1 /*
2  *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 /*
12  * lattice.c
13  *
14  * Contains the normalized lattice filter routines (MA and AR) for iSAC codec
15  *
16  */
17 
18 #include "modules/audio_coding/codecs/isac/fix/source/codec.h"
19 #include "modules/audio_coding/codecs/isac/fix/source/settings.h"
20 #include "rtc_base/sanitizer.h"
21 
22 #define LATTICE_MUL_32_32_RSFT16(a32a, a32b, b32)                  \
23   ((int32_t)(WEBRTC_SPL_MUL(a32a, b32) + (WEBRTC_SPL_MUL_16_32_RSFT16(a32b, b32))))
24 /* This macro is FORBIDDEN to use elsewhere than in a function in this file and
25    its corresponding neon version. It might give unpredictable results, since a
26    general int32_t*int32_t multiplication results in a 64 bit value.
27    The result is then shifted just 16 steps to the right, giving need for 48
28    bits, i.e. in the generel case, it will NOT fit in a int32_t. In the
29    cases used in here, the int32_t will be enough, since (for a good
30    reason) the involved multiplicands aren't big enough to overflow a
31    int32_t after shifting right 16 bits. I have compared the result of a
32    multiplication between t32 and tmp32, done in two ways:
33    1) Using (int32_t) (((float)(tmp32))*((float)(tmp32b))/65536.0);
34    2) Using LATTICE_MUL_32_32_RSFT16(t16a, t16b, tmp32b);
35    By running 25 files, I haven't found any bigger diff than 64 - this was in the
36    case when  method 1) gave 650235648 and 2) gave 650235712.
37 */
38 
39 /* Function prototype: filtering ar_g_Q0[] and ar_f_Q0[] through an AR filter
40    with coefficients cth_Q15[] and sth_Q15[].
41    Implemented for both generic and ARMv7 platforms.
42  */
43 void WebRtcIsacfix_FilterArLoop(int16_t* ar_g_Q0,
44                                 int16_t* ar_f_Q0,
45                                 int16_t* cth_Q15,
46                                 int16_t* sth_Q15,
47                                 size_t order_coef);
48 
49 /* Inner loop used for function WebRtcIsacfix_NormLatticeFilterMa(). It does:
50    for 0 <= n < HALF_SUBFRAMELEN - 1:
51      *ptr2 = input2 * (*ptr2) + input0 * (*ptr0));
52      *ptr1 = input1 * (*ptr0) + input0 * (*ptr2);
53    Note, function WebRtcIsacfix_FilterMaLoopNeon and WebRtcIsacfix_FilterMaLoopC
54    are not bit-exact. The accuracy by the ARM Neon function is same or better.
55 */
WebRtcIsacfix_FilterMaLoopC(int16_t input0,int16_t input1,int32_t input2,int32_t * ptr0,int32_t * ptr1,int32_t * ptr2)56 void WebRtcIsacfix_FilterMaLoopC(int16_t input0,  // Filter coefficient
57                                  int16_t input1,  // Filter coefficient
58                                  int32_t input2,  // Inverse coeff. (1/input1)
59                                  int32_t* ptr0,   // Sample buffer
60                                  int32_t* ptr1,   // Sample buffer
61                                  int32_t* ptr2) { // Sample buffer
62   int n = 0;
63 
64   // Separate the 32-bit variable input2 into two 16-bit integers (high 16 and
65   // low 16 bits), for using LATTICE_MUL_32_32_RSFT16 in the loop.
66   int16_t t16a = (int16_t)(input2 >> 16);
67   int16_t t16b = (int16_t)input2;
68   if (t16b < 0) t16a++;
69 
70   // The loop filtering the samples *ptr0, *ptr1, *ptr2 with filter coefficients
71   // input0, input1, and input2.
