1 //===- PoisonChecking.cpp - -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implements a transform pass which instruments IR such that poison semantics
10 // are made explicit.  That is, it provides a (possibly partial) executable
11 // semantics for every instruction w.r.t. poison as specified in the LLVM
12 // LangRef.  There are obvious parallels to the sanitizer tools, but this pass
13 // is focused purely on the semantics of LLVM IR, not any particular source
14 // language.   If you're looking for something to see if your C/C++ contains
15 // UB, this is not it.
16 //
17 // The rewritten semantics of each instruction will include the following
18 // components:
19 //
20 // 1) The original instruction, unmodified.
21 // 2) A propagation rule which translates dynamic information about the poison
22 //    state of each input to whether the dynamic output of the instruction
23 //    produces poison.
24 // 3) A flag validation rule which validates any poison producing flags on the
25 //    instruction itself (e.g. checks for overflow on nsw).
26 // 4) A check rule which traps (to a handler function) if this instruction must
27 //    execute undefined behavior given the poison state of it's inputs.
28 //
29 // At the moment, the UB detection is done in a best effort manner; that is,
30 // the resulting code may produce a false negative result (not report UB when
31 // it actually exists according to the LangRef spec), but should never produce
32 // a false positive (report UB where it doesn't exist).  The intention is to
33 // eventually support a "strict" mode which never dynamically reports a false
34 // negative at the cost of rejecting some valid inputs to translation.
35 //
36 // Use cases for this pass include:
37 // - Understanding (and testing!) the implications of the definition of poison
38 //   from the LangRef.
39 // - Validating the output of a IR fuzzer to ensure that all programs produced
40 //   are well defined on the specific input used.
41 // - Finding/confirming poison specific miscompiles by checking the poison
42 //   status of an input/IR pair is the same before and after an optimization
43 //   transform.
44 // - Checking that a bugpoint reduction does not introduce UB which didn't
45 //   exist in the original program being reduced.
46 //
47 // The major sources of inaccuracy are currently:
48 // - Most validation rules not yet implemented for instructions with poison
49 //   relavant flags.  At the moment, only nsw/nuw on add/sub are supported.
50 // - UB which is control dependent on a branch on poison is not yet
51 //   reported. Currently, only data flow dependence is modeled.
52 // - Poison which is propagated through memory is not modeled.  As such,
53 //   storing poison to memory and then reloading it will cause a false negative
54 //   as we consider the reloaded value to not be poisoned.
55 // - Poison propagation across function boundaries is not modeled.  At the
56 //   moment, all arguments and return values are assumed not to be poison.
57 // - Undef is not modeled.  In particular, the optimizer's freedom to pick
58 //   concrete values for undef bits so as to maximize potential for producing
59 //   poison is not modeled.
