1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This simple pass provides alias and mod/ref information for global values
10 // that do not have their address taken, and keeps track of whether functions
11 // read or write memory (are "pure"). For this simple (but very common) case,
12 // we can provide pretty accurate and useful information.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Analysis/GlobalsModRef.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/InstIterator.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/InitializePasses.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/CommandLine.h"
31 using namespace llvm;
32
33 #define DEBUG_TYPE "globalsmodref-aa"
34
35 STATISTIC(NumNonAddrTakenGlobalVars,
36 "Number of global vars without address taken");
37 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
38 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
39 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
40 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
41
42 // An option to enable unsafe alias results from the GlobalsModRef analysis.
43 // When enabled, GlobalsModRef will provide no-alias results which in extremely
44 // rare cases may not be conservatively correct. In particular, in the face of
45 // transforms which cause assymetry between how effective GetUnderlyingObject
46 // is for two pointers, it may produce incorrect results.
47 //
48 // These unsafe results have been returned by GMR for many years without
49 // causing significant issues in the wild and so we provide a mechanism to
50 // re-enable them for users of LLVM that have a particular performance
51 // sensitivity and no known issues. The option also makes it easy to evaluate
52 // the performance impact of these results.
53 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults(
54 "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden);
55
56 /// The mod/ref information collected for a particular function.
57 ///
58 /// We collect information about mod/ref behavior of a function here, both in
59 /// general and as pertains to specific globals. We only have this detailed
60 /// information when we know *something* useful about the behavior. If we
61 /// saturate to fully general mod/ref, we remove the info for the function.
62 class GlobalsAAResult::FunctionInfo {
63 typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType;
64
65 /// Build a wrapper struct that has 8-byte alignment. All heap allocations
66 /// should provide this much alignment at least, but this makes it clear we
67 /// specifically rely on this amount of alignment.
68 struct alignas(8) AlignedMap {
AlignedMapGlobalsAAResult::FunctionInfo::AlignedMap69 AlignedMap() {}
AlignedMapGlobalsAAResult::FunctionInfo::AlignedMap70 AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {}
71 GlobalInfoMapType Map;
72 };
73
74 /// Pointer traits for our aligned map.
75 struct AlignedMapPointerTraits {
getAsVoidPointerGlobalsAAResult::FunctionInfo::AlignedMapPointerTraits76 static inline void *getAsVoidPointer(AlignedMap *P) { return P; }
getFromVoidPointerGlobalsAAResult::FunctionInfo::AlignedMapPointerTraits77 static inline AlignedMap *getFromVoidPointer(void *P) {
78 return (AlignedMap *)P;
79 }
80 enum { NumLowBitsAvailable = 3 };
81 static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable),
82 "AlignedMap insufficiently aligned to have enough low bits.");
83 };
84
85 /// The bit that flags that this function may read any global. This is
86 /// chosen to mix together with ModRefInfo bits.
87 /// FIXME: This assumes ModRefInfo lattice will remain 4 bits!
88 /// It overlaps with ModRefInfo::Must bit!
89 /// FunctionInfo.getModRefInfo() masks out everything except ModRef so
90 /// this remains correct, but the Must info is lost.
91 enum { MayReadAnyGlobal = 4 };
92
93 /// Checks to document the invariants of the bit packing here.
94 static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::MustModRef)) ==
95 0,
96 "ModRef and the MayReadAnyGlobal flag bits overlap.");
97 static_assert(((MayReadAnyGlobal |
98 static_cast<int>(ModRefInfo::MustModRef)) >>
99 AlignedMapPointerTraits::NumLowBitsAvailable) == 0,
100 "Insufficient low bits to store our flag and ModRef info.");
101
102 public:
FunctionInfo()103 FunctionInfo() : Info() {}
~FunctionInfo()104 ~FunctionInfo() {
105 delete Info.getPointer();
106 }
107 // Spell out the copy ond move constructors and assignment operators to get
108 // deep copy semantics and correct move semantics in the face of the
109 // pointer-int pair.
FunctionInfo(const FunctionInfo & Arg)110 FunctionInfo(const FunctionInfo &Arg)
111 : Info(nullptr, Arg.Info.getInt()) {
112 if (const auto *ArgPtr = Arg.Info.getPointer())
113 Info.setPointer(new AlignedMap(*ArgPtr));
114 }
FunctionInfo(FunctionInfo && Arg)115 FunctionInfo(FunctionInfo &&Arg)
116 : Info(Arg.Info.getPointer(), Arg.Info.getInt()) {
117 Arg.Info.setPointerAndInt(nullptr, 0);
118 }
operator =(const FunctionInfo & RHS)119 FunctionInfo &operator=(const FunctionInfo &RHS) {
120 delete Info.getPointer();
121 Info.setPointerAndInt(nullptr, RHS.Info.getInt());
122 if (const auto *RHSPtr = RHS.Info.getPointer())
123 Info.setPointer(new AlignedMap(*RHSPtr));
124 return *this;
125 }
operator =(FunctionInfo && RHS)126 FunctionInfo &operator=(FunctionInfo &&RHS) {
127 delete Info.getPointer();
128 Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt());
129 RHS.Info.setPointerAndInt(nullptr, 0);
130 return *this;
131 }
132
133 /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return
134 /// the corresponding ModRefInfo. It must align in functionality with
135 /// clearMust().
