1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 // The implementation of the absl::Duration class, which is declared in
16 // //absl/time.h.  This class behaves like a numeric type; it has no public
17 // methods and is used only through the operators defined here.
18 //
19 // Implementation notes:
20 //
21 // An absl::Duration is represented as
22 //
23 //   rep_hi_ : (int64_t)  Whole seconds
24 //   rep_lo_ : (uint32_t) Fractions of a second
25 //
26 // The seconds value (rep_hi_) may be positive or negative as appropriate.
27 // The fractional seconds (rep_lo_) is always a positive offset from rep_hi_.
28 // The API for Duration guarantees at least nanosecond resolution, which
29 // means rep_lo_ could have a max value of 1B - 1 if it stored nanoseconds.
30 // However, to utilize more of the available 32 bits of space in rep_lo_,
31 // we instead store quarters of a nanosecond in rep_lo_ resulting in a max
32 // value of 4B - 1.  This allows us to correctly handle calculations like
33 // 0.5 nanos + 0.5 nanos = 1 nano.  The following example shows the actual
34 // Duration rep using quarters of a nanosecond.
35 //
36 //    2.5 sec = {rep_hi_=2,  rep_lo_=2000000000}  // lo = 4 * 500000000
37 //   -2.5 sec = {rep_hi_=-3, rep_lo_=2000000000}
38 //
39 // Infinite durations are represented as Durations with the rep_lo_ field set
40 // to all 1s.
41 //
42 //   +InfiniteDuration:
43 //     rep_hi_ : kint64max
44 //     rep_lo_ : ~0U
45 //
46 //   -InfiniteDuration:
47 //     rep_hi_ : kint64min
48 //     rep_lo_ : ~0U
49 //
50 // Arithmetic overflows/underflows to +/- infinity and saturates.
51 
52 #if defined(_MSC_VER)
53 #include <winsock2.h>  // for timeval
54 #endif
55 
56 #include <algorithm>
57 #include <cassert>
58 #include <cctype>
59 #include <cerrno>
60 #include <cmath>
61 #include <cstdint>
62 #include <cstdlib>
63 #include <cstring>
64 #include <ctime>
65 #include <functional>
66 #include <limits>
67 #include <string>
68 
69 #include "absl/base/casts.h"
70 #include "absl/numeric/int128.h"
71 #include "absl/time/time.h"
72 
73 namespace absl {
74 ABSL_NAMESPACE_BEGIN
75 
76 namespace {
77 
78 using time_internal::kTicksPerNanosecond;
79 using time_internal::kTicksPerSecond;
80 
81 constexpr int64_t kint64max = std::numeric_limits<int64_t>::max();
82 constexpr int64_t kint64min = std::numeric_limits<int64_t>::min();
83 
84 // Can't use std::isinfinite() because it doesn't exist on windows.
IsFinite(double d)85 inline bool IsFinite(double d) {
86   if (std::isnan(d)) return false;
87   return d != std::numeric_limits<double>::infinity() &&
88          d != -std::numeric_limits<double>::infinity();
89 }
90 
IsValidDivisor(double d)91 inline bool IsValidDivisor(double d) {
92   if (std::isnan(d)) return false;
93   return d != 0.0;
94 }
95 
96 // Can't use std::round() because it is only available in C++11.
97 // Note that we ignore the possibility of floating-point over/underflow.
98 template <typename Double>
Round(Double d)99 inline double Round(Double d) {
100   return d < 0 ? std::ceil(d - 0.5) : std::floor(d + 0.5);
101 }
102 
103 // *sec may be positive or negative.  *ticks must be in the range
104 // -kTicksPerSecond < *ticks < kTicksPerSecond.  If *ticks is negative it
105 // will be normalized to a positive value by adjusting *sec accordingly.
NormalizeTicks(int64_t * sec,int64_t * ticks)106 inline void NormalizeTicks(int64_t* sec, int64_t* ticks) {
107   if (*ticks < 0) {
108     --*sec;
109     *ticks += kTicksPerSecond;
110   }
111 }
112 
113 // Makes a uint128 from the absolute value of the given scalar.
MakeU128(int64_t a)114 inline uint128 MakeU128(int64_t a) {
115   uint128 u128 = 0;
116   if (a < 0) {
117     ++u128;
118     ++a;  // Makes it safe to negate 'a'
119     a = -a;
120   }
121   u128 += static_cast<uint64_t>(a);
122   return u128;
123 }
124 
125 // Makes a uint128 count of ticks out of the absolute value of the Duration.
MakeU128Ticks(Duration d)126 inline uint128 MakeU128Ticks(Duration d) {
127   int64_t rep_hi = time_internal::GetRepHi(d);
128   uint32_t rep_lo = time_internal::GetRepLo(d);
129   if (rep_hi < 0) {
130     ++rep_hi;
131     rep_hi = -rep_hi;
132     rep_lo = kTicksPerSecond - rep_lo;
133   }
134   uint128 u128 = static_cast<uint64_t>(rep_hi);
135   u128 *= static_cast<uint64_t>(kTicksPerSecond);
136   u128 += rep_lo;
137   return u128;
138 }
139 
140 // Breaks a uint128 of ticks into a Duration.
