1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // mutex.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file defines a `Mutex` -- a mutually exclusive lock -- and the
20 // most common type of synchronization primitive for facilitating locks on
21 // shared resources. A mutex is used to prevent multiple threads from accessing
22 // and/or writing to a shared resource concurrently.
23 //
24 // Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional
25 // features:
26 //   * Conditional predicates intrinsic to the `Mutex` object
27 //   * Shared/reader locks, in addition to standard exclusive/writer locks
28 //   * Deadlock detection and debug support.
29 //
30 // The following helper classes are also defined within this file:
31 //
32 //  MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/
33 //              write access within the current scope.
34 //  ReaderMutexLock
35 //            - An RAII wrapper to acquire and release a `Mutex` for shared/read
36 //              access within the current scope.
37 //
38 //  WriterMutexLock
39 //            - Alias for `MutexLock` above, designed for use in distinguishing
40 //              reader and writer locks within code.
41 //
42 // In addition to simple mutex locks, this file also defines ways to perform
43 // locking under certain conditions.
44 //
45 //  Condition   - (Preferred) Used to wait for a particular predicate that
46 //                depends on state protected by the `Mutex` to become true.
47 //  CondVar     - A lower-level variant of `Condition` that relies on
48 //                application code to explicitly signal the `CondVar` when
49 //                a condition has been met.
50 //
51 // See below for more information on using `Condition` or `CondVar`.
52 //
53 // Mutexes and mutex behavior can be quite complicated. The information within
54 // this header file is limited, as a result. Please consult the Mutex guide for
55 // more complete information and examples.
56 
57 #ifndef ABSL_SYNCHRONIZATION_MUTEX_H_
58 #define ABSL_SYNCHRONIZATION_MUTEX_H_
59 
60 #include <atomic>
61 #include <cstdint>
62 #include <string>
63 
64 #include "absl/base/const_init.h"
65 #include "absl/base/internal/identity.h"
66 #include "absl/base/internal/low_level_alloc.h"
67 #include "absl/base/internal/thread_identity.h"
68 #include "absl/base/internal/tsan_mutex_interface.h"
69 #include "absl/base/port.h"
70 #include "absl/base/thread_annotations.h"
71 #include "absl/synchronization/internal/kernel_timeout.h"
72 #include "absl/synchronization/internal/per_thread_sem.h"
73 #include "absl/time/time.h"
74 
75 // Decide if we should use the non-production implementation because
76 // the production implementation hasn't been fully ported yet.
77 #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
78 #error ABSL_INTERNAL_USE_NONPROD_MUTEX cannot be directly set
79 #elif defined(ABSL_LOW_LEVEL_ALLOC_MISSING)
80 #define ABSL_INTERNAL_USE_NONPROD_MUTEX 1
81 #include "absl/synchronization/internal/mutex_nonprod.inc"
82 #endif
83 
84 namespace absl {
85 ABSL_NAMESPACE_BEGIN
86 
87 class Condition;
88 struct SynchWaitParams;
89 
90 // -----------------------------------------------------------------------------
91 // Mutex
92 // -----------------------------------------------------------------------------
93 //
94 // A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock
95 // on some resource, typically a variable or data structure with associated
96 // invariants. Proper usage of mutexes prevents concurrent access by different
97 // threads to the same resource.
98 //
99 // A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`.
100 // The `Lock()` operation *acquires* a `Mutex` (in a state known as an
101 // *exclusive* -- or write -- lock), while the `Unlock()` operation *releases* a
102 // Mutex. During the span of time between the Lock() and Unlock() operations,
103 // a mutex is said to be *held*. By design all mutexes support exclusive/write
104 // locks, as this is the most common way to use a mutex.
105 //
106 // The `Mutex` state machine for basic lock/unlock operations is quite simple:
107 //
108 // |                | Lock()     | Unlock() |
109 // |----------------+------------+----------|
110 // | Free           | Exclusive  | invalid  |
111 // | Exclusive      | blocks     | Free     |
112 //
113 // Attempts to `Unlock()` must originate from the thread that performed the
114 // corresponding `Lock()` operation.
115 //
116 // An "invalid" operation is disallowed by the API. The `Mutex` implementation
117 // is allowed to do anything on an invalid call, including but not limited to
118 // crashing with a useful error message, silently succeeding, or corrupting
119 // data structures. In debug mode, the implementation attempts to crash with a
120 // useful error message.
121 //
122 // `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it
123 // is, however, approximately fair over long periods, and starvation-free for
124 // threads at the same priority.
125 //
126 // The lock/unlock primitives are now annotated with lock annotations
127 // defined in (base/thread_annotations.h). When writing multi-threaded code,
128 // you should use lock annotations whenever possible to document your lock
129 // synchronization policy. Besides acting as documentation, these annotations
130 // also help compilers or static analysis tools to identify and warn about
131 // issues that could potentially result in race conditions and deadlocks.
132 //
133 // For more information about the lock annotations, please see
134 // [Thread Safety Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html)
135 // in the Clang documentation.
136 //
137 // See also `MutexLock`, below, for scoped `Mutex` acquisition.
138 
139 class ABSL_LOCKABLE Mutex {
140  public:
141   // Creates a `Mutex` that is not held by anyone. This constructor is
142   // typically used for Mutexes allocated on the heap or the stack.
143   //
144   // To create `Mutex` instances with static storage duration
145   // (e.g. a namespace-scoped or global variable), see
146   // `Mutex::Mutex(absl::kConstInit)` below instead.