globalClearMayReadAnyGlobal(int I) const136 ModRefInfo globalClearMayReadAnyGlobal(int I) const {
137 return ModRefInfo((I & static_cast<int>(ModRefInfo::ModRef)) |
138 static_cast<int>(ModRefInfo::NoModRef));
139 }
140
141 /// Returns the \c ModRefInfo info for this function.
getModRefInfo() const142 ModRefInfo getModRefInfo() const {
143 return globalClearMayReadAnyGlobal(Info.getInt());
144 }
145
146 /// Adds new \c ModRefInfo for this function to its state.
addModRefInfo(ModRefInfo NewMRI)147 void addModRefInfo(ModRefInfo NewMRI) {
148 Info.setInt(Info.getInt() | static_cast<int>(setMust(NewMRI)));
149 }
150
151 /// Returns whether this function may read any global variable, and we don't
152 /// know which global.
mayReadAnyGlobal() const153 bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; }
154
155 /// Sets this function as potentially reading from any global.
setMayReadAnyGlobal()156 void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); }
157
158 /// Returns the \c ModRefInfo info for this function w.r.t. a particular
159 /// global, which may be more precise than the general information above.
getModRefInfoForGlobal(const GlobalValue & GV) const160 ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const {
161 ModRefInfo GlobalMRI =
162 mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef;
163 if (AlignedMap *P = Info.getPointer()) {
164 auto I = P->Map.find(&GV);
165 if (I != P->Map.end())
166 GlobalMRI = unionModRef(GlobalMRI, I->second);
167 }
168 return GlobalMRI;
169 }
170
171 /// Add mod/ref info from another function into ours, saturating towards
172 /// ModRef.
addFunctionInfo(const FunctionInfo & FI)173 void addFunctionInfo(const FunctionInfo &FI) {
174 addModRefInfo(FI.getModRefInfo());
175
176 if (FI.mayReadAnyGlobal())
177 setMayReadAnyGlobal();
178
179 if (AlignedMap *P = FI.Info.getPointer())
180 for (const auto &G : P->Map)
181 addModRefInfoForGlobal(*G.first, G.second);
182 }
183
addModRefInfoForGlobal(const GlobalValue & GV,ModRefInfo NewMRI)184 void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) {
185 AlignedMap *P = Info.getPointer();
186 if (!P) {
187 P = new AlignedMap();
188 Info.setPointer(P);
189 }
190 auto &GlobalMRI = P->Map[&GV];
191 GlobalMRI = unionModRef(GlobalMRI, NewMRI);
192 }
193
194 /// Clear a global's ModRef info. Should be used when a global is being
195 /// deleted.
eraseModRefInfoForGlobal(const GlobalValue & GV)196 void eraseModRefInfoForGlobal(const GlobalValue &GV) {
197 if (AlignedMap *P = Info.getPointer())
198 P->Map.erase(&GV);
199 }
200
201 private:
202 /// All of the information is encoded into a single pointer, with a three bit
203 /// integer in the low three bits. The high bit provides a flag for when this
204 /// function may read any global. The low two bits are the ModRefInfo. And
205 /// the pointer, when non-null, points to a map from GlobalValue to
206 /// ModRefInfo specific to that GlobalValue.
207 PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info;
208 };
209
deleted()210 void GlobalsAAResult::DeletionCallbackHandle::deleted() {
211 Value *V = getValPtr();
212 if (auto *F = dyn_cast<Function>(V))
213 GAR->FunctionInfos.erase(F);
214
215 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
216 if (GAR->NonAddressTakenGlobals.erase(GV)) {
217 // This global might be an indirect global. If so, remove it and
218 // remove any AllocRelatedValues for it.
219 if (GAR->IndirectGlobals.erase(GV)) {
220 // Remove any entries in AllocsForIndirectGlobals for this global.
221 for (auto I = GAR->AllocsForIndirectGlobals.begin(),
222 E = GAR->AllocsForIndirectGlobals.end();
223 I != E; ++I)
224 if (I->second == GV)
225 GAR->AllocsForIndirectGlobals.erase(I);
226 }
227
228 // Scan the function info we have collected and remove this global
229 // from all of them.
230 for (auto &FIPair : GAR->FunctionInfos)
231 FIPair.second.eraseModRefInfoForGlobal(*GV);
232 }
233 }
234
235 // If this is an allocation related to an indirect global, remove it.
236 GAR->AllocsForIndirectGlobals.erase(V);
237
238 // And clear out the handle.
239 setValPtr(nullptr);
240 GAR->Handles.erase(I);
241 // This object is now destroyed!