MakeDurationFromU128(uint128 u128,bool is_neg)141 inline Duration MakeDurationFromU128(uint128 u128, bool is_neg) {
142   int64_t rep_hi;
143   uint32_t rep_lo;
144   const uint64_t h64 = Uint128High64(u128);
145   const uint64_t l64 = Uint128Low64(u128);
146   if (h64 == 0) {  // fastpath
147     const uint64_t hi = l64 / kTicksPerSecond;
148     rep_hi = static_cast<int64_t>(hi);
149     rep_lo = static_cast<uint32_t>(l64 - hi * kTicksPerSecond);
150   } else {
151     // kMaxRepHi64 is the high 64 bits of (2^63 * kTicksPerSecond).
152     // Any positive tick count whose high 64 bits are >= kMaxRepHi64
153     // is not representable as a Duration.  A negative tick count can
154     // have its high 64 bits == kMaxRepHi64 but only when the low 64
155     // bits are all zero, otherwise it is not representable either.
156     const uint64_t kMaxRepHi64 = 0x77359400UL;
157     if (h64 >= kMaxRepHi64) {
158       if (is_neg && h64 == kMaxRepHi64 && l64 == 0) {
159         // Avoid trying to represent -kint64min below.
160         return time_internal::MakeDuration(kint64min);
161       }
162       return is_neg ? -InfiniteDuration() : InfiniteDuration();
163     }
164     const uint128 kTicksPerSecond128 = static_cast<uint64_t>(kTicksPerSecond);
165     const uint128 hi = u128 / kTicksPerSecond128;
166     rep_hi = static_cast<int64_t>(Uint128Low64(hi));
167     rep_lo =
168         static_cast<uint32_t>(Uint128Low64(u128 - hi * kTicksPerSecond128));
169   }
170   if (is_neg) {
171     rep_hi = -rep_hi;
172     if (rep_lo != 0) {
173       --rep_hi;
174       rep_lo = kTicksPerSecond - rep_lo;
175     }
176   }
177   return time_internal::MakeDuration(rep_hi, rep_lo);
178 }
179 
180 // Convert between int64_t and uint64_t, preserving representation. This
181 // allows us to do arithmetic in the unsigned domain, where overflow has
182 // well-defined behavior. See operator+=() and operator-=().
183 //
184 // C99 7.20.1.1.1, as referenced by C++11 18.4.1.2, says, "The typedef
185 // name intN_t designates a signed integer type with width N, no padding
186 // bits, and a two's complement representation." So, we can convert to
187 // and from the corresponding uint64_t value using a bit cast.
EncodeTwosComp(int64_t v)188 inline uint64_t EncodeTwosComp(int64_t v) {
189   return absl::bit_cast<uint64_t>(v);
190 }
DecodeTwosComp(uint64_t v)191 inline int64_t DecodeTwosComp(uint64_t v) { return absl::bit_cast<int64_t>(v); }
192 
193 // Note: The overflow detection in this function is done using greater/less *or
194 // equal* because kint64max/min is too large to be represented exactly in a
195 // double (which only has 53 bits of precision). In order to avoid assigning to
196 // rep->hi a double value that is too large for an int64_t (and therefore is
197 // undefined), we must consider computations that equal kint64max/min as a
198 // double as overflow cases.
SafeAddRepHi(double a_hi,double b_hi,Duration * d)199 inline bool SafeAddRepHi(double a_hi, double b_hi, Duration* d) {
200   double c = a_hi + b_hi;
201   if (c >= static_cast<double>(kint64max)) {
202     *d = InfiniteDuration();
203     return false;
204   }
205   if (c <= static_cast<double>(kint64min)) {
206     *d = -InfiniteDuration();
207     return false;
208   }
209   *d = time_internal::MakeDuration(c, time_internal::GetRepLo(*d));
210   return true;
211 }
212 
213 // A functor that's similar to std::multiplies<T>, except this returns the max
214 // T value instead of overflowing. This is only defined for uint128.
215 template <typename Ignored>
216 struct SafeMultiply {
operator ()absl::__anon8531abf80111::SafeMultiply217   uint128 operator()(uint128 a, uint128 b) const {
218     // b hi is always zero because it originated as an int64_t.
219     assert(Uint128High64(b) == 0);
220     // Fastpath to avoid the expensive overflow check with division.
221     if (Uint128High64(a) == 0) {
222       return (((Uint128Low64(a) | Uint128Low64(b)) >> 32) == 0)
223                  ? static_cast<uint128>(Uint128Low64(a) * Uint128Low64(b))
224                  : a * b;
225     }
226     return b == 0 ? b : (a > kuint128max / b) ? kuint128max : a * b;
227   }
228 };
229 
230 // Scales (i.e., multiplies or divides, depending on the Operation template)
231 // the Duration d by the int64_t r.