72   for(n = 0; n < HALF_SUBFRAMELEN - 1; n++, ptr0++, ptr1++, ptr2++) {
73     int32_t tmp32a = 0;
74     int32_t tmp32b = 0;
75 
76     // Calculate *ptr2 = input2 * (*ptr2 + input0 * (*ptr0));
77     tmp32a = WEBRTC_SPL_MUL_16_32_RSFT15(input0, *ptr0); // Q15 * Q15 >> 15 = Q15
78     tmp32b = *ptr2 + tmp32a; // Q15 + Q15 = Q15
79     *ptr2 = LATTICE_MUL_32_32_RSFT16(t16a, t16b, tmp32b);
80 
81     // Calculate *ptr1 = input1 * (*ptr0) + input0 * (*ptr2);
82     tmp32a = WEBRTC_SPL_MUL_16_32_RSFT15(input1, *ptr0); // Q15*Q15>>15 = Q15
83     tmp32b = WEBRTC_SPL_MUL_16_32_RSFT15(input0, *ptr2); // Q15*Q15>>15 = Q15
84     *ptr1 = tmp32a + tmp32b; // Q15 + Q15 = Q15
85   }
86 }
87 
88 /* filter the signal using normalized lattice filter */
89 /* MA filter */
WebRtcIsacfix_NormLatticeFilterMa(size_t orderCoef,int32_t * stateGQ15,int16_t * lat_inQ0,int16_t * filt_coefQ15,int32_t * gain_lo_hiQ17,int16_t lo_hi,int16_t * lat_outQ9)90 void WebRtcIsacfix_NormLatticeFilterMa(size_t orderCoef,
91                                        int32_t *stateGQ15,
92                                        int16_t *lat_inQ0,
93                                        int16_t *filt_coefQ15,
94                                        int32_t *gain_lo_hiQ17,
95                                        int16_t lo_hi,
96                                        int16_t *lat_outQ9)
97 {
98   int16_t sthQ15[MAX_AR_MODEL_ORDER];
99   int16_t cthQ15[MAX_AR_MODEL_ORDER];
100 
101   int u, n;
102   size_t i, k;
103   int16_t temp2,temp3;
104   size_t ord_1 = orderCoef+1;
105   int32_t inv_cthQ16[MAX_AR_MODEL_ORDER];
106 
107   int32_t gain32, fQtmp;
108   int16_t gain16;
109   int16_t gain_sh;
110 
111   int32_t tmp32, tmp32b;
112   int32_t fQ15vec[HALF_SUBFRAMELEN];
113   int32_t gQ15[MAX_AR_MODEL_ORDER+1][HALF_SUBFRAMELEN];
114   int16_t sh;
115   int16_t t16a;
116   int16_t t16b;
117 
118   for (u=0;u<SUBFRAMES;u++)
119   {
120     int32_t temp1 = u * HALF_SUBFRAMELEN;
121 
122     /* set the Direct Form coefficients */
123     temp2 = (int16_t)(u * orderCoef);
124     temp3 = (int16_t)(2 * u + lo_hi);
125 
126     /* compute lattice filter coefficients */
127     memcpy(sthQ15, &filt_coefQ15[temp2], orderCoef * sizeof(int16_t));
128 
129     WebRtcSpl_SqrtOfOneMinusXSquared(sthQ15, orderCoef, cthQ15);
130 
131     /* compute the gain */
132     gain32 = gain_lo_hiQ17[temp3];
133     gain_sh = WebRtcSpl_NormW32(gain32);
134     gain32 <<= gain_sh;  // Q(17+gain_sh)
135 
136     for (k=0;k<orderCoef;k++)
137     {
138       gain32 = WEBRTC_SPL_MUL_16_32_RSFT15(cthQ15[k], gain32); //Q15*Q(17+gain_sh)>>15 = Q(17+gain_sh)
139       inv_cthQ16[k] = WebRtcSpl_DivW32W16((int32_t)2147483647, cthQ15[k]); // 1/cth[k] in Q31/Q15 = Q16
140     }
141     gain16 = (int16_t)(gain32 >> 16);  // Q(1+gain_sh).
