1 //===-- CallingConvLower.cpp - Calling Conventions ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CCState class, used for lowering and implementing
10 // calling conventions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/CallingConvLower.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineRegisterInfo.h"
17 #include "llvm/CodeGen/TargetLowering.h"
18 #include "llvm/CodeGen/TargetRegisterInfo.h"
19 #include "llvm/CodeGen/TargetSubtargetInfo.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/SaveAndRestore.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include <algorithm>
26
27 using namespace llvm;
28
CCState(CallingConv::ID CC,bool isVarArg,MachineFunction & mf,SmallVectorImpl<CCValAssign> & locs,LLVMContext & C)29 CCState::CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &mf,
30 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C)
31 : CallingConv(CC), IsVarArg(isVarArg), MF(mf),
32 TRI(*MF.getSubtarget().getRegisterInfo()), Locs(locs), Context(C) {
33 // No stack is used.
34 StackOffset = 0;
35
36 clearByValRegsInfo();
37 UsedRegs.resize((TRI.getNumRegs()+31)/32);
38 }
39
40 /// Allocate space on the stack large enough to pass an argument by value.
41 /// The size and alignment information of the argument is encoded in
42 /// its parameter attribute.
HandleByVal(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,int MinSize,int MinAlignment,ISD::ArgFlagsTy ArgFlags)43 void CCState::HandleByVal(unsigned ValNo, MVT ValVT, MVT LocVT,
44 CCValAssign::LocInfo LocInfo, int MinSize,
45 int MinAlignment, ISD::ArgFlagsTy ArgFlags) {
46 Align MinAlign(MinAlignment);
47 Align Alignment(ArgFlags.getByValAlign());
48 unsigned Size = ArgFlags.getByValSize();
49 if (MinSize > (int)Size)
50 Size = MinSize;
51 if (MinAlign > Alignment)
52 Alignment = MinAlign;
53 ensureMaxAlignment(Alignment);
54 MF.getSubtarget().getTargetLowering()->HandleByVal(this, Size,
55 Alignment.value());
56 Size = unsigned(alignTo(Size, MinAlign));
57 unsigned Offset = AllocateStack(Size, Alignment.value());
58 addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
59 }
60
61 /// Mark a register and all of its aliases as allocated.
MarkAllocated(unsigned Reg)62 void CCState::MarkAllocated(unsigned Reg) {
63 for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
64 UsedRegs[*AI/32] |= 1 << (*AI&31);
65 }
66
IsShadowAllocatedReg(unsigned Reg) const67 bool CCState::IsShadowAllocatedReg(unsigned Reg) const {
68 if (!isAllocated(Reg))
69 return false;
70
71 for (auto const &ValAssign : Locs) {
72 if (ValAssign.isRegLoc()) {
73 for (MCRegAliasIterator AI(ValAssign.getLocReg(), &TRI, true);
74 AI.isValid(); ++AI) {
75 if (*AI == Reg)
76 return false;
77 }
78 }
79 }
80 return true;
81 }
82
83 /// Analyze an array of argument values,
84 /// incorporating info about the formals into this state.
85 void
AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> & Ins,CCAssignFn Fn)86 CCState::AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
87 CCAssignFn Fn) {
88 unsigned NumArgs = Ins.size();
89
90 for (unsigned i = 0; i != NumArgs; ++i) {
91 MVT ArgVT = Ins[i].VT;
92 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
93 if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this))
94 report_fatal_error("unable to allocate function argument #" + Twine(i));
95 }
96 }
97
98 /// Analyze the return values of a function, returning true if the return can
99 /// be performed without sret-demotion and false otherwise.
CheckReturn(const SmallVectorImpl<ISD::OutputArg> & Outs,CCAssignFn Fn)100 bool CCState::CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
101 CCAssignFn Fn) {
102 // Determine which register each value should be copied into.
103 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
104 MVT VT = Outs[i].VT;
105 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
106 if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this))
107 return false;
108 }
109 return true;
110 }
111
112 /// Analyze the returned values of a return,
113 /// incorporating info about the result values into this state.
AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> & Outs,CCAssignFn Fn)114 void CCState::AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
115 CCAssignFn Fn) {
116 // Determine which register each value should be copied into.