232 template <template <typename> class Operation>
ScaleFixed(Duration d,int64_t r)233 inline Duration ScaleFixed(Duration d, int64_t r) {
234   const uint128 a = MakeU128Ticks(d);
235   const uint128 b = MakeU128(r);
236   const uint128 q = Operation<uint128>()(a, b);
237   const bool is_neg = (time_internal::GetRepHi(d) < 0) != (r < 0);
238   return MakeDurationFromU128(q, is_neg);
239 }
240 
241 // Scales (i.e., multiplies or divides, depending on the Operation template)
242 // the Duration d by the double r.
243 template <template <typename> class Operation>
ScaleDouble(Duration d,double r)244 inline Duration ScaleDouble(Duration d, double r) {
245   Operation<double> op;
246   double hi_doub = op(time_internal::GetRepHi(d), r);
247   double lo_doub = op(time_internal::GetRepLo(d), r);
248 
249   double hi_int = 0;
250   double hi_frac = std::modf(hi_doub, &hi_int);
251 
252   // Moves hi's fractional bits to lo.
253   lo_doub /= kTicksPerSecond;
254   lo_doub += hi_frac;
255 
256   double lo_int = 0;
257   double lo_frac = std::modf(lo_doub, &lo_int);
258 
259   // Rolls lo into hi if necessary.
260   int64_t lo64 = Round(lo_frac * kTicksPerSecond);
261 
262   Duration ans;
263   if (!SafeAddRepHi(hi_int, lo_int, &ans)) return ans;
264   int64_t hi64 = time_internal::GetRepHi(ans);
265   if (!SafeAddRepHi(hi64, lo64 / kTicksPerSecond, &ans)) return ans;
266   hi64 = time_internal::GetRepHi(ans);
267   lo64 %= kTicksPerSecond;
268   NormalizeTicks(&hi64, &lo64);
269   return time_internal::MakeDuration(hi64, lo64);
270 }
271 
272 // Tries to divide num by den as fast as possible by looking for common, easy
273 // cases. If the division was done, the quotient is in *q and the remainder is
274 // in *rem and true will be returned.
IDivFastPath(const Duration num,const Duration den,int64_t * q,Duration * rem)275 inline bool IDivFastPath(const Duration num, const Duration den, int64_t* q,
276                          Duration* rem) {
277   // Bail if num or den is an infinity.
278   if (time_internal::IsInfiniteDuration(num) ||
279       time_internal::IsInfiniteDuration(den))
280     return false;
281 
282   int64_t num_hi = time_internal::GetRepHi(num);
283   uint32_t num_lo = time_internal::GetRepLo(num);
284   int64_t den_hi = time_internal::GetRepHi(den);
285   uint32_t den_lo = time_internal::GetRepLo(den);
286 
287   if (den_hi == 0 && den_lo == kTicksPerNanosecond) {
288     // Dividing by 1ns
289     if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000000) {
290       *q = num_hi * 1000000000 + num_lo / kTicksPerNanosecond;
291       *rem = time_internal::MakeDuration(0, num_lo % den_lo);
292       return true;
293     }
294   } else if (den_hi == 0 && den_lo == 100 * kTicksPerNanosecond) {
295     // Dividing by 100ns (common when converting to Universal time)
296     if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 10000000) {
297       *q = num_hi * 10000000 + num_lo / (100 * kTicksPerNanosecond);
298       *rem = time_internal::MakeDuration(0, num_lo % den_lo);
299       return true;
300     }
301   } else if (den_hi == 0 && den_lo == 1000 * kTicksPerNanosecond) {
302     // Dividing by 1us
303     if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000) {
304       *q = num_hi * 1000000 + num_lo / (1000 * kTicksPerNanosecond);
305       *rem = time_internal::MakeDuration(0, num_lo % den_lo);
306       return true;
307     }
308   } else if (den_hi == 0 && den_lo == 1000000 * kTicksPerNanosecond) {
309     // Dividing by 1ms
310     if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000) {
311       *q = num_hi * 1000 + num_lo / (1000000 * kTicksPerNanosecond);
312       *rem = time_internal::MakeDuration(0, num_lo % den_lo);
313       return true;
314     }
315   } else if (den_hi > 0 && den_lo == 0) {
316     // Dividing by positive multiple of 1s
317     if (num_hi >= 0) {
318       if (den_hi == 1) {
319         *q = num_hi;
320         *rem = time_internal::MakeDuration(0, num_lo);
321         return true;
322       }
323       *q = num_hi / den_hi;
324       *rem = time_internal::MakeDuration(num_hi % den_hi, num_lo);
325       return true;
326     }
327     if (num_lo != 0) {
328       num_hi += 1;
329     }
330     int64_t quotient = num_hi / den_hi;
331     int64_t rem_sec = num_hi % den_hi;
332     if (rem_sec > 0) {
333       rem_sec -= den_hi;
334       quotient += 1;
335     }
336     if (num_lo != 0) {
337       rem_sec -= 1;
338     }
339     *q = quotient;
340     *rem = time_internal::MakeDuration(rem_sec, num_lo);
341     return true;
342   }
343 
344   return false;
345 }
346 
347 }  // namespace
348 
349 namespace time_internal {
350 
351 // The 'satq' argument indicates whether the quotient should saturate at the
352 // bounds of int64_t.  If it does saturate, the difference will spill over to
353 // the remainder.  If it does not saturate, the remainder remain accurate,
354 // but the returned quotient will over/underflow int64_t and should not be used.
