1 /* 2 * Copyright (C) 2014 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_ 18 #define ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_ 19 20 #include "arch/instruction_set.h" 21 #include "arch/instruction_set_features.h" 22 #include "base/arena_containers.h" 23 #include "base/arena_object.h" 24 #include "base/array_ref.h" 25 #include "base/bit_field.h" 26 #include "base/bit_utils.h" 27 #include "base/enums.h" 28 #include "base/globals.h" 29 #include "base/memory_region.h" 30 #include "class_root.h" 31 #include "dex/string_reference.h" 32 #include "dex/type_reference.h" 33 #include "graph_visualizer.h" 34 #include "locations.h" 35 #include "nodes.h" 36 #include "optimizing_compiler_stats.h" 37 #include "read_barrier_option.h" 38 #include "stack.h" 39 #include "utils/label.h" 40 41 namespace art { 42 43 // Binary encoding of 2^32 for type double. 44 static int64_t constexpr k2Pow32EncodingForDouble = INT64_C(0x41F0000000000000); 45 // Binary encoding of 2^31 for type double. 46 static int64_t constexpr k2Pow31EncodingForDouble = INT64_C(0x41E0000000000000); 47 48 // Minimum value for a primitive integer. 49 static int32_t constexpr kPrimIntMin = 0x80000000; 50 // Minimum value for a primitive long. 51 static int64_t constexpr kPrimLongMin = INT64_C(0x8000000000000000); 52 53 // Maximum value for a primitive integer. 54 static int32_t constexpr kPrimIntMax = 0x7fffffff; 55 // Maximum value for a primitive long. 56 static int64_t constexpr kPrimLongMax = INT64_C(0x7fffffffffffffff); 57 58 static constexpr ReadBarrierOption kCompilerReadBarrierOption = 59 kEmitCompilerReadBarrier ? kWithReadBarrier : kWithoutReadBarrier; 60 61 class Assembler; 62 class CodeGenerator; 63 class CompilerOptions; 64 class StackMapStream; 65 class ParallelMoveResolver; 66 67 namespace linker { 68 class LinkerPatch; 69 } // namespace linker 70 71 class CodeAllocator { 72 public: CodeAllocator()73 CodeAllocator() {} ~CodeAllocator()74 virtual ~CodeAllocator() {} 75 76 virtual uint8_t* Allocate(size_t size) = 0; 77 virtual ArrayRef<const uint8_t> GetMemory() const = 0; 78 79 private: 80 DISALLOW_COPY_AND_ASSIGN(CodeAllocator); 81 }; 82 83 class SlowPathCode : public DeletableArenaObject<kArenaAllocSlowPaths> { 84 public: SlowPathCode(HInstruction * instruction)85 explicit SlowPathCode(HInstruction* instruction) : instruction_(instruction) { 86 for (size_t i = 0; i < kMaximumNumberOfExpectedRegisters; ++i) { 87 saved_core_stack_offsets_[i] = kRegisterNotSaved; 88 saved_fpu_stack_offsets_[i] = kRegisterNotSaved; 89 } 90 } 91 ~SlowPathCode()92 virtual ~SlowPathCode() {} 93 94 virtual void EmitNativeCode(CodeGenerator* codegen) = 0; 95 96 // Save live core and floating-point caller-save registers and 97 // update the stack mask in `locations` for registers holding object 98 // references. 99 virtual void SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations); 100 // Restore live core and floating-point caller-save registers. 101 virtual void RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations); 102 IsCoreRegisterSaved(int reg)103 bool IsCoreRegisterSaved(int reg) const { 104 return saved_core_stack_offsets_[reg] != kRegisterNotSaved; 105 } 106 IsFpuRegisterSaved(int reg)107 bool IsFpuRegisterSaved(int reg) const { 108 return saved_fpu_stack_offsets_[reg] != kRegisterNotSaved; 109 } 110 GetStackOffsetOfCoreRegister(int reg)111 uint32_t GetStackOffsetOfCoreRegister(int reg) const { 112 return saved_core_stack_offsets_[reg]; 113 } 114 GetStackOffsetOfFpuRegister(int reg)115 uint32_t GetStackOffsetOfFpuRegister(int reg) const { 116 return saved_fpu_stack_offsets_[reg]; 117 } 118 IsFatal()119 virtual bool IsFatal() const { return false; } 120 121 virtual const char* GetDescription() const = 0; 122 GetEntryLabel()123 Label* GetEntryLabel() { return &entry_label_; } GetExitLabel()124 Label* GetExitLabel() { return &exit_label_; } 125 GetInstruction()126 HInstruction* GetInstruction() const { 127 return instruction_; 128 } 129 GetDexPc()130 uint32_t GetDexPc() const { 131 return instruction_ != nullptr ? instruction_->GetDexPc() : kNoDexPc; 132 } 133 134 protected: 135 static constexpr size_t kMaximumNumberOfExpectedRegisters = 32; 136 static constexpr uint32_t kRegisterNotSaved = -1; 137 // The instruction where this slow path is happening. 138 HInstruction* instruction_; 139 uint32_t saved_core_stack_offsets_[kMaximumNumberOfExpectedRegisters]; 140 uint32_t saved_fpu_stack_offsets_[kMaximumNumberOfExpectedRegisters]; 141 142 private: 143 Label entry_label_; 144 Label exit_label_; 145 146 DISALLOW_COPY_AND_ASSIGN(SlowPathCode); 147 }; 148 149 class InvokeDexCallingConventionVisitor { 150 public: 151 virtual Location GetNextLocation(DataType::Type type) = 0; 152 virtual Location GetReturnLocation(DataType::Type type) const = 0; 153 virtual Location GetMethodLocation() const = 0; 154 155 protected: InvokeDexCallingConventionVisitor()156 InvokeDexCallingConventionVisitor() {} ~InvokeDexCallingConventionVisitor()157 virtual ~InvokeDexCallingConventionVisitor() {} 158 159 // The current index for core registers. 160 uint32_t gp_index_ = 0u; 161 // The current index for floating-point registers. 162 uint32_t float_index_ = 0u; 163 // The current stack index. 