142 
143     /* normalized lattice filter */
144     /*****************************/
145 
146     /* initial conditions */
147     for (i=0;i<HALF_SUBFRAMELEN;i++)
148     {
149       fQ15vec[i] = lat_inQ0[i + temp1] << 15;  // Q15
150       gQ15[0][i] = lat_inQ0[i + temp1] << 15;  // Q15
151     }
152 
153 
154     fQtmp = fQ15vec[0];
155 
156     /* get the state of f&g for the first input, for all orders */
157     for (i=1;i<ord_1;i++)
158     {
159       // Calculate f[i][0] = inv_cth[i-1]*(f[i-1][0] + sth[i-1]*stateG[i-1]);
160       tmp32 = WEBRTC_SPL_MUL_16_32_RSFT15(sthQ15[i-1], stateGQ15[i-1]);//Q15*Q15>>15 = Q15
161       tmp32b= fQtmp + tmp32; //Q15+Q15=Q15
162       tmp32 = inv_cthQ16[i-1]; //Q16
163       t16a = (int16_t)(tmp32 >> 16);
164       t16b = (int16_t)(tmp32 - (t16a << 16));
165       if (t16b<0) t16a++;
166       tmp32 = LATTICE_MUL_32_32_RSFT16(t16a, t16b, tmp32b);
167       fQtmp = tmp32; // Q15
168 
169       // Calculate g[i][0] = cth[i-1]*stateG[i-1] + sth[i-1]* f[i][0];
170       tmp32  = WEBRTC_SPL_MUL_16_32_RSFT15(cthQ15[i-1], stateGQ15[i-1]); //Q15*Q15>>15 = Q15
171       tmp32b = WEBRTC_SPL_MUL_16_32_RSFT15(sthQ15[i-1], fQtmp); //Q15*Q15>>15 = Q15
172       tmp32  = tmp32 + tmp32b;//Q15+Q15 = Q15
173       gQ15[i][0] = tmp32; // Q15
174     }
175 
176     /* filtering */
177     /* save the states */
178     for(k=0;k<orderCoef;k++)
179     {
180       // for 0 <= n < HALF_SUBFRAMELEN - 1:
181       //   f[k+1][n+1] = inv_cth[k]*(f[k][n+1] + sth[k]*g[k][n]);
182       //   g[k+1][n+1] = cth[k]*g[k][n] + sth[k]* f[k+1][n+1];
183       WebRtcIsacfix_FilterMaLoopFix(sthQ15[k], cthQ15[k], inv_cthQ16[k],
184                                     &gQ15[k][0], &gQ15[k+1][1], &fQ15vec[1]);
185     }
186 
187     fQ15vec[0] = fQtmp;
188 
189     for(n=0;n<HALF_SUBFRAMELEN;n++)
190     {
191       //gain32 >>= gain_sh; // Q(17+gain_sh) -> Q17
192       tmp32 = WEBRTC_SPL_MUL_16_32_RSFT16(gain16, fQ15vec[n]); //Q(1+gain_sh)*Q15>>16 = Q(gain_sh)
193       sh = 9-gain_sh; //number of needed shifts to reach Q9
194       t16a = (int16_t) WEBRTC_SPL_SHIFT_W32(tmp32, sh);
195       lat_outQ9[n + temp1] = t16a;
196     }
197 
198     /* save the states */
199     for (i=0;i<ord_1;i++)
200     {
201       stateGQ15[i] = gQ15[i][HALF_SUBFRAMELEN-1];
202     }
203     //process next frame
204   }
205 
206   return;
207 }
208 
209 // Left shift of an int32_t that's allowed to overflow. (It's still undefined
210 // behavior, so not a good idea; this just makes UBSan ignore the violation, so
211 // that our old code can continue to do what it's always been doing.)
212 static inline int32_t RTC_NO_SANITIZE("shift")
OverflowingLShiftS32(int32_t x,int shift)213     OverflowingLShiftS32(int32_t x, int shift) {
214   return x << shift;
215 }
216 
217 /* ----------------AR filter-------------------------*/
218 /* filter the signal using normalized lattice filter */
WebRtcIsacfix_NormLatticeFilterAr(size_t orderCoef,int16_t * stateGQ0,int32_t * lat_inQ25,int16_t * filt_coefQ15,int32_t * gain_lo_hiQ17,int16_t lo_hi,int16_t * lat_outQ0)219 void WebRtcIsacfix_NormLatticeFilterAr(size_t orderCoef,
220                                        int16_t *stateGQ0,
221                                        int32_t *lat_inQ25,
222                                        int16_t *filt_coefQ15,
223                                        int32_t *gain_lo_hiQ17,
224                                        int16_t lo_hi,
225                                        int16_t *lat_outQ0)
226 {
227   size_t ii, k, i;
228   int n, u;
229   int16_t sthQ15[MAX_AR_MODEL_ORDER];
230   int16_t cthQ15[MAX_AR_MODEL_ORDER];
231   int32_t tmp32;
232 
233 
234   int16_t tmpAR;
235   int16_t ARfQ0vec[HALF_SUBFRAMELEN];
236   int16_t ARgQ0vec[MAX_AR_MODEL_ORDER+1];
237 
238   int32_t inv_gain32;
239   int16_t inv_gain16;
240   int16_t den16;
241   int16_t sh;
242 
243   int16_t temp2,temp3;
244   size_t ord_1 = orderCoef+1;
245 
246   for (u=0;u<SUBFRAMES;u++)
247   {
248     int32_t temp1 = u * HALF_SUBFRAMELEN;
249 
250     //set the denominator and numerator of the Direct Form
251     temp2 = (int16_t)(u * orderCoef);
252     temp3 = (int16_t)(2 * u + lo_hi);
253 
254     for (ii=0; ii<orderCoef; ii++) {
255       sthQ15[ii] = filt_coefQ15[temp2+ii];
256     }
257 
258     WebRtcSpl_SqrtOfOneMinusXSquared(sthQ15, orderCoef, cthQ15);
259 
260     // Originally, this line was assumed to never overflow, since "[s]imulation
261     // of the 25 files shows that maximum value in the vector gain_lo_hiQ17[]
262     // is 441344, which means that it is log2((2^31)/441344) = 12.2 shifting
263     // bits from saturation. Therefore, it should be safe to use Q27 instead of
264     // Q17." However, a fuzzer test succeeded in provoking an overflow here,
265     // which we ignore on the theory that only "abnormal" inputs cause
266     // overflow.