IDivDuration(bool satq,const Duration num,const Duration den,Duration * rem)355 int64_t IDivDuration(bool satq, const Duration num, const Duration den,
356                    Duration* rem) {
357   int64_t q = 0;
358   if (IDivFastPath(num, den, &q, rem)) {
359     return q;
360   }
361 
362   const bool num_neg = num < ZeroDuration();
363   const bool den_neg = den < ZeroDuration();
364   const bool quotient_neg = num_neg != den_neg;
365 
366   if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) {
367     *rem = num_neg ? -InfiniteDuration() : InfiniteDuration();
368     return quotient_neg ? kint64min : kint64max;
369   }
370   if (time_internal::IsInfiniteDuration(den)) {
371     *rem = num;
372     return 0;
373   }
374 
375   const uint128 a = MakeU128Ticks(num);
376   const uint128 b = MakeU128Ticks(den);
377   uint128 quotient128 = a / b;
378 
379   if (satq) {
380     // Limits the quotient to the range of int64_t.
381     if (quotient128 > uint128(static_cast<uint64_t>(kint64max))) {
382       quotient128 = quotient_neg ? uint128(static_cast<uint64_t>(kint64min))
383                                  : uint128(static_cast<uint64_t>(kint64max));
384     }
385   }
386 
387   const uint128 remainder128 = a - quotient128 * b;
388   *rem = MakeDurationFromU128(remainder128, num_neg);
389 
390   if (!quotient_neg || quotient128 == 0) {
391     return Uint128Low64(quotient128) & kint64max;
392   }
393   // The quotient needs to be negated, but we need to carefully handle
394   // quotient128s with the top bit on.
395   return -static_cast<int64_t>(Uint128Low64(quotient128 - 1) & kint64max) - 1;
396 }
397 
398 }  // namespace time_internal
399 
400 //
401 // Additive operators.
402 //
403 
operator +=(Duration rhs)404 Duration& Duration::operator+=(Duration rhs) {
405   if (time_internal::IsInfiniteDuration(*this)) return *this;
406   if (time_internal::IsInfiniteDuration(rhs)) return *this = rhs;
407   const int64_t orig_rep_hi = rep_hi_;
408   rep_hi_ =
409       DecodeTwosComp(EncodeTwosComp(rep_hi_) + EncodeTwosComp(rhs.rep_hi_));
410   if (rep_lo_ >= kTicksPerSecond - rhs.rep_lo_) {
411     rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) + 1);
412     rep_lo_ -= kTicksPerSecond;
413   }
414   rep_lo_ += rhs.rep_lo_;
415   if (rhs.rep_hi_ < 0 ? rep_hi_ > orig_rep_hi : rep_hi_ < orig_rep_hi) {
416     return *this = rhs.rep_hi_ < 0 ? -InfiniteDuration() : InfiniteDuration();
417   }
418   return *this;
419 }
420 
operator -=(Duration rhs)421 Duration& Duration::operator-=(Duration rhs) {
422   if (time_internal::IsInfiniteDuration(*this)) return *this;
423   if (time_internal::IsInfiniteDuration(rhs)) {
424     return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration();
425   }
426   const int64_t orig_rep_hi = rep_hi_;
427   rep_hi_ =
428       DecodeTwosComp(EncodeTwosComp(rep_hi_) - EncodeTwosComp(rhs.rep_hi_));
429   if (rep_lo_ < rhs.rep_lo_) {
430     rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) - 1);
431     rep_lo_ += kTicksPerSecond;
432   }
433   rep_lo_ -= rhs.rep_lo_;
434   if (rhs.rep_hi_ < 0 ? rep_hi_ < orig_rep_hi : rep_hi_ > orig_rep_hi) {
435     return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration();
436   }
437   return *this;
438 }
439 
440 //
441 // Multiplicative operators.
442 //
443 
operator *=(int64_t r)444 Duration& Duration::operator*=(int64_t r) {
445   if (time_internal::IsInfiniteDuration(*this)) {
446     const bool is_neg = (r < 0) != (rep_hi_ < 0);
447     return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
448   }
449   return *this = ScaleFixed<SafeMultiply>(*this, r);
450 }
451 
operator *=(double r)452 Duration& Duration::operator*=(double r) {
453   if (time_internal::IsInfiniteDuration(*this) || !IsFinite(r)) {
454     const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0);
455     return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
456   }
457   return *this = ScaleDouble<std::multiplies>(*this, r);
458 }
459 
operator /=(int64_t r)460 Duration& Duration::operator/=(int64_t r) {
461   if (time_internal::IsInfiniteDuration(*this) || r == 0) {
462     const bool is_neg = (r < 0) != (rep_hi_ < 0);
463     return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
464   }
465   return *this = ScaleFixed<std::divides>(*this, r);
466 }
467 
operator /=(double r)468 Duration& Duration::operator/=(double r) {
469   if (time_internal::IsInfiniteDuration(*this) || !IsValidDivisor(r)) {
470     const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0);
471     return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
472   }
473   return *this = ScaleDouble<std::divides>(*this, r);
474 }
475 
operator %=(Duration rhs)476 Duration& Duration::operator%=(Duration rhs) {
477   time_internal::IDivDuration(false, *this, rhs, this);
478   return *this;
479 }
480 
FDivDuration(Duration num,Duration den)481 double FDivDuration(Duration num, Duration den) {
482   // Arithmetic with infinity is sticky.