147   Mutex();
148 
149   // Creates a mutex with static storage duration.  A global variable
150   // constructed this way avoids the lifetime issues that can occur on program
151   // startup and shutdown.  (See absl/base/const_init.h.)
152   //
153   // For Mutexes allocated on the heap and stack, instead use the default
154   // constructor, which can interact more fully with the thread sanitizer.
155   //
156   // Example usage:
157   //   namespace foo {
158   //   ABSL_CONST_INIT Mutex mu(absl::kConstInit);
159   //   }
160   explicit constexpr Mutex(absl::ConstInitType);
161 
162   ~Mutex();
163 
164   // Mutex::Lock()
165   //
166   // Blocks the calling thread, if necessary, until this `Mutex` is free, and
167   // then acquires it exclusively. (This lock is also known as a "write lock.")
168   void Lock() ABSL_EXCLUSIVE_LOCK_FUNCTION();
169 
170   // Mutex::Unlock()
171   //
172   // Releases this `Mutex` and returns it from the exclusive/write state to the
173   // free state. Caller must hold the `Mutex` exclusively.
174   void Unlock() ABSL_UNLOCK_FUNCTION();
175 
176   // Mutex::TryLock()
177   //
178   // If the mutex can be acquired without blocking, does so exclusively and
179   // returns `true`. Otherwise, returns `false`. Returns `true` with high
180   // probability if the `Mutex` was free.
181   bool TryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true);
182 
183   // Mutex::AssertHeld()
184   //
185   // Return immediately if this thread holds the `Mutex` exclusively (in write
186   // mode). Otherwise, may report an error (typically by crashing with a
187   // diagnostic), or may return immediately.
188   void AssertHeld() const ABSL_ASSERT_EXCLUSIVE_LOCK();
189 
190   // ---------------------------------------------------------------------------
191   // Reader-Writer Locking
192   // ---------------------------------------------------------------------------
193 
194   // A Mutex can also be used as a starvation-free reader-writer lock.
195   // Neither read-locks nor write-locks are reentrant/recursive to avoid
196   // potential client programming errors.
197   //
198   // The Mutex API provides `Writer*()` aliases for the existing `Lock()`,
199   // `Unlock()` and `TryLock()` methods for use within applications mixing
200   // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this
201   // manner can make locking behavior clearer when mixing read and write modes.
202   //
203   // Introducing reader locks necessarily complicates the `Mutex` state
204   // machine somewhat. The table below illustrates the allowed state transitions
205   // of a mutex in such cases. Note that ReaderLock() may block even if the lock
206   // is held in shared mode; this occurs when another thread is blocked on a
207   // call to WriterLock().
208   //
209   // ---------------------------------------------------------------------------
210   //     Operation: WriterLock() Unlock()  ReaderLock()           ReaderUnlock()
211   // ---------------------------------------------------------------------------
212   // State
213   // ---------------------------------------------------------------------------
214   // Free           Exclusive    invalid   Shared(1)              invalid
215   // Shared(1)      blocks       invalid   Shared(2) or blocks    Free
216   // Shared(n) n>1  blocks       invalid   Shared(n+1) or blocks  Shared(n-1)
217   // Exclusive      blocks       Free      blocks                 invalid
218   // ---------------------------------------------------------------------------
219   //
220   // In comments below, "shared" refers to a state of Shared(n) for any n > 0.
221 
222   // Mutex::ReaderLock()
223   //
224   // Blocks the calling thread, if necessary, until this `Mutex` is either free,
225   // or in shared mode, and then acquires a share of it. Note that
226   // `ReaderLock()` will block if some other thread has an exclusive/writer lock
227   // on the mutex.
228 
229   void ReaderLock() ABSL_SHARED_LOCK_FUNCTION();
230 
231   // Mutex::ReaderUnlock()
232   //
233   // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to
234   // the free state if this thread holds the last reader lock on the mutex. Note
235   // that you cannot call `ReaderUnlock()` on a mutex held in write mode.
236   void ReaderUnlock() ABSL_UNLOCK_FUNCTION();
237 
238   // Mutex::ReaderTryLock()
239   //
240   // If the mutex can be acquired without blocking, acquires this mutex for
241   // shared access and returns `true`. Otherwise, returns `false`. Returns
242   // `true` with high probability if the `Mutex` was free or shared.
243   bool ReaderTryLock() ABSL_SHARED_TRYLOCK_FUNCTION(true);
244 
245   // Mutex::AssertReaderHeld()
246   //
247   // Returns immediately if this thread holds the `Mutex` in at least shared
248   // mode (read mode). Otherwise, may report an error (typically by
249   // crashing with a diagnostic), or may return immediately.
250   void AssertReaderHeld() const ABSL_ASSERT_SHARED_LOCK();
251 
252   // Mutex::WriterLock()
253   // Mutex::WriterUnlock()
254   // Mutex::WriterTryLock()
255   //
256   // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`.
257   //
258   // These methods may be used (along with the complementary `Reader*()`
259   // methods) to distingish simple exclusive `Mutex` usage (`Lock()`,
260   // etc.) from reader/writer lock usage.
WriterLock()261   void WriterLock() ABSL_EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); }
262 
WriterUnlock()263   void WriterUnlock() ABSL_UNLOCK_FUNCTION() { this->Unlock(); }
264 
WriterTryLock()265   bool WriterTryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true) {
266     return this->TryLock();
267   }
268 
269   // ---------------------------------------------------------------------------
270   // Conditional Critical Regions
271   // ---------------------------------------------------------------------------
272 
273   // Conditional usage of a `Mutex` can occur using two distinct paradigms:
274   //
275   //   * Use of `Mutex` member functions with `Condition` objects.