164 uint32_t stack_index_ = 0u; 165 166 private: 167 DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConventionVisitor); 168 }; 169 170 class FieldAccessCallingConvention { 171 public: 172 virtual Location GetObjectLocation() const = 0; 173 virtual Location GetFieldIndexLocation() const = 0; 174 virtual Location GetReturnLocation(DataType::Type type) const = 0; 175 virtual Location GetSetValueLocation(DataType::Type type, bool is_instance) const = 0; 176 virtual Location GetFpuLocation(DataType::Type type) const = 0; ~FieldAccessCallingConvention()177 virtual ~FieldAccessCallingConvention() {} 178 179 protected: FieldAccessCallingConvention()180 FieldAccessCallingConvention() {} 181 182 private: 183 DISALLOW_COPY_AND_ASSIGN(FieldAccessCallingConvention); 184 }; 185 186 class CodeGenerator : public DeletableArenaObject<kArenaAllocCodeGenerator> { 187 public: 188 // Compiles the graph to executable instructions. 189 void Compile(CodeAllocator* allocator); 190 static std::unique_ptr<CodeGenerator> Create(HGraph* graph, 191 const CompilerOptions& compiler_options, 192 OptimizingCompilerStats* stats = nullptr); 193 virtual ~CodeGenerator(); 194 195 // Get the graph. This is the outermost graph, never the graph of a method being inlined. GetGraph()196 HGraph* GetGraph() const { return graph_; } 197 198 HBasicBlock* GetNextBlockToEmit() const; 199 HBasicBlock* FirstNonEmptyBlock(HBasicBlock* block) const; 200 bool GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const; 201 GetStackSlotOfParameter(HParameterValue * parameter)202 size_t GetStackSlotOfParameter(HParameterValue* parameter) const { 203 // Note that this follows the current calling convention. 204 return GetFrameSize() 205 + static_cast<size_t>(InstructionSetPointerSize(GetInstructionSet())) // Art method 206 + parameter->GetIndex() * kVRegSize; 207 } 208 209 virtual void Initialize() = 0; 210 virtual void Finalize(CodeAllocator* allocator); 211 virtual void EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches); 212 virtual bool NeedsThunkCode(const linker::LinkerPatch& patch) const; 213 virtual void EmitThunkCode(const linker::LinkerPatch& patch, 214 /*out*/ ArenaVector<uint8_t>* code, 215 /*out*/ std::string* debug_name); 216 virtual void GenerateFrameEntry() = 0; 217 virtual void GenerateFrameExit() = 0; 218 virtual void Bind(HBasicBlock* block) = 0; 219 virtual void MoveConstant(Location destination, int32_t value) = 0; 220 virtual void MoveLocation(Location dst, Location src, DataType::Type dst_type) = 0; 221 virtual void AddLocationAsTemp(Location location, LocationSummary* locations) = 0; 222 223 virtual Assembler* GetAssembler() = 0; 224 virtual const Assembler& GetAssembler() const = 0; 225 virtual size_t GetWordSize() const = 0; 226 227 // Returns whether the target supports predicated SIMD instructions. SupportsPredicatedSIMD()228 virtual bool SupportsPredicatedSIMD() const { return false; } 229 230 // Get FP register width in bytes for spilling/restoring in the slow paths. 231 // 232 // Note: In SIMD graphs this should return SIMD register width as all FP and SIMD registers 233 // alias and live SIMD registers are forced to be spilled in full size in the slow paths. GetSlowPathFPWidth()234 virtual size_t GetSlowPathFPWidth() const { 235 // Default implementation. 236 return GetCalleePreservedFPWidth(); 237 } 238 239 // Get FP register width required to be preserved by the target ABI. 240 virtual size_t GetCalleePreservedFPWidth() const = 0; 241 242 // Get the size of the target SIMD register in bytes. 243 virtual size_t GetSIMDRegisterWidth() const = 0; 244 virtual uintptr_t GetAddressOf(HBasicBlock* block) = 0; 245 void InitializeCodeGeneration(size_t number_of_spill_slots, 246 size_t maximum_safepoint_spill_size, 247 size_t number_of_out_slots, 248 const ArenaVector<HBasicBlock*>& block_order); 249 // Backends can override this as necessary. For most, no special alignment is required. GetPreferredSlotsAlignment()250 virtual uint32_t GetPreferredSlotsAlignment() const { return 1; } 251 GetFrameSize()252 uint32_t GetFrameSize() const { return frame_size_; } SetFrameSize(uint32_t size)253 void SetFrameSize(uint32_t size) { frame_size_ = size; } GetCoreSpillMask()254 uint32_t GetCoreSpillMask() const { return core_spill_mask_; } GetFpuSpillMask()255 uint32_t GetFpuSpillMask() const { return fpu_spill_mask_; } 256 GetNumberOfCoreRegisters()257 size_t GetNumberOfCoreRegisters() const { return number_of_core_registers_; } GetNumberOfFloatingPointRegisters()258 size_t GetNumberOfFloatingPointRegisters() const { return number_of_fpu_registers_; } 259 virtual void SetupBlockedRegisters() const = 0; 260 ComputeSpillMask()261 virtual void ComputeSpillMask() { 262 core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_; 263 DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved"; 264 fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_; 265 } 266 ComputeRegisterMask(const int * registers,size_t length)267 static uint32_t ComputeRegisterMask(const int* registers, size_t length) { 268 uint32_t mask = 0; 269 for (size_t i = 0, e = length; i < e; ++i) { 270 mask |= (1 << registers[i]); 271 } 272 return mask; 273 } 274 275 virtual void DumpCoreRegister(std::ostream& stream, int reg) const = 0; 276 virtual void DumpFloatingPointRegister(std::ostream& stream, int reg) const = 0; 277 virtual InstructionSet GetInstructionSet() const = 0; 278 GetCompilerOptions()279 const CompilerOptions& GetCompilerOptions() const { return compiler_options_; } 280 281 // Saves the register in the stack. Returns the size taken on stack. 282 virtual size_t SaveCoreRegister(size_t stack_index, uint32_t reg_id) = 0; 283 // Restores the register from the stack. Returns the size taken on stack. 