).
200     int depth = 2 * SkNextLog2(n - 1);
201     SkTIntroSort(depth, begin, n, lessThan);
202 }
203 
204 /** Sorts the region from left to right using comparator 'a < b' using Introsort. */
SkTQSort(T * begin,T * end)205 template <typename T> void SkTQSort(T* begin, T* end) {
206     SkTQSort(begin, end, [](const T& a, const T& b) { return a < b; });
207 }
208 
209 /** Sorts the region from left to right using comparator '*a < *b' using Introsort. */
SkTQSort(T ** begin,T ** end)210 template <typename T> void SkTQSort(T** begin, T** end) {
211     SkTQSort(begin, end, [](const T* a, const T* b) { return *a < *b; });
212 }
213 
214 #endif
215