60 //
61 //===----------------------------------------------------------------------===//
62 
63 #include "llvm/Transforms/Instrumentation/PoisonChecking.h"
64 #include "llvm/ADT/DenseMap.h"
65 #include "llvm/ADT/Statistic.h"
66 #include "llvm/Analysis/MemoryBuiltins.h"
67 #include "llvm/Analysis/ValueTracking.h"
68 #include "llvm/IR/IRBuilder.h"
69 #include "llvm/IR/InstVisitor.h"
70 #include "llvm/IR/IntrinsicInst.h"
71 #include "llvm/IR/PatternMatch.h"
72 #include "llvm/Support/CommandLine.h"
73 #include "llvm/Support/Debug.h"
74 
75 using namespace llvm;
76 
77 #define DEBUG_TYPE "poison-checking"
78 
79 static cl::opt<bool>
80 LocalCheck("poison-checking-function-local",
81            cl::init(false),
82            cl::desc("Check that returns are non-poison (for testing)"));
83 
84 
isConstantFalse(Value * V)85 static bool isConstantFalse(Value* V) {
86   assert(V->getType()->isIntegerTy(1));
87   if (auto *CI = dyn_cast<ConstantInt>(V))
88     return CI->isZero();
89   return false;
90 }
91 
buildOrChain(IRBuilder<> & B,ArrayRef<Value * > Ops)92 static Value *buildOrChain(IRBuilder<> &B, ArrayRef<Value*> Ops) {
93   if (Ops.size() == 0)
94     return B.getFalse();
95   unsigned i = 0;
96   for (; i < Ops.size() && isConstantFalse(Ops[i]); i++) {}
97   if (i == Ops.size())
98     return B.getFalse();
99   Value *Accum = Ops[i++];
100   for (; i < Ops.size(); i++)
101     if (!isConstantFalse(Ops[i]))
102       Accum = B.CreateOr(Accum, Ops[i]);
103   return Accum;
104 }
105 
generatePoisonChecksForBinOp(Instruction & I,SmallVector<Value *,2> & Checks)106 static void generatePoisonChecksForBinOp(Instruction &I,
107                                          SmallVector<Value*, 2> &Checks) {
108   assert(isa<BinaryOperator>(I));
109 
110   IRBuilder<> B(&I);
111   Value *LHS = I.getOperand(0);
112   Value *RHS = I.getOperand(1);
113   switch (I.getOpcode()) {
114   default:
115     return;
116   case Instruction::Add: {
117     if (I.hasNoSignedWrap()) {
118       auto *OverflowOp =
119         B.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow, LHS, RHS);
120       Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
121     }
122     if (I.hasNoUnsignedWrap()) {
123       auto *OverflowOp =
124         B.CreateBinaryIntrinsic(Intrinsic::uadd_with_overflow, LHS, RHS);
125       Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
126     }
127     break;
128   }
129   case Instruction::Sub: {
130     if (I.hasNoSignedWrap()) {
131       auto *OverflowOp =
132         B.CreateBinaryIntrinsic(Intrinsic::ssub_with_overflow, LHS, RHS);
133       Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
134     }
135     if (I.hasNoUnsignedWrap()) {
136       auto *OverflowOp =
137         B.CreateBinaryIntrinsic(Intrinsic::usub_with_overflow, LHS, RHS);
138       Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
139     }
140     break;
141   }
142   case Instruction::Mul: {
143     if (I.hasNoSignedWrap()) {
144       auto *OverflowOp =
145         B.CreateBinaryIntrinsic(Intrinsic::smul_with_overflow, LHS, RHS);
146       Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
147     }
148     if (I.hasNoUnsignedWrap()) {
149       auto *OverflowOp =
150         B.CreateBinaryIntrinsic(Intrinsic::umul_with_overflow, LHS, RHS);
151       Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
152     }
153     break;
154   }
155   case Instruction::UDiv: {
156     if (I.isExact()) {
157       auto *Check =
158         B.CreateICmp(ICmpInst::ICMP_NE, B.CreateURem(LHS, RHS),
159                      ConstantInt::get(LHS->getType(), 0));
160       Checks.push_back(Check);
161     }
162     break;
163   }
164   case Instruction::SDiv: {
165     if (I.isExact()) {
166       auto *Check =
167         B.CreateICmp(ICmpInst::ICMP_NE, B.CreateSRem(LHS, RHS),
168                      ConstantInt::get(LHS->getType(), 0));
169       Checks.push_back(Check);
170     }
171     break;
172   }
173   case Instruction::AShr:
174   case Instruction::LShr:
175   case Instruction::Shl: {
176     Value *ShiftCheck =