284 virtual size_t RestoreCoreRegister(size_t stack_index, uint32_t reg_id) = 0; 285 286 virtual size_t SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) = 0; 287 virtual size_t RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) = 0; 288 289 virtual bool NeedsTwoRegisters(DataType::Type type) const = 0; 290 // Returns whether we should split long moves in parallel moves. ShouldSplitLongMoves()291 virtual bool ShouldSplitLongMoves() const { return false; } 292 GetNumberOfCoreCalleeSaveRegisters()293 size_t GetNumberOfCoreCalleeSaveRegisters() const { 294 return POPCOUNT(core_callee_save_mask_); 295 } 296 GetNumberOfCoreCallerSaveRegisters()297 size_t GetNumberOfCoreCallerSaveRegisters() const { 298 DCHECK_GE(GetNumberOfCoreRegisters(), GetNumberOfCoreCalleeSaveRegisters()); 299 return GetNumberOfCoreRegisters() - GetNumberOfCoreCalleeSaveRegisters(); 300 } 301 IsCoreCalleeSaveRegister(int reg)302 bool IsCoreCalleeSaveRegister(int reg) const { 303 return (core_callee_save_mask_ & (1 << reg)) != 0; 304 } 305 IsFloatingPointCalleeSaveRegister(int reg)306 bool IsFloatingPointCalleeSaveRegister(int reg) const { 307 return (fpu_callee_save_mask_ & (1 << reg)) != 0; 308 } 309 GetSlowPathSpills(LocationSummary * locations,bool core_registers)310 uint32_t GetSlowPathSpills(LocationSummary* locations, bool core_registers) const { 311 DCHECK(locations->OnlyCallsOnSlowPath() || 312 (locations->Intrinsified() && locations->CallsOnMainAndSlowPath() && 313 !locations->HasCustomSlowPathCallingConvention())); 314 uint32_t live_registers = core_registers 315 ? locations->GetLiveRegisters()->GetCoreRegisters() 316 : locations->GetLiveRegisters()->GetFloatingPointRegisters(); 317 if (locations->HasCustomSlowPathCallingConvention()) { 318 // Save only the live registers that the custom calling convention wants us to save. 319 uint32_t caller_saves = core_registers 320 ? locations->GetCustomSlowPathCallerSaves().GetCoreRegisters() 321 : locations->GetCustomSlowPathCallerSaves().GetFloatingPointRegisters(); 322 return live_registers & caller_saves; 323 } else { 324 // Default ABI, we need to spill non-callee-save live registers. 325 uint32_t callee_saves = core_registers ? core_callee_save_mask_ : fpu_callee_save_mask_; 326 return live_registers & ~callee_saves; 327 } 328 } 329 GetNumberOfSlowPathSpills(LocationSummary * locations,bool core_registers)330 size_t GetNumberOfSlowPathSpills(LocationSummary* locations, bool core_registers) const { 331 return POPCOUNT(GetSlowPathSpills(locations, core_registers)); 332 } 333 GetStackOffsetOfShouldDeoptimizeFlag()334 size_t GetStackOffsetOfShouldDeoptimizeFlag() const { 335 DCHECK(GetGraph()->HasShouldDeoptimizeFlag()); 336 DCHECK_GE(GetFrameSize(), FrameEntrySpillSize() + kShouldDeoptimizeFlagSize); 337 return GetFrameSize() - FrameEntrySpillSize() - kShouldDeoptimizeFlagSize; 338 } 339 340 // Record native to dex mapping for a suspend point. Required by runtime. 341 void RecordPcInfo(HInstruction* instruction, 342 uint32_t dex_pc, 343 uint32_t native_pc, 344 SlowPathCode* slow_path = nullptr, 345 bool native_debug_info = false); 346 347 // Record native to dex mapping for a suspend point. 348 // The native_pc is used from Assembler::CodePosition. 349 // 350 // Note: As Assembler::CodePosition is target dependent, it does not guarantee the exact native_pc 351 // for the instruction. If the exact native_pc is required it must be provided explicitly. 352 void RecordPcInfo(HInstruction* instruction, 353 uint32_t dex_pc, 354 SlowPathCode* slow_path = nullptr, 355 bool native_debug_info = false); 356 357 // Check whether we have already recorded mapping at this PC. 358 bool HasStackMapAtCurrentPc(); 359 360 // Record extra stack maps if we support native debugging. 361 // 362 // ARM specific behaviour: The recorded native PC might be a branch over pools to instructions 363 // corresponding the dex PC. 364 void MaybeRecordNativeDebugInfo(HInstruction* instruction, 365 uint32_t dex_pc, 366 SlowPathCode* slow_path = nullptr); 367 368 bool CanMoveNullCheckToUser(HNullCheck* null_check); 369 virtual void MaybeRecordImplicitNullCheck(HInstruction* instruction); 370 LocationSummary* CreateThrowingSlowPathLocations( 371 HInstruction* instruction, RegisterSet caller_saves = RegisterSet::Empty()); 372 void GenerateNullCheck(HNullCheck* null_check); 373 virtual void GenerateImplicitNullCheck(HNullCheck* null_check) = 0; 374 virtual void GenerateExplicitNullCheck(HNullCheck* null_check) = 0; 375 376 // Records a stack map which the runtime might use to set catch phi values 377 // during exception delivery. 378 // TODO: Replace with a catch-entering instruction that records the environment. 379 void RecordCatchBlockInfo(); 380 381 // Get the ScopedArenaAllocator used for codegen memory allocation. 382 ScopedArenaAllocator* GetScopedAllocator(); 383 384 void AddSlowPath(SlowPathCode* slow_path); 385 386 ScopedArenaVector<uint8_t> BuildStackMaps(const dex::CodeItem* code_item_for_osr_check); 387 size_t GetNumberOfJitRoots() const; 388 389 // Fills the `literals` array with literals collected during code generation. 390 // Also emits literal patches. 