242 }
243
getModRefBehavior(const Function * F)244 FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) {
245 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
246
247 if (FunctionInfo *FI = getFunctionInfo(F)) {
248 if (!isModOrRefSet(FI->getModRefInfo()))
249 Min = FMRB_DoesNotAccessMemory;
250 else if (!isModSet(FI->getModRefInfo()))
251 Min = FMRB_OnlyReadsMemory;
252 }
253
254 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min);
255 }
256
257 FunctionModRefBehavior
getModRefBehavior(const CallBase * Call)258 GlobalsAAResult::getModRefBehavior(const CallBase *Call) {
259 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
260
261 if (!Call->hasOperandBundles())
262 if (const Function *F = Call->getCalledFunction())
263 if (FunctionInfo *FI = getFunctionInfo(F)) {
264 if (!isModOrRefSet(FI->getModRefInfo()))
265 Min = FMRB_DoesNotAccessMemory;
266 else if (!isModSet(FI->getModRefInfo()))
267 Min = FMRB_OnlyReadsMemory;
268 }
269
270 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(Call) & Min);
271 }
272
273 /// Returns the function info for the function, or null if we don't have
274 /// anything useful to say about it.
275 GlobalsAAResult::FunctionInfo *
getFunctionInfo(const Function * F)276 GlobalsAAResult::getFunctionInfo(const Function *F) {
277 auto I = FunctionInfos.find(F);
278 if (I != FunctionInfos.end())
279 return &I->second;
280 return nullptr;
281 }
282
283 /// AnalyzeGlobals - Scan through the users of all of the internal
284 /// GlobalValue's in the program. If none of them have their "address taken"
285 /// (really, their address passed to something nontrivial), record this fact,
286 /// and record the functions that they are used directly in.
AnalyzeGlobals(Module & M)287 void GlobalsAAResult::AnalyzeGlobals(Module &M) {
288 SmallPtrSet<Function *, 32> TrackedFunctions;
289 for (Function &F : M)
290 if (F.hasLocalLinkage()) {
291 if (!AnalyzeUsesOfPointer(&F)) {
292 // Remember that we are tracking this global.
293 NonAddressTakenGlobals.insert(&F);
294 TrackedFunctions.insert(&F);
295 Handles.emplace_front(*this, &F);
296 Handles.front().I = Handles.begin();
297 ++NumNonAddrTakenFunctions;
298 } else
299 UnknownFunctionsWithLocalLinkage = true;
300 }
301
302 SmallPtrSet<Function *, 16> Readers, Writers;
303 for (GlobalVariable &GV : M.globals())
304 if (GV.hasLocalLinkage()) {
305 if (!AnalyzeUsesOfPointer(&GV, &Readers,
306 GV.isConstant() ? nullptr : &Writers)) {
307 // Remember that we are tracking this global, and the mod/ref fns
308 NonAddressTakenGlobals.insert(&GV);
309 Handles.emplace_front(*this, &GV);
310 Handles.front().I = Handles.begin();
311
312 for (Function *Reader : Readers) {
313 if (TrackedFunctions.insert(Reader).second) {
314 Handles.emplace_front(*this, Reader);
315 Handles.front().I = Handles.begin();
316 }
317 FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref);
318 }
319
320 if (!GV.isConstant()) // No need to keep track of writers to constants
321 for (Function *Writer : Writers) {
322 if (TrackedFunctions.insert(Writer).second) {
323 Handles.emplace_front(*this, Writer);
324 Handles.front().I = Handles.begin();
325 }
326 FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod);
327 }
328 ++NumNonAddrTakenGlobalVars;
329
330 // If this global holds a pointer type, see if it is an indirect global.
331 if (GV.getValueType()->isPointerTy() &&
332 AnalyzeIndirectGlobalMemory(&GV))
333 ++NumIndirectGlobalVars;
334 }
335 Readers.clear();
336 Writers.clear();
337 }
338 }
339
340 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
341 /// If this is used by anything complex (i.e., the address escapes), return
342 /// true. Also, while we are at it, keep track of those functions that read and
343 /// write to the value.
344 ///
345 /// If OkayStoreDest is non-null, stores into this global are allowed.
AnalyzeUsesOfPointer(Value * V,SmallPtrSetImpl<Function * > * Readers,SmallPtrSetImpl<Function * > * Writers,GlobalValue * OkayStoreDest)346 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V,
347 SmallPtrSetImpl<Function *> *Readers,
348 SmallPtrSetImpl<Function *> *Writers,
349 GlobalValue *OkayStoreDest) {
350 if (!V->getType()->isPointerTy())
351 return true;
352
353 for (Use &U : V->uses()) {
354 User *I = U.getUser();
355 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
356 if (Readers)
357 Readers->insert(LI->getParent()->getParent());
358 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
359 if (V == SI->getOperand(1)) {
360 if (Writers)
361 Writers->insert(SI->getParent()->getParent());
362 } else if (SI->getOperand(1) != OkayStoreDest) {
363 return true; // Storing the pointer
364 }
365 } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
366 if (AnalyzeUsesOfPointer(I, Readers, Writers))
367 return true;
368 } else if (Operator::getOpcode(I) == Instruction::BitCast) {
369 if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
370 return true;
371 } else if (auto *Call = dyn_cast<CallBase>(I)) {
372 // Make sure that this is just the function being called, not that it is
373 // passing into the function.
374 if (Call->isDataOperand(&U)) {
375 // Detect calls to free.
376 if (Call->isArgOperand(&U) &&
377 isFreeCall(I, &GetTLI(*Call->getFunction()))) {
378 if (Writers)
379 Writers->insert(Call->getParent()->getParent());
380 } else {
381 return true; // Argument of an unknown call.
382 }
383 }
384 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
385 if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
386 return true; // Allow comparison against null.