276   //   * Use of the separate `CondVar` abstraction.
277   //
278   // In general, prefer use of `Condition` and the `Mutex` member functions
279   // listed below over `CondVar`. When there are multiple threads waiting on
280   // distinctly different conditions, however, a battery of `CondVar`s may be
281   // more efficient. This section discusses use of `Condition` objects.
282   //
283   // `Mutex` contains member functions for performing lock operations only under
284   // certain conditions, of class `Condition`. For correctness, the `Condition`
285   // must return a boolean that is a pure function, only of state protected by
286   // the `Mutex`. The condition must be invariant w.r.t. environmental state
287   // such as thread, cpu id, or time, and must be `noexcept`. The condition will
288   // always be invoked with the mutex held in at least read mode, so you should
289   // not block it for long periods or sleep it on a timer.
290   //
291   // Since a condition must not depend directly on the current time, use
292   // `*WithTimeout()` member function variants to make your condition
293   // effectively true after a given duration, or `*WithDeadline()` variants to
294   // make your condition effectively true after a given time.
295   //
296   // The condition function should have no side-effects aside from debug
297   // logging; as a special exception, the function may acquire other mutexes
298   // provided it releases all those that it acquires.  (This exception was
299   // required to allow logging.)
300 
301   // Mutex::Await()
302   //
303   // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true`
304   // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the
305   // same mode in which it was previously held. If the condition is initially
306   // `true`, `Await()` *may* skip the release/re-acquire step.
307   //
308   // `Await()` requires that this thread holds this `Mutex` in some mode.
309   void Await(const Condition &cond);
310 
311   // Mutex::LockWhen()
312   // Mutex::ReaderLockWhen()
313   // Mutex::WriterLockWhen()
314   //
315   // Blocks until simultaneously both `cond` is `true` and this `Mutex` can
316   // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is
317   // logically equivalent to `*Lock(); Await();` though they may have different
318   // performance characteristics.
319   void LockWhen(const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION();
320 
321   void ReaderLockWhen(const Condition &cond) ABSL_SHARED_LOCK_FUNCTION();
322 
WriterLockWhen(const Condition & cond)323   void WriterLockWhen(const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION() {
324     this->LockWhen(cond);
325   }
326 
327   // ---------------------------------------------------------------------------
328   // Mutex Variants with Timeouts/Deadlines
329   // ---------------------------------------------------------------------------
330 
331   // Mutex::AwaitWithTimeout()
332   // Mutex::AwaitWithDeadline()
333   //
334   // If `cond` is initially true, do nothing, or act as though `cond` is
335   // initially false.
336   //
337   // If `cond` is initially false, unlock this `Mutex` and block until
338   // simultaneously:
339   //   - either `cond` is true or the {timeout has expired, deadline has passed}
340   //     and
341   //   - this `Mutex` can be reacquired,
342   // then reacquire this `Mutex` in the same mode in which it was previously
343   // held, returning `true` iff `cond` is `true` on return.
344   //
345   // Deadlines in the past are equivalent to an immediate deadline.
346   // Negative timeouts are equivalent to a zero timeout.
347   //
348   // This method requires that this thread holds this `Mutex` in some mode.
349   bool AwaitWithTimeout(const Condition &cond, absl::Duration timeout);
350 
351   bool AwaitWithDeadline(const Condition &cond, absl::Time deadline);
352 
353   // Mutex::LockWhenWithTimeout()
354   // Mutex::ReaderLockWhenWithTimeout()
355   // Mutex::WriterLockWhenWithTimeout()
356   //
357   // Blocks until simultaneously both:
358   //   - either `cond` is `true` or the timeout has expired, and
359   //   - this `Mutex` can be acquired,
360   // then atomically acquires this `Mutex`, returning `true` iff `cond` is
361   // `true` on return.
362   //
363   // Negative timeouts are equivalent to a zero timeout.
364   bool LockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
365       ABSL_EXCLUSIVE_LOCK_FUNCTION();
366   bool ReaderLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
367       ABSL_SHARED_LOCK_FUNCTION();
WriterLockWhenWithTimeout(const Condition & cond,absl::Duration timeout)368   bool WriterLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
369       ABSL_EXCLUSIVE_LOCK_FUNCTION() {
370     return this->LockWhenWithTimeout(cond, timeout);
371   }
372 
373   // Mutex::LockWhenWithDeadline()
374   // Mutex::ReaderLockWhenWithDeadline()
375   // Mutex::WriterLockWhenWithDeadline()
376   //
377   // Blocks until simultaneously both:
378   //   - either `cond` is `true` or the deadline has been passed, and
379   //   - this `Mutex` can be acquired,
380   // then atomically acquires this Mutex, returning `true` iff `cond` is `true`
381   // on return.
382   //
383   // Deadlines in the past are equivalent to an immediate deadline.
384   bool LockWhenWithDeadline(const Condition &cond, absl::Time deadline)
385       ABSL_EXCLUSIVE_LOCK_FUNCTION();
386   bool ReaderLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
387       ABSL_SHARED_LOCK_FUNCTION();
WriterLockWhenWithDeadline(const Condition & cond,absl::Time deadline)388   bool WriterLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
389       ABSL_EXCLUSIVE_LOCK_FUNCTION() {
390     return this->LockWhenWithDeadline(cond, deadline);
391   }
392 
393   // ---------------------------------------------------------------------------
394   // Debug Support: Invariant Checking, Deadlock Detection, Logging.