391 void EmitJitRoots(uint8_t* code, 392 const uint8_t* roots_data, 393 /*out*/std::vector<Handle<mirror::Object>>* roots) 394 REQUIRES_SHARED(Locks::mutator_lock_); 395 IsLeafMethod()396 bool IsLeafMethod() const { 397 return is_leaf_; 398 } 399 MarkNotLeaf()400 void MarkNotLeaf() { 401 is_leaf_ = false; 402 requires_current_method_ = true; 403 } 404 SetRequiresCurrentMethod()405 void SetRequiresCurrentMethod() { 406 requires_current_method_ = true; 407 } 408 RequiresCurrentMethod()409 bool RequiresCurrentMethod() const { 410 return requires_current_method_; 411 } 412 413 // Clears the spill slots taken by loop phis in the `LocationSummary` of the 414 // suspend check. This is called when the code generator generates code 415 // for the suspend check at the back edge (instead of where the suspend check 416 // is, which is the loop entry). At this point, the spill slots for the phis 417 // have not been written to. 418 void ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check, 419 HParallelMove* spills) const; 420 GetBlockedCoreRegisters()421 bool* GetBlockedCoreRegisters() const { return blocked_core_registers_; } GetBlockedFloatingPointRegisters()422 bool* GetBlockedFloatingPointRegisters() const { return blocked_fpu_registers_; } 423 IsBlockedCoreRegister(size_t i)424 bool IsBlockedCoreRegister(size_t i) { return blocked_core_registers_[i]; } IsBlockedFloatingPointRegister(size_t i)425 bool IsBlockedFloatingPointRegister(size_t i) { return blocked_fpu_registers_[i]; } 426 427 // Helper that returns the offset of the array's length field. 428 // Note: Besides the normal arrays, we also use the HArrayLength for 429 // accessing the String's `count` field in String intrinsics. 430 static uint32_t GetArrayLengthOffset(HArrayLength* array_length); 431 432 // Helper that returns the offset of the array's data. 433 // Note: Besides the normal arrays, we also use the HArrayGet for 434 // accessing the String's `value` field in String intrinsics. 435 static uint32_t GetArrayDataOffset(HArrayGet* array_get); 436 437 void EmitParallelMoves(Location from1, 438 Location to1, 439 DataType::Type type1, 440 Location from2, 441 Location to2, 442 DataType::Type type2); 443 InstanceOfNeedsReadBarrier(HInstanceOf * instance_of)444 static bool InstanceOfNeedsReadBarrier(HInstanceOf* instance_of) { 445 // Used only for kExactCheck, kAbstractClassCheck, kClassHierarchyCheck and kArrayObjectCheck. 446 DCHECK(instance_of->GetTypeCheckKind() == TypeCheckKind::kExactCheck || 447 instance_of->GetTypeCheckKind() == TypeCheckKind::kAbstractClassCheck || 448 instance_of->GetTypeCheckKind() == TypeCheckKind::kClassHierarchyCheck || 449 instance_of->GetTypeCheckKind() == TypeCheckKind::kArrayObjectCheck) 450 << instance_of->GetTypeCheckKind(); 451 // If the target class is in the boot image, it's non-moveable and it doesn't matter 452 // if we compare it with a from-space or to-space reference, the result is the same. 453 // It's OK to traverse a class hierarchy jumping between from-space and to-space. 454 return kEmitCompilerReadBarrier && !instance_of->GetTargetClass()->IsInBootImage(); 455 } 456 ReadBarrierOptionForInstanceOf(HInstanceOf * instance_of)457 static ReadBarrierOption ReadBarrierOptionForInstanceOf(HInstanceOf* instance_of) { 458 return InstanceOfNeedsReadBarrier(instance_of) ? kWithReadBarrier : kWithoutReadBarrier; 459 } 460 IsTypeCheckSlowPathFatal(HCheckCast * check_cast)461 static bool IsTypeCheckSlowPathFatal(HCheckCast* check_cast) { 462 switch (check_cast->GetTypeCheckKind()) { 463 case TypeCheckKind::kExactCheck: 464 case TypeCheckKind::kAbstractClassCheck: 465 case TypeCheckKind::kClassHierarchyCheck: 466 case TypeCheckKind::kArrayObjectCheck: 467 case TypeCheckKind::kInterfaceCheck: { 468 bool needs_read_barrier = 469 kEmitCompilerReadBarrier && !check_cast->GetTargetClass()->IsInBootImage(); 470 // We do not emit read barriers for HCheckCast, so we can get false negatives 471 // and the slow path shall re-check and simply return if the cast is actually OK. 472 return !needs_read_barrier; 473 } 474 case TypeCheckKind::kArrayCheck: 475 case TypeCheckKind::kUnresolvedCheck: 476 return false; 477 case TypeCheckKind::kBitstringCheck: 478 return true; 479 } 480 LOG(FATAL) << "Unreachable"; 481 UNREACHABLE(); 482 } 483 GetCheckCastCallKind(HCheckCast * check_cast)484 static LocationSummary::CallKind GetCheckCastCallKind(HCheckCast* check_cast) { 485 return (IsTypeCheckSlowPathFatal(check_cast) && !check_cast->CanThrowIntoCatchBlock()) 486 ? LocationSummary::kNoCall // In fact, call on a fatal (non-returning) slow path. 487 : LocationSummary::kCallOnSlowPath; 488 } 489 StoreNeedsWriteBarrier(DataType::Type type,HInstruction * value)490 static bool StoreNeedsWriteBarrier(DataType::Type type, HInstruction* value) { 491 // Check that null value is not represented as an integer constant. 492 DCHECK(type != DataType::Type::kReference || !value->IsIntConstant()); 493 return type == DataType::Type::kReference && !value->IsNullConstant(); 494 } 495 496 497 // Performs checks pertaining to an InvokeRuntime call. 498 void ValidateInvokeRuntime(QuickEntrypointEnum entrypoint, 499 HInstruction* instruction, 500 SlowPathCode* slow_path); 501 502 // Performs checks pertaining to an InvokeRuntimeWithoutRecordingPcInfo call. 503 static void ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction* instruction, 504 SlowPathCode* slow_path); 505 AddAllocatedRegister(Location location)506 void AddAllocatedRegister(Location location) { 507 allocated_registers_.Add(location); 508 } 509 HasAllocatedRegister(bool is_core,int reg)510 bool HasAllocatedRegister(bool is_core, int reg) const { 511 return is_core 512 ? allocated_registers_.ContainsCoreRegister(reg) 513 : allocated_registers_.ContainsFloatingPointRegister(reg); 514 } 515 516 void AllocateLocations(HInstruction* instruction); 517 518 // Tells whether the stack frame of the compiled method is 519 // considered "empty", that is either actually having a size of zero, 520 // or just containing the saved return address