387 } else if (Constant *C = dyn_cast<Constant>(I)) {
388 // Ignore constants which don't have any live uses.
389 if (isa<GlobalValue>(C) || C->isConstantUsed())
390 return true;
391 } else {
392 return true;
393 }
394 }
395
396 return false;
397 }
398
399 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
400 /// which holds a pointer type. See if the global always points to non-aliased
401 /// heap memory: that is, all initializers of the globals are allocations, and
402 /// those allocations have no use other than initialization of the global.
403 /// Further, all loads out of GV must directly use the memory, not store the
404 /// pointer somewhere. If this is true, we consider the memory pointed to by
405 /// GV to be owned by GV and can disambiguate other pointers from it.
AnalyzeIndirectGlobalMemory(GlobalVariable * GV)406 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) {
407 // Keep track of values related to the allocation of the memory, f.e. the
408 // value produced by the malloc call and any casts.
409 std::vector<Value *> AllocRelatedValues;
410
411 // If the initializer is a valid pointer, bail.
412 if (Constant *C = GV->getInitializer())
413 if (!C->isNullValue())
414 return false;
415
416 // Walk the user list of the global. If we find anything other than a direct
417 // load or store, bail out.
418 for (User *U : GV->users()) {
419 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
420 // The pointer loaded from the global can only be used in simple ways:
421 // we allow addressing of it and loading storing to it. We do *not* allow
422 // storing the loaded pointer somewhere else or passing to a function.
423 if (AnalyzeUsesOfPointer(LI))
424 return false; // Loaded pointer escapes.
425 // TODO: Could try some IP mod/ref of the loaded pointer.
426 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
427 // Storing the global itself.
428 if (SI->getOperand(0) == GV)
429 return false;
430
431 // If storing the null pointer, ignore it.
432 if (isa<ConstantPointerNull>(SI->getOperand(0)))
433 continue;
434
435 // Check the value being stored.
436 Value *Ptr = GetUnderlyingObject(SI->getOperand(0),
437 GV->getParent()->getDataLayout());
438
439 if (!isAllocLikeFn(Ptr, &GetTLI(*SI->getFunction())))
440 return false; // Too hard to analyze.
441
442 // Analyze all uses of the allocation. If any of them are used in a
443 // non-simple way (e.g. stored to another global) bail out.
444 if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr,
445 GV))
446 return false; // Loaded pointer escapes.
447
448 // Remember that this allocation is related to the indirect global.
449 AllocRelatedValues.push_back(Ptr);
450 } else {
451 // Something complex, bail out.
452 return false;
453 }
454 }
455
456 // Okay, this is an indirect global. Remember all of the allocations for
457 // this global in AllocsForIndirectGlobals.
458 while (!AllocRelatedValues.empty()) {
459 AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
460 Handles.emplace_front(*this, AllocRelatedValues.back());
461 Handles.front().I = Handles.begin();
462 AllocRelatedValues.pop_back();
463 }
464 IndirectGlobals.insert(GV);
465 Handles.emplace_front(*this, GV);
466 Handles.front().I = Handles.begin();
467 return true;
468 }
469
CollectSCCMembership(CallGraph & CG)470 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) {
471 // We do a bottom-up SCC traversal of the call graph. In other words, we
472 // visit all callees before callers (leaf-first).
473 unsigned SCCID = 0;
474 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
475 const std::vector<CallGraphNode *> &SCC = *I;
476 assert(!SCC.empty() && "SCC with no functions?");
477
478 for (auto *CGN : SCC)
479 if (Function *F = CGN->getFunction())
480 FunctionToSCCMap[F] = SCCID;
481 ++SCCID;
482 }
483 }
484
485 /// AnalyzeCallGraph - At this point, we know the functions where globals are
486 /// immediately stored to and read from. Propagate this information up the call
487 /// graph to all callers and compute the mod/ref info for all memory for each
488 /// function.
AnalyzeCallGraph(CallGraph & CG,Module & M)489 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) {
490 // We do a bottom-up SCC traversal of the call graph. In other words, we
491 // visit all callees before callers (leaf-first).
492 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
493 const std::vector<CallGraphNode *> &SCC = *I;
494 assert(!SCC.empty() && "SCC with no functions?");
495
496 Function *F = SCC[0]->getFunction();
497
498 if (!F || !F->isDefinitionExact()) {
499 // Calls externally or not exact - can't say anything useful. Remove any
500 // existing function records (may have been created when scanning
501 // globals).
502 for (auto *Node : SCC)
503 FunctionInfos.erase(Node->getFunction());
504 continue;
505 }
506
507 FunctionInfo &FI = FunctionInfos[F];
508 Handles.emplace_front(*this, F);
509 Handles.front().I = Handles.begin();
510 bool KnowNothing = false;
511
512 // Collect the mod/ref properties due to called functions. We only compute
513 // one mod-ref set.
514 for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
515 if (!F) {
516 KnowNothing = true;
517 break;
518 }
519
520 if (F->isDeclaration() || F->hasOptNone()) {
521 // Try to get mod/ref behaviour from function attributes.
522 if (F->doesNotAccessMemory()) {
523 // Can't do better than that!