117 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
118 MVT VT = Outs[i].VT;
119 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
120 if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this))
121 report_fatal_error("unable to allocate function return #" + Twine(i));
122 }
123 }
124
125 /// Analyze the outgoing arguments to a call,
126 /// incorporating info about the passed values into this state.
AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> & Outs,CCAssignFn Fn)127 void CCState::AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
128 CCAssignFn Fn) {
129 unsigned NumOps = Outs.size();
130 for (unsigned i = 0; i != NumOps; ++i) {
131 MVT ArgVT = Outs[i].VT;
132 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
133 if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) {
134 #ifndef NDEBUG
135 dbgs() << "Call operand #" << i << " has unhandled type "
136 << EVT(ArgVT).getEVTString() << '\n';
137 #endif
138 llvm_unreachable(nullptr);
139 }
140 }
141 }
142
143 /// Same as above except it takes vectors of types and argument flags.
AnalyzeCallOperands(SmallVectorImpl<MVT> & ArgVTs,SmallVectorImpl<ISD::ArgFlagsTy> & Flags,CCAssignFn Fn)144 void CCState::AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs,
145 SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
146 CCAssignFn Fn) {
147 unsigned NumOps = ArgVTs.size();
148 for (unsigned i = 0; i != NumOps; ++i) {
149 MVT ArgVT = ArgVTs[i];
150 ISD::ArgFlagsTy ArgFlags = Flags[i];
151 if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) {
152 #ifndef NDEBUG
153 dbgs() << "Call operand #" << i << " has unhandled type "
154 << EVT(ArgVT).getEVTString() << '\n';
155 #endif
156 llvm_unreachable(nullptr);
157 }
158 }
159 }
160
161 /// Analyze the return values of a call, incorporating info about the passed
162 /// values into this state.
AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> & Ins,CCAssignFn Fn)163 void CCState::AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
164 CCAssignFn Fn) {
165 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
166 MVT VT = Ins[i].VT;
167 ISD::ArgFlagsTy Flags = Ins[i].Flags;
168 if (Fn(i, VT, VT, CCValAssign::Full, Flags, *this)) {
169 #ifndef NDEBUG
170 dbgs() << "Call result #" << i << " has unhandled type "
171 << EVT(VT).getEVTString() << '\n';
172 #endif
173 llvm_unreachable(nullptr);
174 }
175 }
176 }
177
178 /// Same as above except it's specialized for calls that produce a single value.
AnalyzeCallResult(MVT VT,CCAssignFn Fn)179 void CCState::AnalyzeCallResult(MVT VT, CCAssignFn Fn) {
180 if (Fn(0, VT, VT, CCValAssign::Full, ISD::ArgFlagsTy(), *this)) {
181 #ifndef NDEBUG
182 dbgs() << "Call result has unhandled type "
183 << EVT(VT).getEVTString() << '\n';
184 #endif
185 llvm_unreachable(nullptr);
186 }
187 }
188
isValueTypeInRegForCC(CallingConv::ID CC,MVT VT)189 static bool isValueTypeInRegForCC(CallingConv::ID CC, MVT VT) {
190 if (VT.isVector())
191 return true; // Assume -msse-regparm might be in effect.
192 if (!VT.isInteger())
193 return false;
194 if (CC == CallingConv::X86_VectorCall || CC == CallingConv::X86_FastCall)
195 return true;
196 return false;
197 }
198
getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> & Regs,MVT VT,CCAssignFn Fn)199 void CCState::getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs,
200 MVT VT, CCAssignFn Fn) {
201 unsigned SavedStackOffset = StackOffset;
202 Align SavedMaxStackArgAlign = MaxStackArgAlign;
203 unsigned NumLocs = Locs.size();
204
205 // Set the 'inreg' flag if it is used for this calling convention.
206 ISD::ArgFlagsTy Flags;
207 if (isValueTypeInRegForCC(CallingConv, VT))
208 Flags.setInReg();
209
210 // Allocate something of this value type repeatedly until we get assigned a
211 // location in memory.