register. HasEmptyFrame()521 bool HasEmptyFrame() const { 522 return GetFrameSize() == (CallPushesPC() ? GetWordSize() : 0); 523 } 524 GetInt8ValueOf(HConstant * constant)525 static int8_t GetInt8ValueOf(HConstant* constant) { 526 DCHECK(constant->IsIntConstant()); 527 return constant->AsIntConstant()->GetValue(); 528 } 529 GetInt16ValueOf(HConstant * constant)530 static int16_t GetInt16ValueOf(HConstant* constant) { 531 DCHECK(constant->IsIntConstant()); 532 return constant->AsIntConstant()->GetValue(); 533 } 534 GetInt32ValueOf(HConstant * constant)535 static int32_t GetInt32ValueOf(HConstant* constant) { 536 if (constant->IsIntConstant()) { 537 return constant->AsIntConstant()->GetValue(); 538 } else if (constant->IsNullConstant()) { 539 return 0; 540 } else { 541 DCHECK(constant->IsFloatConstant()); 542 return bit_cast<int32_t, float>(constant->AsFloatConstant()->GetValue()); 543 } 544 } 545 GetInt64ValueOf(HConstant * constant)546 static int64_t GetInt64ValueOf(HConstant* constant) { 547 if (constant->IsIntConstant()) { 548 return constant->AsIntConstant()->GetValue(); 549 } else if (constant->IsNullConstant()) { 550 return 0; 551 } else if (constant->IsFloatConstant()) { 552 return bit_cast<int32_t, float>(constant->AsFloatConstant()->GetValue()); 553 } else if (constant->IsLongConstant()) { 554 return constant->AsLongConstant()->GetValue(); 555 } else { 556 DCHECK(constant->IsDoubleConstant()); 557 return bit_cast<int64_t, double>(constant->AsDoubleConstant()->GetValue()); 558 } 559 } 560 GetFirstRegisterSlotInSlowPath()561 size_t GetFirstRegisterSlotInSlowPath() const { 562 return first_register_slot_in_slow_path_; 563 } 564 FrameEntrySpillSize()565 uint32_t FrameEntrySpillSize() const { 566 return GetFpuSpillSize() + GetCoreSpillSize(); 567 } 568 569 virtual ParallelMoveResolver* GetMoveResolver() = 0; 570 571 static void CreateCommonInvokeLocationSummary( 572 HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor); 573 574 template <typename CriticalNativeCallingConventionVisitor, 575 size_t kNativeStackAlignment, 576 size_t GetCriticalNativeDirectCallFrameSize(const char* shorty, uint32_t shorty_len)> PrepareCriticalNativeCall(HInvokeStaticOrDirect * invoke)577 size_t PrepareCriticalNativeCall(HInvokeStaticOrDirect* invoke) { 578 DCHECK(!invoke->GetLocations()->Intrinsified()); 579 CriticalNativeCallingConventionVisitor calling_convention_visitor( 580 /*for_register_allocation=*/ false); 581 HParallelMove parallel_move(GetGraph()->GetAllocator()); 582 PrepareCriticalNativeArgumentMoves(invoke, &calling_convention_visitor, ¶llel_move); 583 size_t out_frame_size = 584 RoundUp(calling_convention_visitor.GetStackOffset(), kNativeStackAlignment); 585 if (kIsDebugBuild) { 586 uint32_t shorty_len; 587 const char* shorty = GetCriticalNativeShorty(invoke, &shorty_len); 588 DCHECK_EQ(GetCriticalNativeDirectCallFrameSize(shorty, shorty_len), out_frame_size); 589 } 590 if (out_frame_size != 0u) { 591 FinishCriticalNativeFrameSetup(out_frame_size, ¶llel_move); 592 } 593 return out_frame_size; 594 } 595 596 void GenerateInvokeStaticOrDirectRuntimeCall( 597 HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path); 598 599 void GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved* invoke); 600 601 void GenerateInvokePolymorphicCall(HInvokePolymorphic* invoke, SlowPathCode* slow_path = nullptr); 602 603 void GenerateInvokeCustomCall(HInvokeCustom* invoke); 604 605 void CreateStringBuilderAppendLocations(HStringBuilderAppend* instruction, Location out); 606 607 void CreateUnresolvedFieldLocationSummary( 608 HInstruction* field_access, 609 DataType::Type field_type, 610 const FieldAccessCallingConvention& calling_convention); 611 612 void GenerateUnresolvedFieldAccess( 613 HInstruction* field_access, 614 DataType::Type field_type, 615 uint32_t field_index, 616 uint32_t dex_pc, 617 const FieldAccessCallingConvention& calling_convention); 618 619 static void CreateLoadClassRuntimeCallLocationSummary(HLoadClass* cls, 620 Location runtime_type_index_location, 621 Location runtime_return_location); 622 void GenerateLoadClassRuntimeCall(HLoadClass* cls); 623 624 static void CreateLoadMethodHandleRuntimeCallLocationSummary(HLoadMethodHandle* method_handle, 625 Location runtime_handle_index_location, 626 Location runtime_return_location); 627 void GenerateLoadMethodHandleRuntimeCall(HLoadMethodHandle* method_handle); 628 629 static void CreateLoadMethodTypeRuntimeCallLocationSummary(HLoadMethodType* method_type, 630 Location runtime_type_index_location, 631 Location runtime_return_location); 632 void GenerateLoadMethodTypeRuntimeCall(HLoadMethodType* method_type); 633 634 static uint32_t GetBootImageOffset(ObjPtr<mirror::Object> object) 635 REQUIRES_SHARED(Locks::mutator_lock_); 636 static uint32_t GetBootImageOffset(HLoadClass* load_class); 637 static uint32_t GetBootImageOffset(HLoadString* load_string); 638 static uint32_t GetBootImageOffset(HInvoke* invoke); 639 static uint32_t GetBootImageOffset(ClassRoot class_root); 640 static uint32_t GetBootImageOffsetOfIntrinsicDeclaringClass(HInvoke* invoke); 641 642 static void CreateSystemArrayCopyLocationSummary(HInvoke* invoke); 643 SetDisassemblyInformation(DisassemblyInformation * info)644 void SetDisassemblyInformation(DisassemblyInformation* info) { disasm_info_ = info; } GetDisassemblyInformation()645 DisassemblyInformation* GetDisassemblyInformation() const { return disasm_info_; } 646 647 virtual void InvokeRuntime(QuickEntrypointEnum entrypoint, 648 HInstruction* instruction, 649 uint32_t dex_pc, 650 SlowPathCode* slow_path = nullptr) = 0; 651 652 // Check if the desired_string_load_kind is supported. If it is, return it, 653 // otherwise return a fall-back kind that should be used instead. 