395   // ---------------------------------------------------------------------------
396 
397   // Mutex::EnableInvariantDebugging()
398   //
399   // If `invariant`!=null and if invariant debugging has been enabled globally,
400   // cause `(*invariant)(arg)` to be called at moments when the invariant for
401   // this `Mutex` should hold (for example: just after acquire, just before
402   // release).
403   //
404   // The routine `invariant` should have no side-effects since it is not
405   // guaranteed how many times it will be called; it should check the invariant
406   // and crash if it does not hold. Enabling global invariant debugging may
407   // substantially reduce `Mutex` performance; it should be set only for
408   // non-production runs.  Optimization options may also disable invariant
409   // checks.
410   void EnableInvariantDebugging(void (*invariant)(void *), void *arg);
411 
412   // Mutex::EnableDebugLog()
413   //
414   // Cause all subsequent uses of this `Mutex` to be logged via
415   // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous
416   // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made.
417   //
418   // Note: This method substantially reduces `Mutex` performance.
419   void EnableDebugLog(const char *name);
420 
421   // Deadlock detection
422 
423   // Mutex::ForgetDeadlockInfo()
424   //
425   // Forget any deadlock-detection information previously gathered
426   // about this `Mutex`. Call this method in debug mode when the lock ordering
427   // of a `Mutex` changes.
428   void ForgetDeadlockInfo();
429 
430   // Mutex::AssertNotHeld()
431   //
432   // Return immediately if this thread does not hold this `Mutex` in any
433   // mode; otherwise, may report an error (typically by crashing with a
434   // diagnostic), or may return immediately.
435   //
436   // Currently this check is performed only if all of:
437   //    - in debug mode
438   //    - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort
439   //    - number of locks concurrently held by this thread is not large.
440   // are true.
441   void AssertNotHeld() const;
442 
443   // Special cases.
444 
445   // A `MuHow` is a constant that indicates how a lock should be acquired.
446   // Internal implementation detail.  Clients should ignore.
447   typedef const struct MuHowS *MuHow;
448 
449   // Mutex::InternalAttemptToUseMutexInFatalSignalHandler()
450   //
451   // Causes the `Mutex` implementation to prepare itself for re-entry caused by
452   // future use of `Mutex` within a fatal signal handler. This method is
453   // intended for use only for last-ditch attempts to log crash information.
454   // It does not guarantee that attempts to use Mutexes within the handler will
455   // not deadlock; it merely makes other faults less likely.
456   //
457   // WARNING:  This routine must be invoked from a signal handler, and the
458   // signal handler must either loop forever or terminate the process.
459   // Attempts to return from (or `longjmp` out of) the signal handler once this
460   // call has been made may cause arbitrary program behaviour including
461   // crashes and deadlocks.
462   static void InternalAttemptToUseMutexInFatalSignalHandler();
463 
464  private:
465 #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
466   friend class CondVar;
467 
impl()468   synchronization_internal::MutexImpl *impl() { return impl_.get(); }
469 
470   synchronization_internal::SynchronizationStorage<
471       synchronization_internal::MutexImpl>
472       impl_;
473 #else
474   std::atomic<intptr_t> mu_;  // The Mutex state.
475 
476   // Post()/Wait() versus associated PerThreadSem; in class for required
477   // friendship with PerThreadSem.
478   static inline void IncrementSynchSem(Mutex *mu,
479                                        base_internal::PerThreadSynch *w);
480   static inline bool DecrementSynchSem(
481       Mutex *mu, base_internal::PerThreadSynch *w,
482       synchronization_internal::KernelTimeout t);
483 
484   // slow path acquire
485   void LockSlowLoop(SynchWaitParams *waitp, int flags);
486   // wrappers around LockSlowLoop()
487   bool LockSlowWithDeadline(MuHow how, const Condition *cond,
488                             synchronization_internal::KernelTimeout t,
489                             int flags);
490   void LockSlow(MuHow how, const Condition *cond,
491                 int flags) ABSL_ATTRIBUTE_COLD;
492   // slow path release
493   void UnlockSlow(SynchWaitParams *waitp) ABSL_ATTRIBUTE_COLD;
494   // Common code between Await() and AwaitWithTimeout/Deadline()
495   bool AwaitCommon(const Condition &cond,
496                    synchronization_internal::KernelTimeout t);
497   // Attempt to remove thread s from queue.
498   void TryRemove(base_internal::PerThreadSynch *s);
499   // Block a thread on mutex.
500   void Block(base_internal::PerThreadSynch *s);
501   // Wake a thread; return successor.
502   base_internal::PerThreadSynch *Wakeup(base_internal::PerThreadSynch *w);
503 
504   friend class CondVar;   // for access to Trans()/Fer().
505   void Trans(MuHow how);  // used for CondVar->Mutex transfer
506   void Fer(
507       base_internal::PerThreadSynch *w);  // used for CondVar->Mutex transfer
508 #endif
509 
510   // Catch the error of writing Mutex when intending MutexLock.
Mutex(const volatile Mutex *)511   Mutex(const volatile Mutex * /*ignored*/) {}  // NOLINT(runtime/explicit)
512 
513   Mutex(const Mutex&) = delete;
514   Mutex& operator=(const Mutex&) = delete;
515 };
516 
517 // -----------------------------------------------------------------------------
518 // Mutex RAII Wrappers
519 // -----------------------------------------------------------------------------
520 
521 // MutexLock
522 //
523 // `MutexLock` is a helper class, which acquires and releases a `Mutex` via
524 // RAII.
