1 //===- DemandedBits.cpp - Determine demanded bits -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a demanded bits analysis. A demanded bit is one that
10 // contributes to a result; bits that are not demanded can be either zero or
11 // one without affecting control or data flow. For example in this sequence:
12 //
13 //   %1 = add i32 %x, %y
14 //   %2 = trunc i32 %1 to i16
15 //
16 // Only the lowest 16 bits of %1 are demanded; the rest are removed by the
17 // trunc.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #include "llvm/Analysis/DemandedBits.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/InstIterator.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/PassManager.h"
40 #include "llvm/IR/PatternMatch.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Use.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/KnownBits.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cstdint>
51 
52 using namespace llvm;
53 using namespace llvm::PatternMatch;
54 
55 #define DEBUG_TYPE "demanded-bits"
56 
57 char DemandedBitsWrapperPass::ID = 0;
58 
59 INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits",
60                       "Demanded bits analysis", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)61 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
62 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
63 INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits",
64                     "Demanded bits analysis", false, false)
65 
66 DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) {
67   initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry());
68 }
69 
getAnalysisUsage(AnalysisUsage & AU) const70 void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
71   AU.setPreservesCFG();
72   AU.addRequired<AssumptionCacheTracker>();
73   AU.addRequired<DominatorTreeWrapperPass>();
74   AU.setPreservesAll();
75 }
76 
print(raw_ostream & OS,const Module * M) const77 void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const {
78   DB->print(OS);
79 }
80 
isAlwaysLive(Instruction * I)81 static bool isAlwaysLive(Instruction *I) {
82   return I->isTerminator() || isa<DbgInfoIntrinsic>(I) || I->isEHPad() ||
83          I->mayHaveSideEffects();
84 }
85 
determineLiveOperandBits(const Instruction * UserI,const Value * Val,unsigned OperandNo,const APInt & AOut,APInt & AB,KnownBits & Known,KnownBits & Known2,bool & KnownBitsComputed)86 void DemandedBits::determineLiveOperandBits(
87     const Instruction *UserI, const Value *Val, unsigned OperandNo,
88     const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2,
89     bool &KnownBitsComputed) {
90   unsigned BitWidth = AB.getBitWidth();
91 
92   // We're called once per operand, but for some instructions, we need to
93   // compute known bits of both operands in order to determine the live bits of
94   // either (when both operands are instructions themselves). We don't,
95   // however, want to do this twice, so we cache the result in APInts that live
96   // in the caller. For the two-relevant-operands case, both operand values are
97   // provided here.
98   auto ComputeKnownBits =
99       [&](unsigned BitWidth, const Value *V1, const Value *V2) {
100         if (KnownBitsComputed)
101           return;
102         KnownBitsComputed = true;
103 
104         const DataLayout &DL = UserI->getModule()->getDataLayout();
105         Known = KnownBits(BitWidth);
106         computeKnownBits(V1, Known, DL, 0, &AC, UserI, &DT);
107 
108         if (V2) {
109           Known2 = KnownBits(BitWidth);
110           computeKnownBits(V2, Known2, DL, 0, &AC, UserI, &DT);
111         }
112       };
113 
114   switch (UserI->getOpcode()) {
115   default: break;
116   case Instruction::Call:
117   case Instruction::Invoke:
118     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
119       switch (II->getIntrinsicID()) {
120       default: break;
121       case Intrinsic::bswap:
122         // The alive bits of the input are the swapped alive bits of
123         // the output.
124         AB = AOut.byteSwap();
125         break;
126       case Intrinsic::bitreverse:
127         // The alive bits of the input are the reversed alive bits of
128         // the output.
129         AB = AOut.reverseBits();
130         break;
131       case Intrinsic::ctlz:
132         if (OperandNo == 0) {
133           // We need some output bits, so we need all bits of the
134           // input to the left of, and including, the leftmost bit
135           // known to be one.
136           ComputeKnownBits(BitWidth, Val, nullptr);
137           AB = APInt::getHighBitsSet(BitWidth,
138                  std::min(BitWidth, Known.countMaxLeadingZeros()+1));
139         }
140         break;
141       case Intrinsic::cttz:
142         if (OperandNo == 0) {
143           // We need some output bits, so we need all bits of the
144           // input to the right of, and including, the rightmost bit
145           // known to be one.