483   if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) {
484     return (num < ZeroDuration()) == (den < ZeroDuration())
485                ? std::numeric_limits<double>::infinity()
486                : -std::numeric_limits<double>::infinity();
487   }
488   if (time_internal::IsInfiniteDuration(den)) return 0.0;
489 
490   double a =
491       static_cast<double>(time_internal::GetRepHi(num)) * kTicksPerSecond +
492       time_internal::GetRepLo(num);
493   double b =
494       static_cast<double>(time_internal::GetRepHi(den)) * kTicksPerSecond +
495       time_internal::GetRepLo(den);
496   return a / b;
497 }
498 
499 //
500 // Trunc/Floor/Ceil.
501 //
502 
Trunc(Duration d,Duration unit)503 Duration Trunc(Duration d, Duration unit) {
504   return d - (d % unit);
505 }
506 
Floor(const Duration d,const Duration unit)507 Duration Floor(const Duration d, const Duration unit) {
508   const absl::Duration td = Trunc(d, unit);
509   return td <= d ? td : td - AbsDuration(unit);
510 }
511 
Ceil(const Duration d,const Duration unit)512 Duration Ceil(const Duration d, const Duration unit) {
513   const absl::Duration td = Trunc(d, unit);
514   return td >= d ? td : td + AbsDuration(unit);
515 }
516 
517 //
518 // Factory functions.
519 //
520 
DurationFromTimespec(timespec ts)521 Duration DurationFromTimespec(timespec ts) {
522   if (static_cast<uint64_t>(ts.tv_nsec) < 1000 * 1000 * 1000) {
523     int64_t ticks = ts.tv_nsec * kTicksPerNanosecond;
524     return time_internal::MakeDuration(ts.tv_sec, ticks);
525   }
526   return Seconds(ts.tv_sec) + Nanoseconds(ts.tv_nsec);
527 }
528 
DurationFromTimeval(timeval tv)529 Duration DurationFromTimeval(timeval tv) {
530   if (static_cast<uint64_t>(tv.tv_usec) < 1000 * 1000) {
531     int64_t ticks = tv.tv_usec * 1000 * kTicksPerNanosecond;
532     return time_internal::MakeDuration(tv.tv_sec, ticks);
533   }
534   return Seconds(tv.tv_sec) + Microseconds(tv.tv_usec);
535 }
536 
537 //
538 // Conversion to other duration types.
539 //
540 
ToInt64Nanoseconds(Duration d)541 int64_t ToInt64Nanoseconds(Duration d) {
542   if (time_internal::GetRepHi(d) >= 0 &&
543       time_internal::GetRepHi(d) >> 33 == 0) {
544     return (time_internal::GetRepHi(d) * 1000 * 1000 * 1000) +
545            (time_internal::GetRepLo(d) / kTicksPerNanosecond);
546   }
547   return d / Nanoseconds(1);
548 }
ToInt64Microseconds(Duration d)549 int64_t ToInt64Microseconds(Duration d) {
550   if (time_internal::GetRepHi(d) >= 0 &&
551       time_internal::GetRepHi(d) >> 43 == 0) {
552     return (time_internal::GetRepHi(d) * 1000 * 1000) +
553            (time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000));
554   }
555   return d / Microseconds(1);
556 }
ToInt64Milliseconds(Duration d)557 int64_t ToInt64Milliseconds(Duration d) {
558   if (time_internal::GetRepHi(d) >= 0 &&
559       time_internal::GetRepHi(d) >> 53 == 0) {
560     return (time_internal::GetRepHi(d) * 1000) +
561            (time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000 * 1000));
562   }
563   return d / Milliseconds(1);
564 }
ToInt64Seconds(Duration d)565 int64_t ToInt64Seconds(Duration d) {
566   int64_t hi = time_internal::GetRepHi(d);
567   if (time_internal::IsInfiniteDuration(d)) return hi;
568   if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
569   return hi;
570 }
ToInt64Minutes(Duration d)571 int64_t ToInt64Minutes(Duration d) {
572   int64_t hi = time_internal::GetRepHi(d);
573   if (time_internal::IsInfiniteDuration(d)) return hi;
574   if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
575   return hi / 60;
576 }
ToInt64Hours(Duration d)577 int64_t ToInt64Hours(Duration d) {
578   int64_t hi = time_internal::GetRepHi(d);
579   if (time_internal::IsInfiniteDuration(d)) return hi;
580   if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
581   return hi / (60 * 60);
582 }
583 
ToDoubleNanoseconds(Duration d)584 double ToDoubleNanoseconds(Duration d) {
585   return FDivDuration(d, Nanoseconds(1));
586 }
ToDoubleMicroseconds(Duration d)587 double ToDoubleMicroseconds(Duration d) {
588   return FDivDuration(d, Microseconds(1));
589 }
ToDoubleMilliseconds(Duration d)590 double ToDoubleMilliseconds(Duration d) {
591   return FDivDuration(d, Milliseconds(1));
592 }
ToDoubleSeconds(Duration d)593 double ToDoubleSeconds(Duration d) {
594   return FDivDuration(d, Seconds(1));
595 }
ToDoubleMinutes(Duration d)596 double ToDoubleMinutes(Duration d) {
597   return FDivDuration(d, Minutes(1));
598 }
ToDoubleHours(Duration d)599 double ToDoubleHours(Duration d) {
600   return FDivDuration(d, Hours(1));
601 }
602 
ToTimespec(Duration d)603 timespec ToTimespec(Duration d) {
604   timespec ts;
605   if (!time_internal::IsInfiniteDuration(d)) {
606     int64_t rep_hi = time_internal::GetRepHi(d);
607     uint32_t rep_lo = time_internal::GetRepLo(d);
608     if (rep_hi < 0) {
609       // Tweak the fields so that unsigned division of rep_lo
610       // maps to truncation (towards zero) for the timespec.