212 bool HaveRegParm = true;
213 while (HaveRegParm) {
214 if (Fn(0, VT, VT, CCValAssign::Full, Flags, *this)) {
215 #ifndef NDEBUG
216 dbgs() << "Call has unhandled type " << EVT(VT).getEVTString()
217 << " while computing remaining regparms\n";
218 #endif
219 llvm_unreachable(nullptr);
220 }
221 HaveRegParm = Locs.back().isRegLoc();
222 }
223
224 // Copy all the registers from the value locations we added.
225 assert(NumLocs < Locs.size() && "CC assignment failed to add location");
226 for (unsigned I = NumLocs, E = Locs.size(); I != E; ++I)
227 if (Locs[I].isRegLoc())
228 Regs.push_back(MCPhysReg(Locs[I].getLocReg()));
229
230 // Clear the assigned values and stack memory. We leave the registers marked
231 // as allocated so that future queries don't return the same registers, i.e.
232 // when i64 and f64 are both passed in GPRs.
233 StackOffset = SavedStackOffset;
234 MaxStackArgAlign = SavedMaxStackArgAlign;
235 Locs.resize(NumLocs);
236 }
237
analyzeMustTailForwardedRegisters(SmallVectorImpl<ForwardedRegister> & Forwards,ArrayRef<MVT> RegParmTypes,CCAssignFn Fn)238 void CCState::analyzeMustTailForwardedRegisters(
239 SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes,
240 CCAssignFn Fn) {
241 // Oftentimes calling conventions will not user register parameters for
242 // variadic functions, so we need to assume we're not variadic so that we get
243 // all the registers that might be used in a non-variadic call.
244 SaveAndRestore<bool> SavedVarArg(IsVarArg, false);
245 SaveAndRestore<bool> SavedMustTail(AnalyzingMustTailForwardedRegs, true);
246
247 for (MVT RegVT : RegParmTypes) {
248 SmallVector<MCPhysReg, 8> RemainingRegs;
249 getRemainingRegParmsForType(RemainingRegs, RegVT, Fn);
250 const TargetLowering *TL = MF.getSubtarget().getTargetLowering();
251 const TargetRegisterClass *RC = TL->getRegClassFor(RegVT);
252 for (MCPhysReg PReg : RemainingRegs) {
253 unsigned VReg = MF.addLiveIn(PReg, RC);
254 Forwards.push_back(ForwardedRegister(VReg, PReg, RegVT));
255 }
256 }
257 }
258
resultsCompatible(CallingConv::ID CalleeCC,CallingConv::ID CallerCC,MachineFunction & MF,LLVMContext & C,const SmallVectorImpl<ISD::InputArg> & Ins,CCAssignFn CalleeFn,CCAssignFn CallerFn)259 bool CCState::resultsCompatible(CallingConv::ID CalleeCC,
260 CallingConv::ID CallerCC, MachineFunction &MF,
261 LLVMContext &C,
262 const SmallVectorImpl<ISD::InputArg> &Ins,
263 CCAssignFn CalleeFn, CCAssignFn CallerFn) {
264 if (CalleeCC == CallerCC)
265 return true;
266 SmallVector<CCValAssign, 4> RVLocs1;
267 CCState CCInfo1(CalleeCC, false, MF, RVLocs1, C);
268 CCInfo1.AnalyzeCallResult(Ins, CalleeFn);
269
270 SmallVector<CCValAssign, 4> RVLocs2;
271 CCState CCInfo2(CallerCC, false, MF, RVLocs2, C);
272 CCInfo2.AnalyzeCallResult(Ins, CallerFn);
273
274 if (RVLocs1.size() != RVLocs2.size())
275 return false;
276 for (unsigned I = 0, E = RVLocs1.size(); I != E; ++I) {
277 const CCValAssign &Loc1 = RVLocs1[I];
278 const CCValAssign &Loc2 = RVLocs2[I];
279 if (Loc1.getLocInfo() != Loc2.getLocInfo())
280 return false;
281 bool RegLoc1 = Loc1.isRegLoc();
282 if (RegLoc1 != Loc2.isRegLoc())
283 return false;
284 if (RegLoc1) {
285 if (Loc1.getLocReg() != Loc2.getLocReg())
286 return false;
287 } else {
288 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
289 return false;
290 }
291 }
292 return true;
293 }
294