146           ComputeKnownBits(BitWidth, Val, nullptr);
147           AB = APInt::getLowBitsSet(BitWidth,
148                  std::min(BitWidth, Known.countMaxTrailingZeros()+1));
149         }
150         break;
151       case Intrinsic::fshl:
152       case Intrinsic::fshr: {
153         const APInt *SA;
154         if (OperandNo == 2) {
155           // Shift amount is modulo the bitwidth. For powers of two we have
156           // SA % BW == SA & (BW - 1).
157           if (isPowerOf2_32(BitWidth))
158             AB = BitWidth - 1;
159         } else if (match(II->getOperand(2), m_APInt(SA))) {
160           // Normalize to funnel shift left. APInt shifts of BitWidth are well-
161           // defined, so no need to special-case zero shifts here.
162           uint64_t ShiftAmt = SA->urem(BitWidth);
163           if (II->getIntrinsicID() == Intrinsic::fshr)
164             ShiftAmt = BitWidth - ShiftAmt;
165 
166           if (OperandNo == 0)
167             AB = AOut.lshr(ShiftAmt);
168           else if (OperandNo == 1)
169             AB = AOut.shl(BitWidth - ShiftAmt);
170         }
171         break;
172       }
173       }
174     break;
175   case Instruction::Add:
176   case Instruction::Sub:
177   case Instruction::Mul:
178     // Find the highest live output bit. We don't need any more input
179     // bits than that (adds, and thus subtracts, ripple only to the
180     // left).
181     AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
182     break;
183   case Instruction::Shl:
184     if (OperandNo == 0) {
185       const APInt *ShiftAmtC;
186       if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
187         uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
188         AB = AOut.lshr(ShiftAmt);
189 
190         // If the shift is nuw/nsw, then the high bits are not dead
191         // (because we've promised that they *must* be zero).
192         const ShlOperator *S = cast<ShlOperator>(UserI);
193         if (S->hasNoSignedWrap())
194           AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
195         else if (S->hasNoUnsignedWrap())
196           AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
197       }
198     }
199     break;
200   case Instruction::LShr:
201     if (OperandNo == 0) {
202       const APInt *ShiftAmtC;
203       if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
204         uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
205         AB = AOut.shl(ShiftAmt);
206 
207         // If the shift is exact, then the low bits are not dead
208         // (they must be zero).
209         if (cast<LShrOperator>(UserI)->isExact())
210           AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
211       }
212     }
213     break;
214   case Instruction::AShr:
215     if (OperandNo == 0) {
216       const APInt *ShiftAmtC;
217       if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
218         uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
219         AB = AOut.shl(ShiftAmt);
220         // Because the high input bit is replicated into the
221         // high-order bits of the result, if we need any of those
222         // bits, then we must keep the highest input bit.
223         if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
224             .getBoolValue())
225           AB.setSignBit();
226 
227         // If the shift is exact, then the low bits are not dead
228         // (they must be zero).
229         if (cast<AShrOperator>(UserI)->isExact())
230           AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
231       }
232     }
233     break;
234   case Instruction::And:
235     AB = AOut;
236 
237     // For bits that are known zero, the corresponding bits in the
238     // other operand are dead (unless they're both zero, in which
239     // case they can't both be dead, so just mark the LHS bits as
240     // dead).
241     ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
242     if (OperandNo == 0)
243       AB &= ~Known2.Zero;
244     else
245       AB &= ~(Known.Zero & ~Known2.Zero);
246     break;
247   case Instruction::Or:
248     AB = AOut;
249 
250     // For bits that are known one, the corresponding bits in the
251     // other operand are dead (unless they're both one, in which
252     // case they can't both be dead, so just mark the LHS bits as
253     // dead).