177       B.CreateICmp(ICmpInst::ICMP_UGE, RHS,
178                    ConstantInt::get(RHS->getType(),
179                                     LHS->getType()->getScalarSizeInBits()));
180     Checks.push_back(ShiftCheck);
181     break;
182   }
183   };
184 }
185 
generatePoisonChecks(Instruction & I)186 static Value* generatePoisonChecks(Instruction &I) {
187   IRBuilder<> B(&I);
188   SmallVector<Value*, 2> Checks;
189   if (isa<BinaryOperator>(I) && !I.getType()->isVectorTy())
190     generatePoisonChecksForBinOp(I, Checks);
191 
192   // Handle non-binops seperately
193   switch (I.getOpcode()) {
194   default:
195     break;
196   case Instruction::ExtractElement: {
197     Value *Vec = I.getOperand(0);
198     if (Vec->getType()->getVectorIsScalable())
199       break;
200     Value *Idx = I.getOperand(1);
201     unsigned NumElts = Vec->getType()->getVectorNumElements();
202     Value *Check =
203       B.CreateICmp(ICmpInst::ICMP_UGE, Idx,
204                    ConstantInt::get(Idx->getType(), NumElts));
205     Checks.push_back(Check);
206     break;
207   }
208   case Instruction::InsertElement: {
209     Value *Vec = I.getOperand(0);
210     if (Vec->getType()->getVectorIsScalable())
211       break;
212     Value *Idx = I.getOperand(2);
213     unsigned NumElts = Vec->getType()->getVectorNumElements();
214     Value *Check =
215       B.CreateICmp(ICmpInst::ICMP_UGE, Idx,
216                    ConstantInt::get(Idx->getType(), NumElts));
217     Checks.push_back(Check);
218     break;
219   }
220   };
221   return buildOrChain(B, Checks);
222 }
223 
getPoisonFor(DenseMap<Value *,Value * > & ValToPoison,Value * V)224 static Value *getPoisonFor(DenseMap<Value *, Value *> &ValToPoison, Value *V) {
225   auto Itr = ValToPoison.find(V);
226   if (Itr != ValToPoison.end())
227     return Itr->second;
228   if (isa<Constant>(V)) {
229     return ConstantInt::getFalse(V->getContext());
230   }
231   // Return false for unknwon values - this implements a non-strict mode where
232   // unhandled IR constructs are simply considered to never produce poison.  At
233   // some point in the future, we probably want a "strict mode" for testing if
234   // nothing else.
235   return ConstantInt::getFalse(V->getContext());
236 }
237 
CreateAssert(IRBuilder<> & B,Value * Cond)238 static void CreateAssert(IRBuilder<> &B, Value *Cond) {
239   assert(Cond->getType()->isIntegerTy(1));
240   if (auto *CI = dyn_cast<ConstantInt>(Cond))
241     if (CI->isAllOnesValue())
242       return;
243 
244   Module *M = B.GetInsertBlock()->getModule();
245   M->getOrInsertFunction("__poison_checker_assert",
246                          Type::getVoidTy(M->getContext()),
247                          Type::getInt1Ty(M->getContext()));
248   Function *TrapFunc = M->getFunction("__poison_checker_assert");
249   B.CreateCall(TrapFunc, Cond);
250 }
251 
CreateAssertNot(IRBuilder<> & B,Value * Cond)252 static void CreateAssertNot(IRBuilder<> &B, Value *Cond) {
253   assert(Cond->getType()->isIntegerTy(1));
254   CreateAssert(B, B.CreateNot(Cond));
255 }
256 
rewrite(Function & F)257 static bool rewrite(Function &F) {
258   auto * const Int1Ty = Type::getInt1Ty(F.getContext());
259 
260   DenseMap<Value *, Value *> ValToPoison;
261 
262   for (BasicBlock &BB : F)
263     for (auto I = BB.begin(); isa<PHINode>(&*I); I++) {
264       auto *OldPHI = cast<PHINode>(&*I);
265       auto *NewPHI = PHINode::Create(Int1Ty,
266                                      OldPHI->getNumIncomingValues());
267       for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++)
268         NewPHI->addIncoming(UndefValue::get(Int1Ty),
269                             OldPHI->getIncomingBlock(i));
270       NewPHI->insertBefore(OldPHI);
271       ValToPoison[OldPHI] = NewPHI;
272     }
273 
274   for (BasicBlock &BB : F)
275     for (Instruction &I : BB) {
276       if (isa<PHINode>(I)) continue;
277 
278       IRBuilder<> B(cast<Instruction>(&I));
279 
280       // Note: There are many more sources of documented UB, but this pass only
281       // attempts to find UB triggered by propagation of poison.
