1 /*
2  *  Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #ifndef MODULES_AUDIO_CODING_CODECS_OPUS_TEST_BLOCKER_H_
12 #define MODULES_AUDIO_CODING_CODECS_OPUS_TEST_BLOCKER_H_
13 
14 #include <memory>
15 
16 #include "common_audio/channel_buffer.h"
17 #include "modules/audio_coding/codecs/opus/test/audio_ring_buffer.h"
18 
19 namespace webrtc {
20 
21 // The callback function to process audio in the time domain. Input has already
22 // been windowed, and output will be windowed. The number of input channels
23 // must be >= the number of output channels.
24 class BlockerCallback {
25  public:
~BlockerCallback()26   virtual ~BlockerCallback() {}
27 
28   virtual void ProcessBlock(const float* const* input,
29                             size_t num_frames,
30                             size_t num_input_channels,
31                             size_t num_output_channels,
32                             float* const* output) = 0;
33 };
34 
35 // The main purpose of Blocker is to abstract away the fact that often we
36 // receive a different number of audio frames than our transform takes. For
37 // example, most FFTs work best when the fft-size is a power of 2, but suppose
38 // we receive 20ms of audio at a sample rate of 48000. That comes to 960 frames
39 // of audio, which is not a power of 2. Blocker allows us to specify the
40 // transform and all other necessary processing via the Process() callback
41 // function without any constraints on the transform-size
42 // (read: |block_size_|) or received-audio-size (read: |chunk_size_|).
43 // We handle this for the multichannel audio case, allowing for different
44 // numbers of input and output channels (for example, beamforming takes 2 or
45 // more input channels and returns 1 output channel). Audio signals are
46 // represented as deinterleaved floats in the range [-1, 1].
47 //
48 // Blocker is responsible for:
49 // - blocking audio while handling potential discontinuities on the edges
50 //   of chunks
51 // - windowing blocks before sending them to Process()
52 // - windowing processed blocks, and overlap-adding them together before
53 //   sending back a processed chunk
54 //
55 // To use blocker:
56 // 1. Impelment a BlockerCallback object |bc|.
57 // 2. Instantiate a Blocker object |b|, passing in |bc|.
58 // 3. As you receive audio, call b.ProcessChunk() to get processed audio.
59 //
60 // A small amount of delay is added to the first received chunk to deal with
61 // the difference in chunk/block sizes. This delay is <= chunk_size.
62 //
63 // Ownership of window is retained by the caller.  That is, Blocker makes a
64 // copy of window and does not attempt to delete it.
65 class Blocker {
66  public:
67   Blocker(size_t chunk_size,
68           size_t block_size,
69           size_t num_input_channels,
70           size_t num_output_channels,
71           const float* window,
72           size_t shift_amount,
73           BlockerCallback* callback);
74   ~Blocker();
75 
76   void ProcessChunk(const float* const* input,
77                     size_t chunk_size,
78                     size_t num_input_channels,
79                     size_t num_output_channels,
80                     float* const* output);
81 
initial_delay()82   size_t initial_delay() const { return initial_delay_; }
83 
84  private:
85   const size_t chunk_size_;
86   const size_t block_size_;
87   const size_t num_input_channels_;
88   const size_t num_output_channels_;
89 
90   // The number of frames of delay to add at the beginning of the first chunk.
91   const size_t initial_delay_;
92 
93   // The frame index into the input buffer where the first block should be read
94   // from. This is necessary because shift_amount_ is not necessarily a
95   // multiple of chunk_size_, so blocks won't line up at the start of the
96   // buffer.
97   size_t frame_offset_;
98 
99   // Since blocks nearly always overlap, there are certain blocks that require
100   // frames from the end of one chunk and the beginning of the next chunk. The
101   // input and output buffers are responsible for saving those frames between
102   // calls to ProcessChunk().
103   //
104   // Both contain |initial delay| + |chunk_size| frames. The input is a fairly
105   // standard FIFO, but due to the overlap-add it's harder to use an
106   // AudioRingBuffer for the output.
107   AudioRingBuffer input_buffer_;
108   ChannelBuffer<float> output_buffer_;
109 
110   // Space for the input block (can't wrap because of windowing).
111   ChannelBuffer<float> input_block_;
112 
113   // Space for the output block (can't wrap because of overlap/add).
114   ChannelBuffer<float> output_block_;
115 
116   std::unique_ptr<float[]> window_;
117 
118   // The amount of frames between the start of contiguous blocks. For example,
119   // |shift_amount_| = |block_size_| / 2 for a Hann window.
120   size_t shift_amount_;
121 
122   BlockerCallback* callback_;
123 };
124 
125 }  // namespace webrtc
126 
127 #endif  // MODULES_AUDIO_CODING_CODECS_OPUS_TEST_BLOCKER_H_
128