1 //===-- GenericToNVVM.cpp - Convert generic module to NVVM module - C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Convert generic global variables into either .global or .const access based
10 // on the variable's "constant" qualifier.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "MCTargetDesc/NVPTXBaseInfo.h"
15 #include "NVPTX.h"
16 #include "NVPTXUtilities.h"
17 #include "llvm/CodeGen/ValueTypes.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/Intrinsics.h"
23 #include "llvm/IR/LegacyPassManager.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/ValueMap.h"
27 #include "llvm/Transforms/Utils/ValueMapper.h"
28
29 using namespace llvm;
30
31 namespace llvm {
32 void initializeGenericToNVVMPass(PassRegistry &);
33 }
34
35 namespace {
36 class GenericToNVVM : public ModulePass {
37 public:
38 static char ID;
39
GenericToNVVM()40 GenericToNVVM() : ModulePass(ID) {}
41
42 bool runOnModule(Module &M) override;
43
getAnalysisUsage(AnalysisUsage & AU) const44 void getAnalysisUsage(AnalysisUsage &AU) const override {}
45
46 private:
47 Value *remapConstant(Module *M, Function *F, Constant *C,
48 IRBuilder<> &Builder);
49 Value *remapConstantVectorOrConstantAggregate(Module *M, Function *F,
50 Constant *C,
51 IRBuilder<> &Builder);
52 Value *remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
53 IRBuilder<> &Builder);
54
55 typedef ValueMap<GlobalVariable *, GlobalVariable *> GVMapTy;
56 typedef ValueMap<Constant *, Value *> ConstantToValueMapTy;
57 GVMapTy GVMap;
58 ConstantToValueMapTy ConstantToValueMap;
59 };
60 } // end namespace
61
62 char GenericToNVVM::ID = 0;
63
createGenericToNVVMPass()64 ModulePass *llvm::createGenericToNVVMPass() { return new GenericToNVVM(); }
65
66 INITIALIZE_PASS(
67 GenericToNVVM, "generic-to-nvvm",
68 "Ensure that the global variables are in the global address space", false,
69 false)
70
runOnModule(Module & M)71 bool GenericToNVVM::runOnModule(Module &M) {
72 // Create a clone of each global variable that has the default address space.
73 // The clone is created with the global address space specifier, and the pair
74 // of original global variable and its clone is placed in the GVMap for later
75 // use.
76
77 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
78 I != E;) {
79 GlobalVariable *GV = &*I++;
80 if (GV->getType()->getAddressSpace() == llvm::ADDRESS_SPACE_GENERIC &&
81 !llvm::isTexture(*GV) && !llvm::isSurface(*GV) &&
82 !llvm::isSampler(*GV) && !GV->getName().startswith("llvm.")) {
83 GlobalVariable *NewGV = new GlobalVariable(
84 M, GV->getValueType(), GV->isConstant(),
85 GV->getLinkage(),
86 GV->hasInitializer() ? GV->getInitializer() : nullptr,
87 "", GV, GV->getThreadLocalMode(), llvm::ADDRESS_SPACE_GLOBAL);
88 NewGV->copyAttributesFrom(GV);
89 GVMap[GV] = NewGV;
90 }
91 }
92
93 // Return immediately, if every global variable has a specific address space
94 // specifier.
95 if (GVMap.empty()) {
96 return false;
97 }
98
99 // Walk through the instructions in function defitinions, and replace any use
100 // of original global variables in GVMap with a use of the corresponding
101 // copies in GVMap. If necessary, promote constants to instructions.
102 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
103 if (I->isDeclaration()) {
104 continue;
105 }
106 IRBuilder<> Builder(I->getEntryBlock().getFirstNonPHIOrDbg());
107 for (Function::iterator BBI = I->begin(), BBE = I->end(); BBI != BBE;
108 ++BBI) {
109 for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE;
110 ++II) {
111 for (unsigned i = 0, e = II->getNumOperands(); i < e; ++i) {
112 Value *Operand = II->getOperand(i);
113 if (isa<Constant>(Operand)) {
114 II->setOperand(
115 i, remapConstant(&M, &*I, cast<Constant>(Operand), Builder));
116 }
117 }
118 }
119 }
120 ConstantToValueMap.clear();
121 }
122
123 // Copy GVMap over to a standard value map.
