1 /*
2  *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 
12 /*
13  * This file contains the function WebRtcSpl_Sqrt().
14  * The description header can be found in signal_processing_library.h
15  *
16  */
17 
18 #include "rtc_base/checks.h"
19 #include "common_audio/signal_processing/include/signal_processing_library.h"
20 
21 int32_t WebRtcSpl_SqrtLocal(int32_t in);
22 
WebRtcSpl_SqrtLocal(int32_t in)23 int32_t WebRtcSpl_SqrtLocal(int32_t in)
24 {
25 
26     int16_t x_half, t16;
27     int32_t A, B, x2;
28 
29     /* The following block performs:
30      y=in/2
31      x=y-2^30
32      x_half=x/2^31
33      t = 1 + (x_half) - 0.5*((x_half)^2) + 0.5*((x_half)^3) - 0.625*((x_half)^4)
34          + 0.875*((x_half)^5)
35      */
36 
37     B = in / 2;
38 
39     B = B - ((int32_t)0x40000000); // B = in/2 - 1/2
40     x_half = (int16_t)(B >> 16);  // x_half = x/2 = (in-1)/2
41     B = B + ((int32_t)0x40000000); // B = 1 + x/2
42     B = B + ((int32_t)0x40000000); // Add 0.5 twice (since 1.0 does not exist in Q31)
43 
44     x2 = ((int32_t)x_half) * ((int32_t)x_half) * 2; // A = (x/2)^2
45     A = -x2; // A = -(x/2)^2
46     B = B + (A >> 1); // B = 1 + x/2 - 0.5*(x/2)^2
47 
48     A >>= 16;
49     A = A * A * 2; // A = (x/2)^4
50     t16 = (int16_t)(A >> 16);
51     B += -20480 * t16 * 2;  // B = B - 0.625*A
52     // After this, B = 1 + x/2 - 0.5*(x/2)^2 - 0.625*(x/2)^4
53 
54     A = x_half * t16 * 2;  // A = (x/2)^5
55     t16 = (int16_t)(A >> 16);
56     B += 28672 * t16 * 2;  // B = B + 0.875*A
57     // After this, B = 1 + x/2 - 0.5*(x/2)^2 - 0.625*(x/2)^4 + 0.875*(x/2)^5
58 
59     t16 = (int16_t)(x2 >> 16);
60     A = x_half * t16 * 2;  // A = x/2^3
61 
62     B = B + (A >> 1); // B = B + 0.5*A
63     // After this, B = 1 + x/2 - 0.5*(x/2)^2 + 0.5*(x/2)^3 - 0.625*(x/2)^4 + 0.875*(x/2)^5
64 
65     B = B + ((int32_t)32768); // Round off bit
66 
67     return B;
68 }
69 
WebRtcSpl_Sqrt(int32_t value)70 int32_t WebRtcSpl_Sqrt(int32_t value)
71 {
72     /*
73      Algorithm:
74 
75      Six term Taylor Series is used here to compute the square root of a number
76      y^0.5 = (1+x)^0.5 where x = y-1
77      = 1+(x/2)-0.5*((x/2)^2+0.5*((x/2)^3-0.625*((x/2)^4+0.875*((x/2)^5)
78      0.5 <= x < 1
79 
80      Example of how the algorithm works, with ut=sqrt(in), and
81      with in=73632 and ut=271 (even shift value case):
82 
83      in=73632
84      y= in/131072
85      x=y-1
86      t = 1 + (x/2) - 0.5*((x/2)^2) + 0.5*((x/2)^3) - 0.625*((x/2)^4) + 0.875*((x/2)^5)
87      ut=t*(1/sqrt(2))*512
88 
89      or:
90 
91      in=73632
92      in2=73632*2^14
93      y= in2/2^31
94      x=y-1
95      t = 1 + (x/2) - 0.5*((x/2)^2) + 0.5*((x/2)^3) - 0.625*((x/2)^4) + 0.875*((x/2)^5)
96      ut=t*(1/sqrt(2))
97      ut2=ut*2^9
98 
99      which gives:
100 
101      in  = 73632
102      in2 = 1206386688
103      y   = 0.56176757812500
104      x   = -0.43823242187500
105      t   = 0.74973506527313
106      ut  = 0.53014274874797
107      ut2 = 2.714330873589594e+002
108 
109      or:
110 
111      in=73632
112      in2=73632*2^14
113      y=in2/2
114      x=y-2^30
115      x_half=x/2^31
116      t = 1 + (x_half) - 0.5*((x_half)^2) + 0.5*((x_half)^3) - 0.625*((x_half)^4)
117          + 0.875*((x_half)^5)
118      ut=t*(1/sqrt(2))
119      ut2=ut*2^9
120 
121      which gives:
122 
123      in  = 73632
124      in2 = 1206386688
125      y   = 603193344
126      x   = -470548480
127      x_half =  -0.21911621093750
128      t   = 0.74973506527313
129      ut  = 0.53014274874797
130      ut2 = 2.714330873589594e+002
131 
132      */
133 
134     int16_t x_norm, nshift, t16, sh;
135     int32_t A;
136 
137     int16_t k_sqrt_2 = 23170; // 1/sqrt2 (==5a82)
138 
139     A = value;
140 
141     // The convention in this function is to calculate sqrt(abs(A)). Negate the
142     // input if it is negative.
143     if (A < 0) {
144         if (A == WEBRTC_SPL_WORD32_MIN) {
145             // This number cannot be held in an int32_t after negating.
146             // Map it to the maximum positive value.
147             A = WEBRTC_SPL_WORD32_MAX;
148         } else {
149             A = -A;
150         }
151     } else if (A == 0) {
152         return 0;  // sqrt(0) = 0
153     }
154 
155     sh = WebRtcSpl_NormW32(A); // # shifts to normalize A
156     A = WEBRTC_SPL_LSHIFT_W32(A, sh); // Normalize A
157     if (A < (WEBRTC_SPL_WORD32_MAX - 32767))
158     {
159         A = A + ((int32_t)32768); // Round off bit
160     } else
161     {
162         A = WEBRTC_SPL_WORD32_MAX;
163     }
164 
165     x_norm = (int16_t)(A >> 16);  // x_norm = AH
166 
167     nshift = (sh / 2);
168     RTC_DCHECK_GE(nshift, 0);
169 
170     A = (int32_t)WEBRTC_SPL_LSHIFT_W32((int32_t)x_norm, 16);
171     A = WEBRTC_SPL_ABS_W32(A); // A = abs(x_norm<<16)
172     A = WebRtcSpl_SqrtLocal(A); // A = sqrt(A)
173 
174     if (2 * nshift == sh) {
175         // Even shift value case
176 
177         t16 = (int16_t)(A >> 16);  // t16 = AH
178 
179         A = k_sqrt_2 * t16 * 2;  // A = 1/sqrt(2)*t16
180         A = A + ((int32_t)32768); // Round off
181         A = A & ((int32_t)0x7fff0000); // Round off
182 
183         A >>= 15;  // A = A>>16
184 
185     } else
186     {
187         A >>= 16;  // A = A>>16
188     }
189 
190     A = A & ((int32_t)0x0000ffff);
191     A >>= nshift;  // De-normalize the result.
192 
193     return A;
194 }
195