524 } else if (F->onlyReadsMemory()) {
525 FI.addModRefInfo(ModRefInfo::Ref);
526 if (!F->isIntrinsic() && !F->onlyAccessesArgMemory())
527 // This function might call back into the module and read a global -
528 // consider every global as possibly being read by this function.
529 FI.setMayReadAnyGlobal();
530 } else {
531 FI.addModRefInfo(ModRefInfo::ModRef);
532 if (!F->onlyAccessesArgMemory())
533 FI.setMayReadAnyGlobal();
534 if (!F->isIntrinsic()) {
535 KnowNothing = true;
536 break;
537 }
538 }
539 continue;
540 }
541
542 for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
543 CI != E && !KnowNothing; ++CI)
544 if (Function *Callee = CI->second->getFunction()) {
545 if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) {
546 // Propagate function effect up.
547 FI.addFunctionInfo(*CalleeFI);
548 } else {
549 // Can't say anything about it. However, if it is inside our SCC,
550 // then nothing needs to be done.
551 CallGraphNode *CalleeNode = CG[Callee];
552 if (!is_contained(SCC, CalleeNode))
553 KnowNothing = true;
554 }
555 } else {
556 KnowNothing = true;
557 }
558 }
559
560 // If we can't say anything useful about this SCC, remove all SCC functions
561 // from the FunctionInfos map.
562 if (KnowNothing) {
563 for (auto *Node : SCC)
564 FunctionInfos.erase(Node->getFunction());
565 continue;
566 }
567
568 // Scan the function bodies for explicit loads or stores.
569 for (auto *Node : SCC) {
570 if (isModAndRefSet(FI.getModRefInfo()))
571 break; // The mod/ref lattice saturates here.
572
573 // Don't prove any properties based on the implementation of an optnone
574 // function. Function attributes were already used as a best approximation
575 // above.
576 if (Node->getFunction()->hasOptNone())
577 continue;
578
579 for (Instruction &I : instructions(Node->getFunction())) {
580 if (isModAndRefSet(FI.getModRefInfo()))
581 break; // The mod/ref lattice saturates here.
582
583 // We handle calls specially because the graph-relevant aspects are
584 // handled above.
585 if (auto *Call = dyn_cast<CallBase>(&I)) {
586 auto &TLI = GetTLI(*Node->getFunction());
587 if (isAllocationFn(Call, &TLI) || isFreeCall(Call, &TLI)) {
588 // FIXME: It is completely unclear why this is necessary and not
589 // handled by the above graph code.
590 FI.addModRefInfo(ModRefInfo::ModRef);
591 } else if (Function *Callee = Call->getCalledFunction()) {
592 // The callgraph doesn't include intrinsic calls.
593 if (Callee->isIntrinsic()) {
594 if (isa<DbgInfoIntrinsic>(Call))
595 // Don't let dbg intrinsics affect alias info.
596 continue;
597
598 FunctionModRefBehavior Behaviour =
599 AAResultBase::getModRefBehavior(Callee);
600 FI.addModRefInfo(createModRefInfo(Behaviour));
601 }
602 }
603 continue;
604 }
605
606 // All non-call instructions we use the primary predicates for whether
607 // they read or write memory.
608 if (I.mayReadFromMemory())
609 FI.addModRefInfo(ModRefInfo::Ref);
610 if (I.mayWriteToMemory())
611 FI.addModRefInfo(ModRefInfo::Mod);
612 }
613 }
614
615 if (!isModSet(FI.getModRefInfo()))
616 ++NumReadMemFunctions;
617 if (!isModOrRefSet(FI.getModRefInfo()))
618 ++NumNoMemFunctions;
619
620 // Finally, now that we know the full effect on this SCC, clone the
621 // information to each function in the SCC.
622 // FI is a reference into FunctionInfos, so copy it now so that it doesn't
623 // get invalidated if DenseMap decides to re-hash.
624 FunctionInfo CachedFI = FI;
625 for (unsigned i = 1, e = SCC.size(); i != e; ++i)
626 FunctionInfos[SCC[i]->getFunction()] = CachedFI;
627 }
628 }
629
630 // GV is a non-escaping global. V is a pointer address that has been loaded from.
631 // If we can prove that V must escape, we can conclude that a load from V cannot
632 // alias GV.
isNonEscapingGlobalNoAliasWithLoad(const GlobalValue * GV,const Value * V,int & Depth,const DataLayout & DL)633 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV,
634 const Value *V,
635 int &Depth,
636 const DataLayout &DL) {
637 SmallPtrSet<const Value *, 8> Visited;
638 SmallVector<const Value *, 8> Inputs;
639 Visited.insert(V);
640 Inputs.push_back(V);
641 do {
642 const Value *Input = Inputs.pop_back_val();
643
644 if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) ||
645 isa<InvokeInst>(Input))
646 // Arguments to functions or returns from functions are inherently
647 // escaping, so we can immediately classify those as not aliasing any
648 // non-addr-taken globals.
649 //
650 // (Transitive) loads from a global are also safe - if this aliased
651 // another global, its address would escape, so no alias.
652 continue;
653
654 // Recurse through a limited number of selects, loads and PHIs. This is an
655 // arbitrary depth of 4, lower numbers could be used to fix compile time
656 // issues if needed, but this is generally expected to be only be important
657 // for small depths.