254     ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
255     if (OperandNo == 0)
256       AB &= ~Known2.One;
257     else
258       AB &= ~(Known.One & ~Known2.One);
259     break;
260   case Instruction::Xor:
261   case Instruction::PHI:
262     AB = AOut;
263     break;
264   case Instruction::Trunc:
265     AB = AOut.zext(BitWidth);
266     break;
267   case Instruction::ZExt:
268     AB = AOut.trunc(BitWidth);
269     break;
270   case Instruction::SExt:
271     AB = AOut.trunc(BitWidth);
272     // Because the high input bit is replicated into the
273     // high-order bits of the result, if we need any of those
274     // bits, then we must keep the highest input bit.
275     if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
276                                       AOut.getBitWidth() - BitWidth))
277         .getBoolValue())
278       AB.setSignBit();
279     break;
280   case Instruction::Select:
281     if (OperandNo != 0)
282       AB = AOut;
283     break;
284   case Instruction::ExtractElement:
285     if (OperandNo == 0)
286       AB = AOut;
287     break;
288   case Instruction::InsertElement:
289   case Instruction::ShuffleVector:
290     if (OperandNo == 0 || OperandNo == 1)
291       AB = AOut;
292     break;
293   }
294 }
295 
runOnFunction(Function & F)296 bool DemandedBitsWrapperPass::runOnFunction(Function &F) {
297   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
298   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
299   DB.emplace(F, AC, DT);
300   return false;
301 }
302 
releaseMemory()303 void DemandedBitsWrapperPass::releaseMemory() {
304   DB.reset();
305 }
306 
performAnalysis()307 void DemandedBits::performAnalysis() {
308   if (Analyzed)
309     // Analysis already completed for this function.
310     return;
311   Analyzed = true;
312 
313   Visited.clear();
314   AliveBits.clear();
315   DeadUses.clear();
316 
317   SmallSetVector<Instruction*, 16> Worklist;
318 
319   // Collect the set of "root" instructions that are known live.
320   for (Instruction &I : instructions(F)) {
321     if (!isAlwaysLive(&I))
322       continue;
323 
324     LLVM_DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
325     // For integer-valued instructions, set up an initial empty set of alive
326     // bits and add the instruction to the work list. For other instructions
327     // add their operands to the work list (for integer values operands, mark
328     // all bits as live).
329     Type *T = I.getType();
330     if (T->isIntOrIntVectorTy()) {
331       if (AliveBits.try_emplace(&I, T->getScalarSizeInBits(), 0).second)
332         Worklist.insert(&I);
333 
334       continue;
335     }
336 
337     // Non-integer-typed instructions...
338     for (Use &OI : I.operands()) {
339       if (Instruction *J = dyn_cast<Instruction>(OI)) {
340         Type *T = J->getType();
341         if (T->isIntOrIntVectorTy())
342           AliveBits[J] = APInt::getAllOnesValue(T->getScalarSizeInBits());
343         else
344           Visited.insert(J);
345         Worklist.insert(J);
346       }
347     }
348     // To save memory, we don't add I to the Visited set here. Instead, we
349     // check isAlwaysLive on every instruction when searching for dead
350     // instructions later (we need to check isAlwaysLive for the
351     // integer-typed instructions anyway).
352   }
353 
354   // Propagate liveness backwards to operands.
355   while (!Worklist.empty()) {
356     Instruction *UserI = Worklist.pop_back_val();
357 
358     LLVM_DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
359     APInt AOut;
360     bool InputIsKnownDead = false;
361     if (UserI->getType()->isIntOrIntVectorTy()) {
362       AOut = AliveBits[UserI];
363       LLVM_DEBUG(dbgs() << " Alive Out: 0x"
364                         << Twine::utohexstr(AOut.getLimitedValue()));
365 
366       // If all bits of the output are dead, then all bits of the input
367       // are also dead.
368       InputIsKnownDead = !AOut && !isAlwaysLive(UserI);
369     }
370     LLVM_DEBUG(dbgs() << "\n");
371 
372     KnownBits Known, Known2;
373     bool KnownBitsComputed = false;
374     // Compute the set of alive bits for each operand. These are anded into the
375     // existing set, if any, and if that changes the set of alive bits, the
376     // operand is added to the work-list.
377     for (Use &OI : UserI->operands()) {
378       // We also want to detect dead uses of arguments, but will only store
379       // demanded bits for instructions.