611       rep_lo += kTicksPerNanosecond - 1;
612       if (rep_lo >= kTicksPerSecond) {
613         rep_hi += 1;
614         rep_lo -= kTicksPerSecond;
615       }
616     }
617     ts.tv_sec = rep_hi;
618     if (ts.tv_sec == rep_hi) {  // no time_t narrowing
619       ts.tv_nsec = rep_lo / kTicksPerNanosecond;
620       return ts;
621     }
622   }
623   if (d >= ZeroDuration()) {
624     ts.tv_sec = std::numeric_limits<time_t>::max();
625     ts.tv_nsec = 1000 * 1000 * 1000 - 1;
626   } else {
627     ts.tv_sec = std::numeric_limits<time_t>::min();
628     ts.tv_nsec = 0;
629   }
630   return ts;
631 }
632 
ToTimeval(Duration d)633 timeval ToTimeval(Duration d) {
634   timeval tv;
635   timespec ts = ToTimespec(d);
636   if (ts.tv_sec < 0) {
637     // Tweak the fields so that positive division of tv_nsec
638     // maps to truncation (towards zero) for the timeval.
639     ts.tv_nsec += 1000 - 1;
640     if (ts.tv_nsec >= 1000 * 1000 * 1000) {
641       ts.tv_sec += 1;
642       ts.tv_nsec -= 1000 * 1000 * 1000;
643     }
644   }
645   tv.tv_sec = ts.tv_sec;
646   if (tv.tv_sec != ts.tv_sec) {  // narrowing
647     if (ts.tv_sec < 0) {
648       tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::min();
649       tv.tv_usec = 0;
650     } else {
651       tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::max();
652       tv.tv_usec = 1000 * 1000 - 1;
653     }
654     return tv;
655   }
656   tv.tv_usec = static_cast<int>(ts.tv_nsec / 1000);  // suseconds_t
657   return tv;
658 }
659 
ToChronoNanoseconds(Duration d)660 std::chrono::nanoseconds ToChronoNanoseconds(Duration d) {
661   return time_internal::ToChronoDuration<std::chrono::nanoseconds>(d);
662 }
ToChronoMicroseconds(Duration d)663 std::chrono::microseconds ToChronoMicroseconds(Duration d) {
664   return time_internal::ToChronoDuration<std::chrono::microseconds>(d);
665 }
ToChronoMilliseconds(Duration d)666 std::chrono::milliseconds ToChronoMilliseconds(Duration d) {
667   return time_internal::ToChronoDuration<std::chrono::milliseconds>(d);
668 }
ToChronoSeconds(Duration d)669 std::chrono::seconds ToChronoSeconds(Duration d) {
670   return time_internal::ToChronoDuration<std::chrono::seconds>(d);
671 }
ToChronoMinutes(Duration d)672 std::chrono::minutes ToChronoMinutes(Duration d) {
673   return time_internal::ToChronoDuration<std::chrono::minutes>(d);
674 }
ToChronoHours(Duration d)675 std::chrono::hours ToChronoHours(Duration d) {
676   return time_internal::ToChronoDuration<std::chrono::hours>(d);
677 }
678 
679 //
680 // To/From string formatting.
681 //
682 
683 namespace {
684 
685 // Formats a positive 64-bit integer in the given field width.  Note that
686 // it is up to the caller of Format64() to ensure that there is sufficient
687 // space before ep to hold the conversion.