658 if (++Depth > 4)
659 return false;
660
661 if (auto *LI = dyn_cast<LoadInst>(Input)) {
662 Inputs.push_back(GetUnderlyingObject(LI->getPointerOperand(), DL));
663 continue;
664 }
665 if (auto *SI = dyn_cast<SelectInst>(Input)) {
666 const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
667 const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
668 if (Visited.insert(LHS).second)
669 Inputs.push_back(LHS);
670 if (Visited.insert(RHS).second)
671 Inputs.push_back(RHS);
672 continue;
673 }
674 if (auto *PN = dyn_cast<PHINode>(Input)) {
675 for (const Value *Op : PN->incoming_values()) {
676 Op = GetUnderlyingObject(Op, DL);
677 if (Visited.insert(Op).second)
678 Inputs.push_back(Op);
679 }
680 continue;
681 }
682
683 return false;
684 } while (!Inputs.empty());
685
686 // All inputs were known to be no-alias.
687 return true;
688 }
689
690 // There are particular cases where we can conclude no-alias between
691 // a non-addr-taken global and some other underlying object. Specifically,
692 // a non-addr-taken global is known to not be escaped from any function. It is
693 // also incorrect for a transformation to introduce an escape of a global in
694 // a way that is observable when it was not there previously. One function
695 // being transformed to introduce an escape which could possibly be observed
696 // (via loading from a global or the return value for example) within another
697 // function is never safe. If the observation is made through non-atomic
698 // operations on different threads, it is a data-race and UB. If the
699 // observation is well defined, by being observed the transformation would have
700 // changed program behavior by introducing the observed escape, making it an
701 // invalid transform.
702 //
703 // This property does require that transformations which *temporarily* escape
704 // a global that was not previously escaped, prior to restoring it, cannot rely
705 // on the results of GMR::alias. This seems a reasonable restriction, although
706 // currently there is no way to enforce it. There is also no realistic
707 // optimization pass that would make this mistake. The closest example is
708 // a transformation pass which does reg2mem of SSA values but stores them into
709 // global variables temporarily before restoring the global variable's value.
710 // This could be useful to expose "benign" races for example. However, it seems
711 // reasonable to require that a pass which introduces escapes of global
712 // variables in this way to either not trust AA results while the escape is
713 // active, or to be forced to operate as a module pass that cannot co-exist
714 // with an alias analysis such as GMR.
isNonEscapingGlobalNoAlias(const GlobalValue * GV,const Value * V)715 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV,
716 const Value *V) {
717 // In order to know that the underlying object cannot alias the
718 // non-addr-taken global, we must know that it would have to be an escape.
719 // Thus if the underlying object is a function argument, a load from
720 // a global, or the return of a function, it cannot alias. We can also
721 // recurse through PHI nodes and select nodes provided all of their inputs
722 // resolve to one of these known-escaping roots.
723 SmallPtrSet<const Value *, 8> Visited;
724 SmallVector<const Value *, 8> Inputs;
725 Visited.insert(V);
726 Inputs.push_back(V);
727 int Depth = 0;
728 do {
729 const Value *Input = Inputs.pop_back_val();
730
731 if (auto *InputGV = dyn_cast<GlobalValue>(Input)) {
732 // If one input is the very global we're querying against, then we can't
733 // conclude no-alias.
734 if (InputGV == GV)
735 return false;
736
737 // Distinct GlobalVariables never alias, unless overriden or zero-sized.
738 // FIXME: The condition can be refined, but be conservative for now.
739 auto *GVar = dyn_cast<GlobalVariable>(GV);
740 auto *InputGVar = dyn_cast<GlobalVariable>(InputGV);
741 if (GVar && InputGVar &&
742 !GVar->isDeclaration() && !InputGVar->isDeclaration() &&
743 !GVar->isInterposable() && !InputGVar->isInterposable()) {
744 Type *GVType = GVar->getInitializer()->getType();
745 Type *InputGVType = InputGVar->getInitializer()->getType();
746 if (GVType->isSized() && InputGVType->isSized() &&
747 (DL.getTypeAllocSize(GVType) > 0) &&
748 (DL.getTypeAllocSize(InputGVType) > 0))
749 continue;
750 }
751
752 // Conservatively return false, even though we could be smarter
753 // (e.g. look through GlobalAliases).
754 return false;
755 }
756
757 if (isa<Argument>(Input) || isa<CallInst>(Input) ||
758 isa<InvokeInst>(Input)) {
759 // Arguments to functions or returns from functions are inherently
760 // escaping, so we can immediately classify those as not aliasing any
761 // non-addr-taken globals.
762 continue;
763 }
764
765 // Recurse through a limited number of selects, loads and PHIs. This is an
766 // arbitrary depth of 4, lower numbers could be used to fix compile time
767 // issues if needed, but this is generally expected to be only be important
768 // for small depths.
769 if (++Depth > 4)
770 return false;
771
772 if (auto *LI = dyn_cast<LoadInst>(Input)) {
773 // A pointer loaded from a global would have been captured, and we know
774 // that the global is non-escaping, so no alias.
775 const Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL);
776 if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL))
777 // The load does not alias with GV.
778 continue;
779 // Otherwise, a load could come from anywhere, so bail.