525 //
526 // Example:
527 //
528 // Class Foo {
529 //
530 //   Foo::Bar* Baz() {
531 //     MutexLock l(&lock_);
532 //     ...
533 //     return bar;
534 //   }
535 //
536 // private:
537 //   Mutex lock_;
538 // };
539 class ABSL_SCOPED_LOCKABLE MutexLock {
540  public:
MutexLock(Mutex * mu)541   explicit MutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) {
542     this->mu_->Lock();
543   }
544 
545   MutexLock(const MutexLock &) = delete;  // NOLINT(runtime/mutex)
546   MutexLock(MutexLock&&) = delete;  // NOLINT(runtime/mutex)
547   MutexLock& operator=(const MutexLock&) = delete;
548   MutexLock& operator=(MutexLock&&) = delete;
549 
ABSL_UNLOCK_FUNCTION()550   ~MutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->Unlock(); }
551 
552  private:
553   Mutex *const mu_;
554 };
555 
556 // ReaderMutexLock
557 //
558 // The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and
559 // releases a shared lock on a `Mutex` via RAII.
560 class ABSL_SCOPED_LOCKABLE ReaderMutexLock {
561  public:
ReaderMutexLock(Mutex * mu)562   explicit ReaderMutexLock(Mutex *mu) ABSL_SHARED_LOCK_FUNCTION(mu) : mu_(mu) {
563     mu->ReaderLock();
564   }
565 
566   ReaderMutexLock(const ReaderMutexLock&) = delete;
567   ReaderMutexLock(ReaderMutexLock&&) = delete;
568   ReaderMutexLock& operator=(const ReaderMutexLock&) = delete;
569   ReaderMutexLock& operator=(ReaderMutexLock&&) = delete;
570 
ABSL_UNLOCK_FUNCTION()571   ~ReaderMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->ReaderUnlock(); }
572 
573  private:
574   Mutex *const mu_;
575 };
576 
577 // WriterMutexLock
578 //
579 // The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and
580 // releases a write (exclusive) lock on a `Mutex` via RAII.
581 class ABSL_SCOPED_LOCKABLE WriterMutexLock {
582  public:
WriterMutexLock(Mutex * mu)583   explicit WriterMutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
584       : mu_(mu) {
585     mu->WriterLock();
586   }
587 
588   WriterMutexLock(const WriterMutexLock&) = delete;
589   WriterMutexLock(WriterMutexLock&&) = delete;
590   WriterMutexLock& operator=(const WriterMutexLock&) = delete;
591   WriterMutexLock& operator=(WriterMutexLock&&) = delete;
592 
ABSL_UNLOCK_FUNCTION()593   ~WriterMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->WriterUnlock(); }
594 
595  private:
596   Mutex *const mu_;
597 };
598 
599 // -----------------------------------------------------------------------------
600 // Condition
601 // -----------------------------------------------------------------------------
602 //
603 // As noted above, `Mutex` contains a number of member functions which take a
604 // `Condition` as an argument; clients can wait for conditions to become `true`
605 // before attempting to acquire the mutex. These sections are known as
606 // "condition critical" sections. To use a `Condition`, you simply need to
607 // construct it, and use within an appropriate `Mutex` member function;
608 // everything else in the `Condition` class is an implementation detail.
609 //
610 // A `Condition` is specified as a function pointer which returns a boolean.
611 // `Condition` functions should be pure functions -- their results should depend
612 // only on passed arguments, should not consult any external state (such as
613 // clocks), and should have no side-effects, aside from debug logging. Any
614 // objects that the function may access should be limited to those which are
615 // constant while the mutex is blocked on the condition (e.g. a stack variable),
616 // or objects of state protected explicitly by the mutex.
617 //
618 // No matter which construction is used for `Condition`, the underlying
619 // function pointer / functor / callable must not throw any
620 // exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in
621 // the face of a throwing `Condition`. (When Abseil is allowed to depend
622 // on C++17, these function pointers will be explicitly marked
623 // `noexcept`; until then this requirement cannot be enforced in the
624 // type system.)
625 //
626 // Note: to use a `Condition`, you need only construct it and pass it within the
627 // appropriate `Mutex' member function, such as `Mutex::Await()`.
628 //
629 // Example:
630 //
631 //   // assume count_ is not internal reference count
632 //   int count_ ABSL_GUARDED_BY(mu_);
633 //
634 //   mu_.LockWhen(Condition(+[](int* count) { return *count == 0; },
635 //         &count_));
636 //
637 // When multiple threads are waiting on exactly the same condition, make sure
638 // that they are constructed with the same parameters (same pointer to function
639 // + arg, or same pointer to object + method), so that the mutex implementation
640 // can avoid redundantly evaluating the same condition for each thread.
641 class Condition {
642  public:
643   // A Condition that returns the result of "(*func)(arg)"
644   Condition(bool (*func)(void *), void *arg);
645 
646   // Templated version for people who are averse to casts.
647   //
648   // To use a lambda, prepend it with unary plus, which converts the lambda
649   // into a function pointer:
650   //     Condition(+[](T* t) { return ...; }, arg).
651   //
652   // Note: lambdas in this case must contain no bound variables.
653   //
654   // See class comment for performance advice.
655   template<typename T>
656   Condition(bool (*func)(T *), T *arg);
657 
658   // Templated version for invoking a method that returns a `bool`.