654 virtual HLoadString::LoadKind GetSupportedLoadStringKind( 655 HLoadString::LoadKind desired_string_load_kind) = 0; 656 657 // Check if the desired_class_load_kind is supported. If it is, return it, 658 // otherwise return a fall-back kind that should be used instead. 659 virtual HLoadClass::LoadKind GetSupportedLoadClassKind( 660 HLoadClass::LoadKind desired_class_load_kind) = 0; 661 GetLoadStringCallKind(HLoadString * load)662 static LocationSummary::CallKind GetLoadStringCallKind(HLoadString* load) { 663 switch (load->GetLoadKind()) { 664 case HLoadString::LoadKind::kBssEntry: 665 DCHECK(load->NeedsEnvironment()); 666 return LocationSummary::kCallOnSlowPath; 667 case HLoadString::LoadKind::kRuntimeCall: 668 DCHECK(load->NeedsEnvironment()); 669 return LocationSummary::kCallOnMainOnly; 670 case HLoadString::LoadKind::kJitTableAddress: 671 DCHECK(!load->NeedsEnvironment()); 672 return kEmitCompilerReadBarrier 673 ? LocationSummary::kCallOnSlowPath 674 : LocationSummary::kNoCall; 675 break; 676 default: 677 DCHECK(!load->NeedsEnvironment()); 678 return LocationSummary::kNoCall; 679 } 680 } 681 682 // Check if the desired_dispatch_info is supported. If it is, return it, 683 // otherwise return a fall-back info that should be used instead. 684 virtual HInvokeStaticOrDirect::DispatchInfo GetSupportedInvokeStaticOrDirectDispatch( 685 const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, 686 ArtMethod* method) = 0; 687 688 // Generate a call to a static or direct method. 689 virtual void GenerateStaticOrDirectCall( 690 HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path = nullptr) = 0; 691 // Generate a call to a virtual method. 692 virtual void GenerateVirtualCall( 693 HInvokeVirtual* invoke, Location temp, SlowPathCode* slow_path = nullptr) = 0; 694 695 // Copy the result of a call into the given target. 696 virtual void MoveFromReturnRegister(Location trg, DataType::Type type) = 0; 697 698 virtual void IncreaseFrame(size_t adjustment) = 0; 699 virtual void DecreaseFrame(size_t adjustment) = 0; 700 701 virtual void GenerateNop() = 0; 702 703 static QuickEntrypointEnum GetArrayAllocationEntrypoint(HNewArray* new_array); 704 705 protected: 706 // Patch info used for recording locations of required linker patches and their targets, 707 // i.e. target method, string, type or code identified by their dex file and index, 708 // or .data.bimg.rel.ro entries identified by the boot image offset. 709 template <typename LabelType> 710 struct PatchInfo { PatchInfoPatchInfo711 PatchInfo(const DexFile* dex_file, uint32_t off_or_idx) 712 : target_dex_file(dex_file), offset_or_index(off_or_idx), label() { } 713 714 // Target dex file or null for .data.bmig.rel.ro patches. 715 const DexFile* target_dex_file; 716 // Either the boot image offset (to write to .data.bmig.rel.ro) or string/type/method index. 717 uint32_t offset_or_index; 718 // Label for the instruction to patch. 719 LabelType label; 720 }; 721 722 CodeGenerator(HGraph* graph, 723 size_t number_of_core_registers, 724 size_t number_of_fpu_registers, 725 size_t number_of_register_pairs, 726 uint32_t core_callee_save_mask, 727 uint32_t fpu_callee_save_mask, 728 const CompilerOptions& compiler_options, 729 OptimizingCompilerStats* stats); 730 731 virtual HGraphVisitor* GetLocationBuilder() = 0; 732 virtual HGraphVisitor* GetInstructionVisitor() = 0; 733 734 // Returns the location of the first spilled entry for floating point registers, 735 // relative to the stack pointer. GetFpuSpillStart()736 uint32_t GetFpuSpillStart() const { 737 return GetFrameSize() - FrameEntrySpillSize(); 738 } 739 GetFpuSpillSize()740 uint32_t GetFpuSpillSize() const { 741 return POPCOUNT(fpu_spill_mask_) * GetCalleePreservedFPWidth(); 742 } 743 GetCoreSpillSize()744 uint32_t GetCoreSpillSize() const { 745 return POPCOUNT(core_spill_mask_) * GetWordSize(); 746 } 747 HasAllocatedCalleeSaveRegisters()748 virtual bool HasAllocatedCalleeSaveRegisters() const { 749 // We check the core registers against 1 because it always comprises the return PC. 750 return (POPCOUNT(allocated_registers_.GetCoreRegisters() & core_callee_save_mask_) != 1) 751 || (POPCOUNT(allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_) != 0); 752 } 753 CallPushesPC()754 bool CallPushesPC() const { 755 InstructionSet instruction_set = GetInstructionSet(); 756 return instruction_set == InstructionSet::kX86 || instruction_set == InstructionSet::kX86_64; 757 } 758 759 // Arm64 has its own type for a label, so we need to templatize these methods 760 // to share the logic. 761 762 template <typename LabelType> CommonInitializeLabels()763 LabelType* CommonInitializeLabels() { 764 // We use raw array allocations instead of ArenaVector<> because Labels are 765 // non-constructible and non-movable and as such cannot be held in a vector. 