Format64(char * ep,int width,int64_t v)688 char* Format64(char* ep, int width, int64_t v) {
689   do {
690     --width;
691     *--ep = '0' + (v % 10);  // contiguous digits
692   } while (v /= 10);
693   while (--width >= 0) *--ep = '0';  // zero pad
694   return ep;
695 }
696 
697 // Helpers for FormatDuration() that format 'n' and append it to 'out'
698 // followed by the given 'unit'.  If 'n' formats to "0", nothing is
699 // appended (not even the unit).
700 
701 // A type that encapsulates how to display a value of a particular unit. For
702 // values that are displayed with fractional parts, the precision indicates
703 // where to round the value. The precision varies with the display unit because
704 // a Duration can hold only quarters of a nanosecond, so displaying information
705 // beyond that is just noise.
706 //
707 // For example, a microsecond value of 42.00025xxxxx should not display beyond 5
708 // fractional digits, because it is in the noise of what a Duration can
709 // represent.
710 struct DisplayUnit {
711   const char* abbr;
712   int prec;
713   double pow10;
714 };
715 const DisplayUnit kDisplayNano = {"ns", 2, 1e2};
716 const DisplayUnit kDisplayMicro = {"us", 5, 1e5};
717 const DisplayUnit kDisplayMilli = {"ms", 8, 1e8};
718 const DisplayUnit kDisplaySec = {"s", 11, 1e11};
719 const DisplayUnit kDisplayMin = {"m", -1, 0.0};   // prec ignored
720 const DisplayUnit kDisplayHour = {"h", -1, 0.0};  // prec ignored
721 
AppendNumberUnit(std::string * out,int64_t n,DisplayUnit unit)722 void AppendNumberUnit(std::string* out, int64_t n, DisplayUnit unit) {
723   char buf[sizeof("2562047788015216")];  // hours in max duration
724   char* const ep = buf + sizeof(buf);
725   char* bp = Format64(ep, 0, n);
726   if (*bp != '0' || bp + 1 != ep) {
727     out->append(bp, ep - bp);
728     out->append(unit.abbr);
729   }
730 }
731 
732 // Note: unit.prec is limited to double's digits10 value (typically 15) so it
733 // always fits in buf[].
AppendNumberUnit(std::string * out,double n,DisplayUnit unit)734 void AppendNumberUnit(std::string* out, double n, DisplayUnit unit) {
735   const int buf_size = std::numeric_limits<double>::digits10;
736   const int prec = std::min(buf_size, unit.prec);
737   char buf[buf_size];  // also large enough to hold integer part
738   char* ep = buf + sizeof(buf);
739   double d = 0;
740   int64_t frac_part = Round(std::modf(n, &d) * unit.pow10);
741   int64_t int_part = d;
742   if (int_part != 0 || frac_part != 0) {
743     char* bp = Format64(ep, 0, int_part);  // always < 1000
744     out->append(bp, ep - bp);
745     if (frac_part != 0) {
746       out->push_back('.');
747       bp = Format64(ep, prec, frac_part);
748       while (ep[-1] == '0') --ep;
749       out->append(bp, ep - bp);
750     }
751     out->append(unit.abbr);
752   }
753 }
754 
755 }  // namespace
756 
757 // From Go's doc at https://golang.org/pkg/time/#Duration.String
758 //   [FormatDuration] returns a string representing the duration in the
759 //   form "72h3m0.5s". Leading zero units are omitted.  As a special
760 //   case, durations less than one second format use a smaller unit
761 //   (milli-, micro-, or nanoseconds) to ensure that the leading digit
762 //   is non-zero.  The zero duration formats as 0, with no unit.
FormatDuration(Duration d)763 std::string FormatDuration(Duration d) {
764   const Duration min_duration = Seconds(kint64min);
765   if (d == min_duration) {
766     // Avoid needing to negate kint64min by directly returning what the
767     // following code should produce in that case.
768     return "-2562047788015215h30m8s";
769   }
770   std::string s;
771   if (d < ZeroDuration()) {
772     s.append("-");
773     d = -d;
774   }
775   if (d == InfiniteDuration()) {
776     s.append("inf");
777   } else if (d < Seconds(1)) {
778     // Special case for durations with a magnitude < 1 second.  The duration
779     // is printed as a fraction of a single unit, e.g., "1.2ms".
780     if (d < Microseconds(1)) {
781       AppendNumberUnit(&s, FDivDuration(d, Nanoseconds(1)), kDisplayNano);
782     } else if (d < Milliseconds(1)) {
783       AppendNumberUnit(&s, FDivDuration(d, Microseconds(1)), kDisplayMicro);
784     } else {
785       AppendNumberUnit(&s, FDivDuration(d, Milliseconds(1)), kDisplayMilli);
786     }
787   } else {
788     AppendNumberUnit(&s, IDivDuration(d, Hours(1), &d), kDisplayHour);
789     AppendNumberUnit(&s, IDivDuration(d, Minutes(1), &d), kDisplayMin);
790     AppendNumberUnit(&s, FDivDuration(d, Seconds(1)), kDisplaySec);
791   }
792   if (s.empty() || s == "-") {
793     s = "0";
794   }
795   return s;
796 }
797 
798 namespace {
799 
800 // A helper for ParseDuration() that parses a leading number from the given
801 // string and stores the result in *int_part/*frac_part/*frac_scale.  The
802 // given string pointer is modified to point to the first unconsumed char.