267     tmp32 = OverflowingLShiftS32(gain_lo_hiQ17[temp3], 10);  // Q27
268 
269     for (k=0;k<orderCoef;k++) {
270       tmp32 = WEBRTC_SPL_MUL_16_32_RSFT15(cthQ15[k], tmp32); // Q15*Q27>>15 = Q27
271     }
272 
273     sh = WebRtcSpl_NormW32(tmp32); // tmp32 is the gain
274     den16 = (int16_t) WEBRTC_SPL_SHIFT_W32(tmp32, sh-16); //Q(27+sh-16) = Q(sh+11) (all 16 bits are value bits)
275     inv_gain32 = WebRtcSpl_DivW32W16((int32_t)2147483647, den16); // 1/gain in Q31/Q(sh+11) = Q(20-sh)
276 
277     //initial conditions
278     inv_gain16 = (int16_t)(inv_gain32 >> 2);  // 1/gain in Q(20-sh-2) = Q(18-sh)
279 
280     for (i=0;i<HALF_SUBFRAMELEN;i++)
281     {
282       tmp32 = OverflowingLShiftS32(lat_inQ25[i + temp1], 1);  // Q25->Q26
283       tmp32 = WEBRTC_SPL_MUL_16_32_RSFT16(inv_gain16, tmp32); //lat_in[]*inv_gain in (Q(18-sh)*Q26)>>16 = Q(28-sh)
284       tmp32 = WEBRTC_SPL_SHIFT_W32(tmp32, -(28-sh)); // lat_in[]*inv_gain in Q0
285 
286       ARfQ0vec[i] = (int16_t)WebRtcSpl_SatW32ToW16(tmp32); // Q0
287     }
288 
289     // Get the state of f & g for the first input, for all orders.
290     for (i = orderCoef; i > 0; i--)
291     {
292       tmp32 = (cthQ15[i - 1] * ARfQ0vec[0] - sthQ15[i - 1] * stateGQ0[i - 1] +
293                16384) >> 15;
294       tmpAR = (int16_t)WebRtcSpl_SatW32ToW16(tmp32); // Q0
295 
296       tmp32 = (sthQ15[i - 1] * ARfQ0vec[0] + cthQ15[i - 1] * stateGQ0[i - 1] +
297                16384) >> 15;
298       ARgQ0vec[i] = (int16_t)WebRtcSpl_SatW32ToW16(tmp32); // Q0
299       ARfQ0vec[0] = tmpAR;
300     }
301     ARgQ0vec[0] = ARfQ0vec[0];
302 
303     // Filter ARgQ0vec[] and ARfQ0vec[] through coefficients cthQ15[] and sthQ15[].
304     WebRtcIsacfix_FilterArLoop(ARgQ0vec, ARfQ0vec, cthQ15, sthQ15, orderCoef);
305 
306     for(n=0;n<HALF_SUBFRAMELEN;n++)
307     {
308       lat_outQ0[n + temp1] = ARfQ0vec[n];
309     }
310 
311 
312     /* cannot use memcpy in the following */
313 
314     for (i=0;i<ord_1;i++)
315     {
316       stateGQ0[i] = ARgQ0vec[i];
317     }
318   }
319 
320   return;
321 }
322