766 size_t size = GetGraph()->GetBlocks().size(); 767 LabelType* labels = 768 GetGraph()->GetAllocator()->AllocArray<LabelType>(size, kArenaAllocCodeGenerator); 769 for (size_t i = 0; i != size; ++i) { 770 new(labels + i) LabelType(); 771 } 772 return labels; 773 } 774 775 template <typename LabelType> CommonGetLabelOf(LabelType * raw_pointer_to_labels_array,HBasicBlock * block)776 LabelType* CommonGetLabelOf(LabelType* raw_pointer_to_labels_array, HBasicBlock* block) const { 777 block = FirstNonEmptyBlock(block); 778 return raw_pointer_to_labels_array + block->GetBlockId(); 779 } 780 GetCurrentSlowPath()781 SlowPathCode* GetCurrentSlowPath() { 782 return current_slow_path_; 783 } 784 785 StackMapStream* GetStackMapStream(); 786 787 void ReserveJitStringRoot(StringReference string_reference, Handle<mirror::String> string); 788 uint64_t GetJitStringRootIndex(StringReference string_reference); 789 void ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass); 790 uint64_t GetJitClassRootIndex(TypeReference type_reference); 791 792 // Emit the patches assocatied with JIT roots. Only applies to JIT compiled code. 793 virtual void EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data); 794 795 // Frame size required for this method. 796 uint32_t frame_size_; 797 uint32_t core_spill_mask_; 798 uint32_t fpu_spill_mask_; 799 uint32_t first_register_slot_in_slow_path_; 800 801 // Registers that were allocated during linear scan. 802 RegisterSet allocated_registers_; 803 804 // Arrays used when doing register allocation to know which 805 // registers we can allocate. `SetupBlockedRegisters` updates the 806 // arrays. 807 bool* const blocked_core_registers_; 808 bool* const blocked_fpu_registers_; 809 size_t number_of_core_registers_; 810 size_t number_of_fpu_registers_; 811 size_t number_of_register_pairs_; 812 const uint32_t core_callee_save_mask_; 813 const uint32_t fpu_callee_save_mask_; 814 815 // The order to use for code generation. 816 const ArenaVector<HBasicBlock*>* block_order_; 817 818 DisassemblyInformation* disasm_info_; 819 820 private: 821 class CodeGenerationData; 822 823 void InitializeCodeGenerationData(); 824 size_t GetStackOffsetOfSavedRegister(size_t index); 825 void GenerateSlowPaths(); 826 void BlockIfInRegister(Location location, bool is_out = false) const; 827 void EmitEnvironment(HEnvironment* environment, 828 SlowPathCode* slow_path, 829 bool needs_vreg_info = true); 830 void EmitVRegInfo(HEnvironment* environment, SlowPathCode* slow_path); 831 832 static void PrepareCriticalNativeArgumentMoves( 833 HInvokeStaticOrDirect* invoke, 834 /*inout*/InvokeDexCallingConventionVisitor* visitor, 835 /*out*/HParallelMove* parallel_move); 836 837 void FinishCriticalNativeFrameSetup(size_t out_frame_size, /*inout*/HParallelMove* parallel_move); 838 839 static const char* GetCriticalNativeShorty(HInvokeStaticOrDirect* invoke, uint32_t* shorty_len); 840 841 OptimizingCompilerStats* stats_; 842 843 HGraph* const graph_; 844 const CompilerOptions& compiler_options_; 845 846 // The current slow-path that we're generating code for. 847 SlowPathCode* current_slow_path_; 848 849 // The current block index in `block_order_` of the block 850 // we are generating code for. 851 size_t current_block_index_; 852 853 // Whether the method is a leaf method. 854 bool is_leaf_; 855 856 // Whether an instruction in the graph accesses the current method. 857 // TODO: Rename: this actually indicates that some instruction in the method 858 // needs the environment including a valid stack frame. 859 bool requires_current_method_; 860 861 // The CodeGenerationData contains a ScopedArenaAllocator intended for reusing the 862 // ArenaStack memory allocated in previous passes instead of adding to the memory 863 // held by the ArenaAllocator. This ScopedArenaAllocator is created in 864 // CodeGenerator::Compile() and remains alive until the CodeGenerator is destroyed. 865 std::unique_ptr<CodeGenerationData> code_generation_data_; 866 867 friend class OptimizingCFITest; 868 ART_FRIEND_TEST(CodegenTest, ARM64FrameSizeSIMD); 869 ART_FRIEND_TEST(CodegenTest, ARM64FrameSizeNoSIMD); 870 871 DISALLOW_COPY_AND_ASSIGN(CodeGenerator); 872 }; 873 874 template <typename C, typename F> 875 class CallingConvention { 876 public: CallingConvention(const C * registers,size_t number_of_registers,const F * fpu_registers,size_t number_of_fpu_registers,PointerSize pointer_size)877 CallingConvention(const C* registers, 878 size_t number_of_registers, 879 const F* fpu_registers, 880 size_t number_of_fpu_registers, 881 PointerSize pointer_size) 882 : registers_(registers), 883 number_of_registers_(number_of_registers), 884 fpu_registers_(fpu_registers), 885 number_of_fpu_registers_(number_of_fpu_registers), 886 pointer_size_(pointer_size) {} 887 GetNumberOfRegisters()888 size_t GetNumberOfRegisters() const { return number_of_registers_; } GetNumberOfFpuRegisters()889 size_t GetNumberOfFpuRegisters() const { return number_of_fpu_registers_; } 890 GetRegisterAt(size_t index)891 C GetRegisterAt(size_t index) const { 892 DCHECK_LT(index, number_of_registers_); 893 return registers_[index]; 894 } 895 GetFpuRegisterAt(size_t index)896 F GetFpuRegisterAt(size_t index) const { 897 DCHECK_LT(index, number_of_fpu_registers_); 898 return fpu_registers_[index]; 899 } 900 GetStackOffsetOf(size_t index)901 size_t GetStackOffsetOf(size_t index) const { 902 // We still reserve the space for parameters passed by registers. 903 // Add space for the method pointer. 