ConsumeDurationNumber(const char ** dpp,int64_t * int_part,int64_t * frac_part,int64_t * frac_scale)803 bool ConsumeDurationNumber(const char** dpp, int64_t* int_part,
804                            int64_t* frac_part, int64_t* frac_scale) {
805   *int_part = 0;
806   *frac_part = 0;
807   *frac_scale = 1;  // invariant: *frac_part < *frac_scale
808   const char* start = *dpp;
809   for (; std::isdigit(**dpp); *dpp += 1) {
810     const int d = **dpp - '0';  // contiguous digits
811     if (*int_part > kint64max / 10) return false;
812     *int_part *= 10;
813     if (*int_part > kint64max - d) return false;
814     *int_part += d;
815   }
816   const bool int_part_empty = (*dpp == start);
817   if (**dpp != '.') return !int_part_empty;
818   for (*dpp += 1; std::isdigit(**dpp); *dpp += 1) {
819     const int d = **dpp - '0';  // contiguous digits
820     if (*frac_scale <= kint64max / 10) {
821       *frac_part *= 10;
822       *frac_part += d;
823       *frac_scale *= 10;
824     }
825   }
826   return !int_part_empty || *frac_scale != 1;
827 }
828 
829 // A helper for ParseDuration() that parses a leading unit designator (e.g.,
830 // ns, us, ms, s, m, h) from the given string and stores the resulting unit
831 // in "*unit".  The given string pointer is modified to point to the first
832 // unconsumed char.
ConsumeDurationUnit(const char ** start,Duration * unit)833 bool ConsumeDurationUnit(const char** start, Duration* unit) {
834   const char *s = *start;
835   bool ok = true;
836   if (strncmp(s, "ns", 2) == 0) {
837     s += 2;
838     *unit = Nanoseconds(1);
839   } else if (strncmp(s, "us", 2) == 0) {
840     s += 2;
841     *unit = Microseconds(1);
842   } else if (strncmp(s, "ms", 2) == 0) {
843     s += 2;
844     *unit = Milliseconds(1);
845   } else if (strncmp(s, "s", 1) == 0) {
846     s += 1;
847     *unit = Seconds(1);
848   } else if (strncmp(s, "m", 1) == 0) {
849     s += 1;
850     *unit = Minutes(1);
851   } else if (strncmp(s, "h", 1) == 0) {
852     s += 1;
853     *unit = Hours(1);
854   } else {
855     ok = false;
856   }
857   *start = s;
858   return ok;
859 }
860 
861 }  // namespace
862 
863 // From Go's doc at https://golang.org/pkg/time/#ParseDuration
864 //   [ParseDuration] parses a duration string. A duration string is
865 //   a possibly signed sequence of decimal numbers, each with optional
866 //   fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m".
867 //   Valid time units are "ns", "us" "ms", "s", "m", "h".
ParseDuration(const std::string & dur_string,Duration * d)868 bool ParseDuration(const std::string& dur_string, Duration* d) {
869   const char* start = dur_string.c_str();
870   int sign = 1;
871 
872   if (*start == '-' || *start == '+') {
873     sign = *start == '-' ? -1 : 1;
874     ++start;
875   }
876 
877   // Can't parse a duration from an empty std::string.
878   if (*start == '\0') {
879     return false;
880   }
881 
882   // Special case for a std::string of "0".
883   if (*start == '0' && *(start + 1) == '\0') {
884     *d = ZeroDuration();
885     return true;
886   }
887 
888   if (strcmp(start, "inf") == 0) {
889     *d = sign * InfiniteDuration();
890     return true;
891   }
892 
893   Duration dur;
894   while (*start != '\0') {
895     int64_t int_part;
896     int64_t frac_part;
897     int64_t frac_scale;
898     Duration unit;
899     if (!ConsumeDurationNumber(&start, &int_part, &frac_part, &frac_scale) ||
900         !ConsumeDurationUnit(&start, &unit)) {
901       return false;
902     }
903     if (int_part != 0) dur += sign * int_part * unit;
904     if (frac_part != 0) dur += sign * frac_part * unit / frac_scale;
905   }
906   *d = dur;
907   return true;
908 }
909 
AbslParseFlag(absl::string_view text,Duration * dst,std::string *)910 bool AbslParseFlag(absl::string_view text, Duration* dst, std::string*) {
911   return ParseDuration(std::string(text), dst);
912 }
913 
AbslUnparseFlag(Duration d)914 std::string AbslUnparseFlag(Duration d) { return FormatDuration(d); }
ParseFlag(const std::string & text,Duration * dst,std::string *)915 bool ParseFlag(const std::string& text, Duration* dst, std::string* ) {
916   return ParseDuration(text, dst);
917 }
918 
UnparseFlag(Duration d)919 std::string UnparseFlag(Duration d) { return FormatDuration(d); }
920 
921 ABSL_NAMESPACE_END
922 }  // namespace absl
923