124 ValueToValueMapTy VM;
125 for (auto I = GVMap.begin(), E = GVMap.end(); I != E; ++I)
126 VM[I->first] = I->second;
127
128 // Walk through the global variable initializers, and replace any use of
129 // original global variables in GVMap with a use of the corresponding copies
130 // in GVMap. The copies need to be bitcast to the original global variable
131 // types, as we cannot use cvta in global variable initializers.
132 for (GVMapTy::iterator I = GVMap.begin(), E = GVMap.end(); I != E;) {
133 GlobalVariable *GV = I->first;
134 GlobalVariable *NewGV = I->second;
135
136 // Remove GV from the map so that it can be RAUWed. Note that
137 // DenseMap::erase() won't invalidate any iterators but this one.
138 auto Next = std::next(I);
139 GVMap.erase(I);
140 I = Next;
141
142 Constant *BitCastNewGV = ConstantExpr::getPointerCast(NewGV, GV->getType());
143 // At this point, the remaining uses of GV should be found only in global
144 // variable initializers, as other uses have been already been removed
145 // while walking through the instructions in function definitions.
146 GV->replaceAllUsesWith(BitCastNewGV);
147 std::string Name = GV->getName();
148 GV->eraseFromParent();
149 NewGV->setName(Name);
150 }
151 assert(GVMap.empty() && "Expected it to be empty by now");
152
153 return true;
154 }
155
remapConstant(Module * M,Function * F,Constant * C,IRBuilder<> & Builder)156 Value *GenericToNVVM::remapConstant(Module *M, Function *F, Constant *C,
157 IRBuilder<> &Builder) {
158 // If the constant C has been converted already in the given function F, just
159 // return the converted value.
160 ConstantToValueMapTy::iterator CTII = ConstantToValueMap.find(C);
161 if (CTII != ConstantToValueMap.end()) {
162 return CTII->second;
163 }
164
165 Value *NewValue = C;
166 if (isa<GlobalVariable>(C)) {
167 // If the constant C is a global variable and is found in GVMap, substitute
168 //
169 // addrspacecast GVMap[C] to addrspace(0)
170 //
171 // for our use of C.
172 GVMapTy::iterator I = GVMap.find(cast<GlobalVariable>(C));
173 if (I != GVMap.end()) {
174 GlobalVariable *GV = I->second;
175 NewValue = Builder.CreateAddrSpaceCast(
176 GV,
177 PointerType::get(GV->getValueType(), llvm::ADDRESS_SPACE_GENERIC));
178 }
179 } else if (isa<ConstantAggregate>(C)) {
180 // If any element in the constant vector or aggregate C is or uses a global
181 // variable in GVMap, the constant C needs to be reconstructed, using a set
182 // of instructions.
183 NewValue = remapConstantVectorOrConstantAggregate(M, F, C, Builder);
184 } else if (isa<ConstantExpr>(C)) {
185 // If any operand in the constant expression C is or uses a global variable
186 // in GVMap, the constant expression C needs to be reconstructed, using a
187 // set of instructions.
188 NewValue = remapConstantExpr(M, F, cast<ConstantExpr>(C), Builder);
189 }
190
191 ConstantToValueMap[C] = NewValue;
192 return NewValue;
193 }
194
remapConstantVectorOrConstantAggregate(Module * M,Function * F,Constant * C,IRBuilder<> & Builder)195 Value *GenericToNVVM::remapConstantVectorOrConstantAggregate(
196 Module *M, Function *F, Constant *C, IRBuilder<> &Builder) {
197 bool OperandChanged = false;
198 SmallVector<Value *, 4> NewOperands;
199 unsigned NumOperands = C->getNumOperands();
200
201 // Check if any element is or uses a global variable in GVMap, and thus
202 // converted to another value.
203 for (unsigned i = 0; i < NumOperands; ++i) {
204 Value *Operand = C->getOperand(i);
205 Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
206 OperandChanged |= Operand != NewOperand;
207 NewOperands.push_back(NewOperand);
208 }
209
210 // If none of the elements has been modified, return C as it is.
211 if (!OperandChanged) {
212 return C;
213 }
214
215 // If any of the elements has been modified, construct the equivalent
216 // vector or aggregate value with a set instructions and the converted
217 // elements.