780 return false;
781 }
782 if (auto *SI = dyn_cast<SelectInst>(Input)) {
783 const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
784 const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
785 if (Visited.insert(LHS).second)
786 Inputs.push_back(LHS);
787 if (Visited.insert(RHS).second)
788 Inputs.push_back(RHS);
789 continue;
790 }
791 if (auto *PN = dyn_cast<PHINode>(Input)) {
792 for (const Value *Op : PN->incoming_values()) {
793 Op = GetUnderlyingObject(Op, DL);
794 if (Visited.insert(Op).second)
795 Inputs.push_back(Op);
796 }
797 continue;
798 }
799
800 // FIXME: It would be good to handle other obvious no-alias cases here, but
801 // it isn't clear how to do so reasonably without building a small version
802 // of BasicAA into this code. We could recurse into AAResultBase::alias
803 // here but that seems likely to go poorly as we're inside the
804 // implementation of such a query. Until then, just conservatively return
805 // false.
806 return false;
807 } while (!Inputs.empty());
808
809 // If all the inputs to V were definitively no-alias, then V is no-alias.
810 return true;
811 }
812
813 /// alias - If one of the pointers is to a global that we are tracking, and the
814 /// other is some random pointer, we know there cannot be an alias, because the
815 /// address of the global isn't taken.
alias(const MemoryLocation & LocA,const MemoryLocation & LocB,AAQueryInfo & AAQI)816 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA,
817 const MemoryLocation &LocB,
818 AAQueryInfo &AAQI) {
819 // Get the base object these pointers point to.
820 const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL);
821 const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL);
822
823 // If either of the underlying values is a global, they may be non-addr-taken
824 // globals, which we can answer queries about.
825 const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
826 const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
827 if (GV1 || GV2) {
828 // If the global's address is taken, pretend we don't know it's a pointer to
829 // the global.
830 if (GV1 && !NonAddressTakenGlobals.count(GV1))
831 GV1 = nullptr;
832 if (GV2 && !NonAddressTakenGlobals.count(GV2))
833 GV2 = nullptr;
834
835 // If the two pointers are derived from two different non-addr-taken
836 // globals we know these can't alias.
837 if (GV1 && GV2 && GV1 != GV2)
838 return NoAlias;
839
840 // If one is and the other isn't, it isn't strictly safe but we can fake
841 // this result if necessary for performance. This does not appear to be
842 // a common problem in practice.
843 if (EnableUnsafeGlobalsModRefAliasResults)
844 if ((GV1 || GV2) && GV1 != GV2)
845 return NoAlias;
846
847 // Check for a special case where a non-escaping global can be used to
848 // conclude no-alias.
849 if ((GV1 || GV2) && GV1 != GV2) {
850 const GlobalValue *GV = GV1 ? GV1 : GV2;
851 const Value *UV = GV1 ? UV2 : UV1;
852 if (isNonEscapingGlobalNoAlias(GV, UV))
853 return NoAlias;
854 }
855
856 // Otherwise if they are both derived from the same addr-taken global, we
857 // can't know the two accesses don't overlap.
858 }
859
860 // These pointers may be based on the memory owned by an indirect global. If
861 // so, we may be able to handle this. First check to see if the base pointer
862 // is a direct load from an indirect global.
863 GV1 = GV2 = nullptr;
864 if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
865 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
866 if (IndirectGlobals.count(GV))
867 GV1 = GV;
868 if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
869 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
870 if (IndirectGlobals.count(GV))
871 GV2 = GV;
872
873 // These pointers may also be from an allocation for the indirect global. If
874 // so, also handle them.
875 if (!GV1)
876 GV1 = AllocsForIndirectGlobals.lookup(UV1);
877 if (!GV2)
878 GV2 = AllocsForIndirectGlobals.lookup(UV2);
879
880 // Now that we know whether the two pointers are related to indirect globals,
881 // use this to disambiguate the pointers. If the pointers are based on
882 // different indirect globals they cannot alias.
883 if (GV1 && GV2 && GV1 != GV2)
884 return NoAlias;
885
886 // If one is based on an indirect global and the other isn't, it isn't
887 // strictly safe but we can fake this result if necessary for performance.
888 // This does not appear to be a common problem in practice.
889 if (EnableUnsafeGlobalsModRefAliasResults)
890 if ((GV1 || GV2) && GV1 != GV2)
891 return NoAlias;
892
893 return AAResultBase::alias(LocA, LocB, AAQI);
894 }
895
getModRefInfoForArgument(const CallBase * Call,const GlobalValue * GV,AAQueryInfo & AAQI)896 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(const CallBase *Call,
897 const GlobalValue *GV,
898 AAQueryInfo &AAQI) {
899 if (Call->doesNotAccessMemory())
900 return ModRefInfo::NoModRef;
901 ModRefInfo ConservativeResult =
902 Call->onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef;
903
904 // Iterate through all the arguments to the called function. If any argument
905 // is based on GV, return the conservative result.
906 for (auto &A : Call->args()) {
907 SmallVector<const Value*, 4> Objects;
908 GetUnderlyingObjects(A, Objects, DL);
909
910 // All objects must be identified.
911 if (!all_of(Objects, isIdentifiedObject) &&
912 // Try ::alias to see if all objects are known not to alias GV.