659   //
660   // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates
661   // `object->Method()`.
662   //
663   // Implementation Note: `absl::internal::identity` is used to allow methods to
664   // come from base classes. A simpler signature like
665   // `Condition(T*, bool (T::*)())` does not suffice.
666   template<typename T>
667   Condition(T *object, bool (absl::internal::identity<T>::type::* method)());
668 
669   // Same as above, for const members
670   template<typename T>
671   Condition(const T *object,
672             bool (absl::internal::identity<T>::type::* method)() const);
673 
674   // A Condition that returns the value of `*cond`
675   explicit Condition(const bool *cond);
676 
677   // Templated version for invoking a functor that returns a `bool`.
678   // This approach accepts pointers to non-mutable lambdas, `std::function`,
679   // the result of` std::bind` and user-defined functors that define
680   // `bool F::operator()() const`.
681   //
682   // Example:
683   //
684   //   auto reached = [this, current]() {
685   //     mu_.AssertReaderHeld();                // For annotalysis.
686   //     return processed_ >= current;
687   //   };
688   //   mu_.Await(Condition(&reached));
689 
690   // See class comment for performance advice. In particular, if there
691   // might be more than one waiter for the same condition, make sure
692   // that all waiters construct the condition with the same pointers.
693 
694   // Implementation note: The second template parameter ensures that this
695   // constructor doesn't participate in overload resolution if T doesn't have
696   // `bool operator() const`.
697   template <typename T, typename E = decltype(
698       static_cast<bool (T::*)() const>(&T::operator()))>
Condition(const T * obj)699   explicit Condition(const T *obj)
700       : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {}
701 
702   // A Condition that always returns `true`.
703   static const Condition kTrue;
704 
705   // Evaluates the condition.
706   bool Eval() const;
707 
708   // Returns `true` if the two conditions are guaranteed to return the same
709   // value if evaluated at the same time, `false` if the evaluation *may* return
710   // different results.
711   //
712   // Two `Condition` values are guaranteed equal if both their `func` and `arg`
713   // components are the same. A null pointer is equivalent to a `true`
714   // condition.
715   static bool GuaranteedEqual(const Condition *a, const Condition *b);
716 
717  private:
718   typedef bool (*InternalFunctionType)(void * arg);
719   typedef bool (Condition::*InternalMethodType)();
720   typedef bool (*InternalMethodCallerType)(void * arg,
721                                            InternalMethodType internal_method);
722 
723   bool (*eval_)(const Condition*);  // Actual evaluator
724   InternalFunctionType function_;   // function taking pointer returning bool
725   InternalMethodType method_;       // method returning bool
726   void *arg_;                       // arg of function_ or object of method_
727 
728   Condition();        // null constructor used only to create kTrue
729 
730   // Various functions eval_ can point to:
731   static bool CallVoidPtrFunction(const Condition*);
732   template <typename T> static bool CastAndCallFunction(const Condition* c);
733   template <typename T> static bool CastAndCallMethod(const Condition* c);
734 };
735 
736 // -----------------------------------------------------------------------------
737 // CondVar
738 // -----------------------------------------------------------------------------
739 //
740 // A condition variable, reflecting state evaluated separately outside of the
741 // `Mutex` object, which can be signaled to wake callers.
742 // This class is not normally needed; use `Mutex` member functions such as
743 // `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases
744 // with many threads and many conditions, `CondVar` may be faster.
745 //
746 // The implementation may deliver signals to any condition variable at
747 // any time, even when no call to `Signal()` or `SignalAll()` is made; as a
748 // result, upon being awoken, you must check the logical condition you have
749 // been waiting upon.
750 //
751 // Examples:
752 //
753 // Usage for a thread waiting for some condition C protected by mutex mu:
754 //       mu.Lock();
755 //       while (!C) { cv->Wait(&mu); }        // releases and reacquires mu
756 //       //  C holds; process data
757 //       mu.Unlock();
758 //
759 // Usage to wake T is:
760 //       mu.Lock();
761 //      // process data, possibly establishing C
762 //      if (C) { cv->Signal(); }
763 //      mu.Unlock();
764 //
765 // If C may be useful to more than one waiter, use `SignalAll()` instead of
766 // `Signal()`.
767 //
768 // With this implementation it is efficient to use `Signal()/SignalAll()` inside
769 // the locked region; this usage can make reasoning about your program easier.
770 //
771 class CondVar {
772  public:
773   CondVar();
774   ~CondVar();
775 
776   // CondVar::Wait()
777   //
778   // Atomically releases a `Mutex` and blocks on this condition variable.
779   // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
780   // spurious wakeup), then reacquires the `Mutex` and returns.
781   //
782   // Requires and ensures that the current thread holds the `Mutex`.
783   void Wait(Mutex *mu);
784 
785   // CondVar::WaitWithTimeout()
786   //
787   // Atomically releases a `Mutex` and blocks on this condition variable.
788   // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
789   // spurious wakeup), or until the timeout has expired, then reacquires
790   // the `Mutex` and returns.
791   //
792   // Returns true if the timeout has expired without this `CondVar`
793   // being signalled in any manner. If both the timeout has expired
794   // and this `CondVar` has been signalled, the implementation is free
795   // to return `true` or `false`.
796   //
797   // Requires and ensures that the current thread holds the `Mutex`.
798   bool WaitWithTimeout(Mutex *mu, absl::Duration timeout);
799 
800   // CondVar::WaitWithDeadline()
801   //
802   // Atomically releases a `Mutex` and blocks on this condition variable.