380       Instruction *I = dyn_cast<Instruction>(OI);
381       if (!I && !isa<Argument>(OI))
382         continue;
383 
384       Type *T = OI->getType();
385       if (T->isIntOrIntVectorTy()) {
386         unsigned BitWidth = T->getScalarSizeInBits();
387         APInt AB = APInt::getAllOnesValue(BitWidth);
388         if (InputIsKnownDead) {
389           AB = APInt(BitWidth, 0);
390         } else {
391           // Bits of each operand that are used to compute alive bits of the
392           // output are alive, all others are dead.
393           determineLiveOperandBits(UserI, OI, OI.getOperandNo(), AOut, AB,
394                                    Known, Known2, KnownBitsComputed);
395 
396           // Keep track of uses which have no demanded bits.
397           if (AB.isNullValue())
398             DeadUses.insert(&OI);
399           else
400             DeadUses.erase(&OI);
401         }
402 
403         if (I) {
404           // If we've added to the set of alive bits (or the operand has not
405           // been previously visited), then re-queue the operand to be visited
406           // again.
407           auto Res = AliveBits.try_emplace(I);
408           if (Res.second || (AB |= Res.first->second) != Res.first->second) {
409             Res.first->second = std::move(AB);
410             Worklist.insert(I);
411           }
412         }
413       } else if (I && Visited.insert(I).second) {
414         Worklist.insert(I);
415       }
416     }
417   }
418 }
419 
getDemandedBits(Instruction * I)420 APInt DemandedBits::getDemandedBits(Instruction *I) {
421   performAnalysis();
422 
423   auto Found = AliveBits.find(I);
424   if (Found != AliveBits.end())
425     return Found->second;
426 
427   const DataLayout &DL = I->getModule()->getDataLayout();
428   return APInt::getAllOnesValue(
429       DL.getTypeSizeInBits(I->getType()->getScalarType()));
430 }
431 
isInstructionDead(Instruction * I)432 bool DemandedBits::isInstructionDead(Instruction *I) {
433   performAnalysis();
434 
435   return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() &&
436     !isAlwaysLive(I);
437 }
438 
isUseDead(Use * U)439 bool DemandedBits::isUseDead(Use *U) {
440   // We only track integer uses, everything else is assumed live.
441   if (!(*U)->getType()->isIntOrIntVectorTy())
442     return false;
443 
444   // Uses by always-live instructions are never dead.
445   Instruction *UserI = cast<Instruction>(U->getUser());
446   if (isAlwaysLive(UserI))
447     return false;
448 
449   performAnalysis();
450   if (DeadUses.count(U))
451     return true;
452 
453   // If no output bits are demanded, no input bits are demanded and the use
454   // is dead. These uses might not be explicitly present in the DeadUses map.
455   if (UserI->getType()->isIntOrIntVectorTy()) {
456     auto Found = AliveBits.find(UserI);
457     if (Found != AliveBits.end() && Found->second.isNullValue())
458       return true;
459   }
460 
461   return false;
462 }
463 
print(raw_ostream & OS)464 void DemandedBits::print(raw_ostream &OS) {
465   performAnalysis();
466   for (auto &KV : AliveBits) {
467     OS << "DemandedBits: 0x" << Twine::utohexstr(KV.second.getLimitedValue())
468        << " for " << *KV.first << '\n';
469   }
470 }
471 
createDemandedBitsWrapperPass()472 FunctionPass *llvm::createDemandedBitsWrapperPass() {
473   return new DemandedBitsWrapperPass();
474 }
475 
476 AnalysisKey DemandedBitsAnalysis::Key;
477 
run(Function & F,FunctionAnalysisManager & AM)478 DemandedBits DemandedBitsAnalysis::run(Function &F,
479                                              FunctionAnalysisManager &AM) {
480   auto &AC = AM.getResult<AssumptionAnalysis>(F);
481   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
482   return DemandedBits(F, AC, DT);
483 }
484 
run(Function & F,FunctionAnalysisManager & AM)485 PreservedAnalyses DemandedBitsPrinterPass::run(Function &F,
486                                                FunctionAnalysisManager &AM) {
487   AM.getResult<DemandedBitsAnalysis>(F).print(OS);
488   return PreservedAnalyses::all();
489 }
490