282       if (Value *Op = const_cast<Value*>(getGuaranteedNonFullPoisonOp(&I)))
283         CreateAssertNot(B, getPoisonFor(ValToPoison, Op));
284 
285       if (LocalCheck)
286         if (auto *RI = dyn_cast<ReturnInst>(&I))
287           if (RI->getNumOperands() != 0) {
288             Value *Op = RI->getOperand(0);
289             CreateAssertNot(B, getPoisonFor(ValToPoison, Op));
290           }
291 
292       SmallVector<Value*, 4> Checks;
293       if (propagatesFullPoison(&I))
294         for (Value *V : I.operands())
295           Checks.push_back(getPoisonFor(ValToPoison, V));
296 
297       if (auto *Check = generatePoisonChecks(I))
298         Checks.push_back(Check);
299       ValToPoison[&I] = buildOrChain(B, Checks);
300     }
301 
302   for (BasicBlock &BB : F)
303     for (auto I = BB.begin(); isa<PHINode>(&*I); I++) {
304       auto *OldPHI = cast<PHINode>(&*I);
305       if (!ValToPoison.count(OldPHI))
306         continue; // skip the newly inserted phis
307       auto *NewPHI = cast<PHINode>(ValToPoison[OldPHI]);
308       for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++) {
309         auto *OldVal = OldPHI->getIncomingValue(i);
310         NewPHI->setIncomingValue(i, getPoisonFor(ValToPoison, OldVal));
311       }
312     }
313   return true;
314 }
315 
316 
run(Module & M,ModuleAnalysisManager & AM)317 PreservedAnalyses PoisonCheckingPass::run(Module &M,
318                                           ModuleAnalysisManager &AM) {
319   bool Changed = false;
320   for (auto &F : M)
321     Changed |= rewrite(F);
322 
323   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
324 }
325 
run(Function & F,FunctionAnalysisManager & AM)326 PreservedAnalyses PoisonCheckingPass::run(Function &F,
327                                           FunctionAnalysisManager &AM) {
328   return rewrite(F) ? PreservedAnalyses::none() : PreservedAnalyses::all();
329 }
330 
331 
332 /* Major TODO Items:
333    - Control dependent poison UB
334    - Strict mode - (i.e. must analyze every operand)
335      - Poison through memory
336      - Function ABIs
337      - Full coverage of intrinsics, etc.. (ouch)
338 
339    Instructions w/Unclear Semantics:
340    - shufflevector - It would seem reasonable for an out of bounds mask element
341      to produce poison, but the LangRef does not state.
342    - and/or - It would seem reasonable for poison to propagate from both
343      arguments, but LangRef doesn't state and propagatesFullPoison doesn't
344      include these two.
345    - all binary ops w/vector operands - The likely interpretation would be that
346      any element overflowing should produce poison for the entire result, but
347      the LangRef does not state.
348    - Floating point binary ops w/fmf flags other than (nnan, noinfs).  It seems
349      strange that only certian flags should be documented as producing poison.
350 
351    Cases of clear poison semantics not yet implemented:
352    - Exact flags on ashr/lshr produce poison
353    - NSW/NUW flags on shl produce poison
354    - Inbounds flag on getelementptr produce poison
355    - fptosi/fptoui (out of bounds input) produce poison
356    - Scalable vector types for insertelement/extractelement
357    - Floating point binary ops w/fmf nnan/noinfs flags produce poison
358  */
359