803   // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
804   // spurious wakeup), or until the deadline has passed, then reacquires
805   // the `Mutex` and returns.
806   //
807   // Deadlines in the past are equivalent to an immediate deadline.
808   //
809   // Returns true if the deadline has passed without this `CondVar`
810   // being signalled in any manner. If both the deadline has passed
811   // and this `CondVar` has been signalled, the implementation is free
812   // to return `true` or `false`.
813   //
814   // Requires and ensures that the current thread holds the `Mutex`.
815   bool WaitWithDeadline(Mutex *mu, absl::Time deadline);
816 
817   // CondVar::Signal()
818   //
819   // Signal this `CondVar`; wake at least one waiter if one exists.
820   void Signal();
821 
822   // CondVar::SignalAll()
823   //
824   // Signal this `CondVar`; wake all waiters.
825   void SignalAll();
826 
827   // CondVar::EnableDebugLog()
828   //
829   // Causes all subsequent uses of this `CondVar` to be logged via
830   // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`.
831   // Note: this method substantially reduces `CondVar` performance.
832   void EnableDebugLog(const char *name);
833 
834  private:
835 #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
impl()836   synchronization_internal::CondVarImpl *impl() { return impl_.get(); }
837   synchronization_internal::SynchronizationStorage<
838       synchronization_internal::CondVarImpl>
839       impl_;
840 #else
841   bool WaitCommon(Mutex *mutex, synchronization_internal::KernelTimeout t);
842   void Remove(base_internal::PerThreadSynch *s);
843   void Wakeup(base_internal::PerThreadSynch *w);
844   std::atomic<intptr_t> cv_;  // Condition variable state.
845 #endif
846   CondVar(const CondVar&) = delete;
847   CondVar& operator=(const CondVar&) = delete;
848 };
849 
850 
851 // Variants of MutexLock.
852 //
853 // If you find yourself using one of these, consider instead using
854 // Mutex::Unlock() and/or if-statements for clarity.
855 
856 // MutexLockMaybe
857 //
858 // MutexLockMaybe is like MutexLock, but is a no-op when mu is null.
859 class ABSL_SCOPED_LOCKABLE MutexLockMaybe {
860  public:
MutexLockMaybe(Mutex * mu)861   explicit MutexLockMaybe(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
862       : mu_(mu) {
863     if (this->mu_ != nullptr) {
864       this->mu_->Lock();
865     }
866   }
ABSL_UNLOCK_FUNCTION()867   ~MutexLockMaybe() ABSL_UNLOCK_FUNCTION() {
868     if (this->mu_ != nullptr) { this->mu_->Unlock(); }
869   }
870 
871  private:
872   Mutex *const mu_;
873   MutexLockMaybe(const MutexLockMaybe&) = delete;
874   MutexLockMaybe(MutexLockMaybe&&) = delete;
875   MutexLockMaybe& operator=(const MutexLockMaybe&) = delete;
876   MutexLockMaybe& operator=(MutexLockMaybe&&) = delete;
877 };
878 
879 // ReleasableMutexLock
880 //
881 // ReleasableMutexLock is like MutexLock, but permits `Release()` of its
882 // mutex before destruction. `Release()` may be called at most once.
883 class ABSL_SCOPED_LOCKABLE ReleasableMutexLock {
884  public:
ReleasableMutexLock(Mutex * mu)885   explicit ReleasableMutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
886       : mu_(mu) {
887     this->mu_->Lock();
888   }
ABSL_UNLOCK_FUNCTION()889   ~ReleasableMutexLock() ABSL_UNLOCK_FUNCTION() {
890     if (this->mu_ != nullptr) { this->mu_->Unlock(); }
891   }
892 
893   void Release() ABSL_UNLOCK_FUNCTION();
894 
895  private:
896   Mutex *mu_;
897   ReleasableMutexLock(const ReleasableMutexLock&) = delete;
898   ReleasableMutexLock(ReleasableMutexLock&&) = delete;
899   ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete;
900   ReleasableMutexLock& operator=(ReleasableMutexLock&&) = delete;
901 };
902 
903 #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
Mutex(absl::ConstInitType)904 inline constexpr Mutex::Mutex(absl::ConstInitType) : impl_(absl::kConstInit) {}
905 
906 #else
Mutex()907 inline Mutex::Mutex() : mu_(0) {
908   ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static);
909 }
910 
Mutex(absl::ConstInitType)911 inline constexpr Mutex::Mutex(absl::ConstInitType) : mu_(0) {}
912 
CondVar()913 inline CondVar::CondVar() : cv_(0) {}
914 #endif
915 
916 // static
917 template <typename T>
CastAndCallMethod(const Condition * c)918 bool Condition::CastAndCallMethod(const Condition *c) {
919   typedef bool (T::*MemberType)();
920   MemberType rm = reinterpret_cast<MemberType>(c->method_);
921   T *x = static_cast<T *>(c->arg_);
922   return (x->*rm)();
923 }
924 
925 // static
926 template <typename T>
CastAndCallFunction(const Condition * c)927 bool Condition::CastAndCallFunction(const Condition *c) {
928   typedef bool (*FuncType)(T *);
929   FuncType fn = reinterpret_cast<FuncType>(c->function_);
930   T *x = static_cast<T *>(c->arg_);
931   return (*fn)(x);
932 }
933 
934 template <typename T>
Condition(bool (* func)(T *),T * arg)935 inline Condition::Condition(bool (*func)(T *), T *arg)
936     : eval_(&CastAndCallFunction<T>),
937       function_(reinterpret_cast<InternalFunctionType>(func)),
938       method_(nullptr),
939       arg_(const_cast<void *>(static_cast<const void *>(arg))) {}
940 
941 template <typename T>
Condition(T * object,bool (absl::internal::identity<T>::type::* method)())942 inline Condition::Condition(T *object,
943                             bool (absl::internal::identity<T>::type::*method)())
944     : eval_(&CastAndCallMethod<T>),
945       function_(nullptr),
946       method_(reinterpret_cast<InternalMethodType>(method)),
947       arg_(object) {}
948 
949 template <typename T>
Condition(const T * object,bool (absl::internal::identity<T>::type::* method)()const)950 inline Condition::Condition(const T *object,
951                             bool (absl::internal::identity<T>::type::*method)()
952                                 const)
953     : eval_(&CastAndCallMethod<T>),
954       function_(nullptr),
955       method_(reinterpret_cast<InternalMethodType>(method)),
956       arg_(reinterpret_cast<void *>(const_cast<T *>(object))) {}
957 
958 // Register a hook for profiling support.