913 !all_of(Objects, [&](const Value *V) {
914 return this->alias(MemoryLocation(V), MemoryLocation(GV), AAQI) ==
915 NoAlias;
916 }))
917 return ConservativeResult;
918
919 if (is_contained(Objects, GV))
920 return ConservativeResult;
921 }
922
923 // We identified all objects in the argument list, and none of them were GV.
924 return ModRefInfo::NoModRef;
925 }
926
getModRefInfo(const CallBase * Call,const MemoryLocation & Loc,AAQueryInfo & AAQI)927 ModRefInfo GlobalsAAResult::getModRefInfo(const CallBase *Call,
928 const MemoryLocation &Loc,
929 AAQueryInfo &AAQI) {
930 ModRefInfo Known = ModRefInfo::ModRef;
931
932 // If we are asking for mod/ref info of a direct call with a pointer to a
933 // global we are tracking, return information if we have it.
934 if (const GlobalValue *GV =
935 dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL)))
936 // If GV is internal to this IR and there is no function with local linkage
937 // that has had their address taken, keep looking for a tighter ModRefInfo.
938 if (GV->hasLocalLinkage() && !UnknownFunctionsWithLocalLinkage)
939 if (const Function *F = Call->getCalledFunction())
940 if (NonAddressTakenGlobals.count(GV))
941 if (const FunctionInfo *FI = getFunctionInfo(F))
942 Known = unionModRef(FI->getModRefInfoForGlobal(*GV),
943 getModRefInfoForArgument(Call, GV, AAQI));
944
945 if (!isModOrRefSet(Known))
946 return ModRefInfo::NoModRef; // No need to query other mod/ref analyses
947 return intersectModRef(Known, AAResultBase::getModRefInfo(Call, Loc, AAQI));
948 }
949
GlobalsAAResult(const DataLayout & DL,std::function<const TargetLibraryInfo & (Function & F)> GetTLI)950 GlobalsAAResult::GlobalsAAResult(
951 const DataLayout &DL,
952 std::function<const TargetLibraryInfo &(Function &F)> GetTLI)
953 : AAResultBase(), DL(DL), GetTLI(std::move(GetTLI)) {}
954
GlobalsAAResult(GlobalsAAResult && Arg)955 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg)
956 : AAResultBase(std::move(Arg)), DL(Arg.DL), GetTLI(std::move(Arg.GetTLI)),
957 NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)),
958 IndirectGlobals(std::move(Arg.IndirectGlobals)),
959 AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)),
960 FunctionInfos(std::move(Arg.FunctionInfos)),
961 Handles(std::move(Arg.Handles)) {
962 // Update the parent for each DeletionCallbackHandle.
963 for (auto &H : Handles) {
964 assert(H.GAR == &Arg);
965 H.GAR = this;
966 }
967 }
968
~GlobalsAAResult()969 GlobalsAAResult::~GlobalsAAResult() {}
970
analyzeModule(Module & M,std::function<const TargetLibraryInfo & (Function & F)> GetTLI,CallGraph & CG)971 /*static*/ GlobalsAAResult GlobalsAAResult::analyzeModule(
972 Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI,
973 CallGraph &CG) {
974 GlobalsAAResult Result(M.getDataLayout(), GetTLI);
975
976 // Discover which functions aren't recursive, to feed into AnalyzeGlobals.
977 Result.CollectSCCMembership(CG);
978
979 // Find non-addr taken globals.
980 Result.AnalyzeGlobals(M);
981
982 // Propagate on CG.
983 Result.AnalyzeCallGraph(CG, M);
984
985 return Result;
986 }
987
988 AnalysisKey GlobalsAA::Key;
989
run(Module & M,ModuleAnalysisManager & AM)990 GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) {
991 FunctionAnalysisManager &FAM =
992 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
993 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
994 return FAM.getResult<TargetLibraryAnalysis>(F);
995 };
996 return GlobalsAAResult::analyzeModule(M, GetTLI,
997 AM.getResult<CallGraphAnalysis>(M));
998 }
999
1000 char GlobalsAAWrapperPass::ID = 0;
1001 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa",
1002 "Globals Alias Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)1003 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1004 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1005 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa",
1006 "Globals Alias Analysis", false, true)
1007
1008 ModulePass *llvm::createGlobalsAAWrapperPass() {
1009 return new GlobalsAAWrapperPass();
1010 }
1011
GlobalsAAWrapperPass()1012 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) {
1013 initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry());
1014 }
1015
runOnModule(Module & M)1016 bool GlobalsAAWrapperPass::runOnModule(Module &M) {
1017 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
1018 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1019 };
1020 Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule(
1021 M, GetTLI, getAnalysis<CallGraphWrapperPass>().getCallGraph())));
1022 return false;
1023 }
1024
doFinalization(Module & M)1025 bool GlobalsAAWrapperPass::doFinalization(Module &M) {
1026 Result.reset();
1027 return false;
1028 }
1029
getAnalysisUsage(AnalysisUsage & AU) const1030 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1031 AU.setPreservesAll();
1032 AU.addRequired<CallGraphWrapperPass>();
1033 AU.addRequired<TargetLibraryInfoWrapperPass>();
1034 }
1035