218 Value *NewValue = UndefValue::get(C->getType());
219 if (isa<ConstantVector>(C)) {
220 for (unsigned i = 0; i < NumOperands; ++i) {
221 Value *Idx = ConstantInt::get(Type::getInt32Ty(M->getContext()), i);
222 NewValue = Builder.CreateInsertElement(NewValue, NewOperands[i], Idx);
223 }
224 } else {
225 for (unsigned i = 0; i < NumOperands; ++i) {
226 NewValue =
227 Builder.CreateInsertValue(NewValue, NewOperands[i], makeArrayRef(i));
228 }
229 }
230
231 return NewValue;
232 }
233
remapConstantExpr(Module * M,Function * F,ConstantExpr * C,IRBuilder<> & Builder)234 Value *GenericToNVVM::remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
235 IRBuilder<> &Builder) {
236 bool OperandChanged = false;
237 SmallVector<Value *, 4> NewOperands;
238 unsigned NumOperands = C->getNumOperands();
239
240 // Check if any operand is or uses a global variable in GVMap, and thus
241 // converted to another value.
242 for (unsigned i = 0; i < NumOperands; ++i) {
243 Value *Operand = C->getOperand(i);
244 Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
245 OperandChanged |= Operand != NewOperand;
246 NewOperands.push_back(NewOperand);
247 }
248
249 // If none of the operands has been modified, return C as it is.
250 if (!OperandChanged) {
251 return C;
252 }
253
254 // If any of the operands has been modified, construct the instruction with
255 // the converted operands.
256 unsigned Opcode = C->getOpcode();
257 switch (Opcode) {
258 case Instruction::ICmp:
259 // CompareConstantExpr (icmp)
260 return Builder.CreateICmp(CmpInst::Predicate(C->getPredicate()),
261 NewOperands[0], NewOperands[1]);
262 case Instruction::FCmp:
263 // CompareConstantExpr (fcmp)
264 llvm_unreachable("Address space conversion should have no effect "
265 "on float point CompareConstantExpr (fcmp)!");
266 case Instruction::ExtractElement:
267 // ExtractElementConstantExpr
268 return Builder.CreateExtractElement(NewOperands[0], NewOperands[1]);
269 case Instruction::InsertElement:
270 // InsertElementConstantExpr
271 return Builder.CreateInsertElement(NewOperands[0], NewOperands[1],
272 NewOperands[2]);
273 case Instruction::ShuffleVector:
274 // ShuffleVector
275 return Builder.CreateShuffleVector(NewOperands[0], NewOperands[1],
276 NewOperands[2]);
277 case Instruction::ExtractValue:
278 // ExtractValueConstantExpr
279 return Builder.CreateExtractValue(NewOperands[0], C->getIndices());
280 case Instruction::InsertValue:
281 // InsertValueConstantExpr
282 return Builder.CreateInsertValue(NewOperands[0], NewOperands[1],
283 C->getIndices());
284 case Instruction::GetElementPtr:
285 // GetElementPtrConstantExpr
286 return cast<GEPOperator>(C)->isInBounds()
287 ? Builder.CreateGEP(
288 cast<GEPOperator>(C)->getSourceElementType(),
289 NewOperands[0],
290 makeArrayRef(&NewOperands[1], NumOperands - 1))
291 : Builder.CreateInBoundsGEP(
292 cast<GEPOperator>(C)->getSourceElementType(),
293 NewOperands[0],
294 makeArrayRef(&NewOperands[1], NumOperands - 1));
295 case Instruction::Select:
296 // SelectConstantExpr
297 return Builder.CreateSelect(NewOperands[0], NewOperands[1], NewOperands[2]);
298 default:
299 // BinaryConstantExpr
300 if (Instruction::isBinaryOp(Opcode)) {
301 return Builder.CreateBinOp(Instruction::BinaryOps(C->getOpcode()),
302 NewOperands[0], NewOperands[1]);
303 }
304 // UnaryConstantExpr
305 if (Instruction::isCast(Opcode)) {
306 return Builder.CreateCast(Instruction::CastOps(C->getOpcode()),
307 NewOperands[0], C->getType());
308 }
309 llvm_unreachable("GenericToNVVM encountered an unsupported ConstantExpr");
310 }
311 }
312