959 //
960 // The function pointer registered here will be called whenever a mutex is
961 // contended.  The callback is given the absl/base/cycleclock.h timestamp when
962 // waiting began.
963 //
964 // Calls to this function do not race or block, but there is no ordering
965 // guaranteed between calls to this function and call to the provided hook.
966 // In particular, the previously registered hook may still be called for some
967 // time after this function returns.
968 void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp));
969 
970 // Register a hook for Mutex tracing.
971 //
972 // The function pointer registered here will be called whenever a mutex is
973 // contended.  The callback is given an opaque handle to the contended mutex,
974 // an event name, and the number of wait cycles (as measured by
975 // //absl/base/internal/cycleclock.h, and which may not be real
976 // "cycle" counts.)
977 //
978 // The only event name currently sent is "slow release".
979 //
980 // This has the same memory ordering concerns as RegisterMutexProfiler() above.
981 void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj,
982                               int64_t wait_cycles));
983 
984 // TODO(gfalcon): Combine RegisterMutexProfiler() and RegisterMutexTracer()
985 // into a single interface, since they are only ever called in pairs.
986 
987 // Register a hook for CondVar tracing.
988 //
989 // The function pointer registered here will be called here on various CondVar
990 // events.  The callback is given an opaque handle to the CondVar object and
991 // a string identifying the event.  This is thread-safe, but only a single
992 // tracer can be registered.
993 //
994 // Events that can be sent are "Wait", "Unwait", "Signal wakeup", and
995 // "SignalAll wakeup".
996 //
997 // This has the same memory ordering concerns as RegisterMutexProfiler() above.
998 void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv));
999 
1000 // Register a hook for symbolizing stack traces in deadlock detector reports.
1001 //
1002 // 'pc' is the program counter being symbolized, 'out' is the buffer to write
1003 // into, and 'out_size' is the size of the buffer.  This function can return
1004 // false if symbolizing failed, or true if a NUL-terminated symbol was written
1005 // to 'out.'
1006 //
1007 // This has the same memory ordering concerns as RegisterMutexProfiler() above.
1008 //
1009 // DEPRECATED: The default symbolizer function is absl::Symbolize() and the
1010 // ability to register a different hook for symbolizing stack traces will be
1011 // removed on or after 2023-05-01.
1012 ABSL_DEPRECATED("absl::RegisterSymbolizer() is deprecated and will be removed "
1013                 "on or after 2023-05-01")
1014 void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size));
1015 
1016 // EnableMutexInvariantDebugging()
1017 //
1018 // Enable or disable global support for Mutex invariant debugging.  If enabled,
1019 // then invariant predicates can be registered per-Mutex for debug checking.
1020 // See Mutex::EnableInvariantDebugging().
1021 void EnableMutexInvariantDebugging(bool enabled);
1022 
1023 // When in debug mode, and when the feature has been enabled globally, the
1024 // implementation will keep track of lock ordering and complain (or optionally
1025 // crash) if a cycle is detected in the acquired-before graph.
1026 
1027 // Possible modes of operation for the deadlock detector in debug mode.
1028 enum class OnDeadlockCycle {
1029   kIgnore,  // Neither report on nor attempt to track cycles in lock ordering
1030   kReport,  // Report lock cycles to stderr when detected
1031   kAbort,  // Report lock cycles to stderr when detected, then abort
1032 };
1033 
1034 // SetMutexDeadlockDetectionMode()
1035 //
1036 // Enable or disable global support for detection of potential deadlocks
1037 // due to Mutex lock ordering inversions.  When set to 'kIgnore', tracking of
1038 // lock ordering is disabled.  Otherwise, in debug builds, a lock ordering graph
1039 // will be maintained internally, and detected cycles will be reported in
1040 // the manner chosen here.
1041 void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode);
1042 
1043 ABSL_NAMESPACE_END
1044 }  // namespace absl
1045 
1046 // In some build configurations we pass --detect-odr-violations to the
1047 // gold linker.  This causes it to flag weak symbol overrides as ODR
1048 // violations.  Because ODR only applies to C++ and not C,
1049 // --detect-odr-violations ignores symbols not mangled with C++ names.
1050 // By changing our extension points to be extern "C", we dodge this
1051 // check.
1052 extern "C" {
1053 void AbslInternalMutexYield();
1054 }  // extern "C"
1055 
1056 #endif  // ABSL_SYNCHRONIZATION_MUTEX_H_
1057