904 return static_cast<size_t>(pointer_size_) + index * kVRegSize; 905 } 906 907 private: 908 const C* registers_; 909 const size_t number_of_registers_; 910 const F* fpu_registers_; 911 const size_t number_of_fpu_registers_; 912 const PointerSize pointer_size_; 913 914 DISALLOW_COPY_AND_ASSIGN(CallingConvention); 915 }; 916 917 /** 918 * A templated class SlowPathGenerator with a templated method NewSlowPath() 919 * that can be used by any code generator to share equivalent slow-paths with 920 * the objective of reducing generated code size. 921 * 922 * InstructionType: instruction that requires SlowPathCodeType 923 * SlowPathCodeType: subclass of SlowPathCode, with constructor SlowPathCodeType(InstructionType *) 924 */ 925 template <typename InstructionType> 926 class SlowPathGenerator { 927 static_assert(std::is_base_of<HInstruction, InstructionType>::value, 928 "InstructionType is not a subclass of art::HInstruction"); 929 930 public: SlowPathGenerator(HGraph * graph,CodeGenerator * codegen)931 SlowPathGenerator(HGraph* graph, CodeGenerator* codegen) 932 : graph_(graph), 933 codegen_(codegen), 934 slow_path_map_(std::less<uint32_t>(), 935 graph->GetAllocator()->Adapter(kArenaAllocSlowPaths)) {} 936 937 // Creates and adds a new slow-path, if needed, or returns existing one otherwise. 938 // Templating the method (rather than the whole class) on the slow-path type enables 939 // keeping this code at a generic, non architecture-specific place. 940 // 941 // NOTE: This approach assumes each InstructionType only generates one SlowPathCodeType. 942 // To relax this requirement, we would need some RTTI on the stored slow-paths, 943 // or template the class as a whole on SlowPathType. 944 template <typename SlowPathCodeType> NewSlowPath(InstructionType * instruction)945 SlowPathCodeType* NewSlowPath(InstructionType* instruction) { 946 static_assert(std::is_base_of<SlowPathCode, SlowPathCodeType>::value, 947 "SlowPathCodeType is not a subclass of art::SlowPathCode"); 948 static_assert(std::is_constructible<SlowPathCodeType, InstructionType*>::value, 949 "SlowPathCodeType is not constructible from InstructionType*"); 950 // Iterate over potential candidates for sharing. Currently, only same-typed 951 // slow-paths with exactly the same dex-pc are viable candidates. 952 // TODO: pass dex-pc/slow-path-type to run-time to allow even more sharing? 953 const uint32_t dex_pc = instruction->GetDexPc(); 954 auto iter = slow_path_map_.find(dex_pc); 955 if (iter != slow_path_map_.end()) { 956 const ArenaVector<std::pair<InstructionType*, SlowPathCode*>>& candidates = iter->second; 957 for (const auto& it : candidates) { 958 InstructionType* other_instruction = it.first; 959 SlowPathCodeType* other_slow_path = down_cast<SlowPathCodeType*>(it.second); 960 // Determine if the instructions allow for slow-path sharing. 961 if (HaveSameLiveRegisters(instruction, other_instruction) && 962 HaveSameStackMap(instruction, other_instruction)) { 963 // Can share: reuse existing one. 964 return other_slow_path; 965 } 966 } 967 } else { 968 // First time this dex-pc is seen. 969 iter = slow_path_map_.Put(dex_pc, 970 {{}, {graph_->GetAllocator()->Adapter(kArenaAllocSlowPaths)}}); 971 } 972 // Cannot share: create and add new slow-path for this particular dex-pc. 973 SlowPathCodeType* slow_path = 974 new (codegen_->GetScopedAllocator()) SlowPathCodeType(instruction); 975 iter->second.emplace_back(std::make_pair(instruction, slow_path)); 976 codegen_->AddSlowPath(slow_path); 977 return slow_path; 978 } 979 980 private: 981 // Tests if both instructions have same set of live physical registers. This ensures 982 // the slow-path has exactly the same preamble on saving these registers to stack. HaveSameLiveRegisters(const InstructionType * i1,const InstructionType * i2)983 bool HaveSameLiveRegisters(const InstructionType* i1, const InstructionType* i2) const { 984 const uint32_t core_spill = ~codegen_->GetCoreSpillMask(); 985 const uint32_t fpu_spill = ~codegen_->GetFpuSpillMask(); 986 RegisterSet* live1 = i1->GetLocations()->GetLiveRegisters(); 987 RegisterSet* live2 = i2->GetLocations()->GetLiveRegisters(); 988 return (((live1->GetCoreRegisters() & core_spill) == 989 (live2->GetCoreRegisters() & core_spill)) && 990 ((live1->GetFloatingPointRegisters() & fpu_spill) == 991 (live2->GetFloatingPointRegisters() & fpu_spill))); 992 } 993 994 // Tests if both instructions have the same stack map. This ensures the interpreter 995 // will find exactly the same dex-registers at the same entries. HaveSameStackMap(const InstructionType * i1,const InstructionType * i2)996 bool HaveSameStackMap(const InstructionType* i1, const InstructionType* i2) const { 997 DCHECK(i1->HasEnvironment()); 998 DCHECK(i2->HasEnvironment()); 999 // We conservatively test if the two instructions find exactly the same instructions 1000 // and location in each dex-register. This guarantees they will have the same stack map. 1001 HEnvironment* e1 = i1->GetEnvironment(); 1002 HEnvironment* e2 = i2->GetEnvironment(); 1003 if (e1->GetParent() != e2->GetParent() || e1->Size() != e2->Size()) { 1004 return false; 1005 } 1006 for (size_t i = 0, sz = e1->Size(); i < sz; ++i) { 1007 if (e1->GetInstructionAt(i) != e2->GetInstructionAt(i) || 1008 !e1->GetLocationAt(i).Equals(e2->GetLocationAt(i))) { 1009 return false; 1010 } 1011 } 1012 return true; 1013 } 1014 1015 HGraph* const graph_; 1016 CodeGenerator* const codegen_; 1017 1018 // Map from dex-pc to vector of already existing instruction/slow-path pairs. 1019 ArenaSafeMap<uint32_t, ArenaVector<std::pair<InstructionType*, SlowPathCode*>>> slow_path_map_; 1020 1021 DISALLOW_COPY_AND_ASSIGN(SlowPathGenerator); 1022 }; 1023 1024 class InstructionCodeGenerator : public HGraphVisitor { 1025 public: InstructionCodeGenerator(HGraph * graph,CodeGenerator * codegen)1026 InstructionCodeGenerator(HGraph* graph, CodeGenerator* codegen) 1027 : HGraphVisitor(graph), 1028 deopt_slow_paths_(graph, codegen) {} 1029 1030 protected: 1031 // Add slow-path generator for each instruction/slow-path combination that desires sharing. 1032 // TODO: under current regime, only deopt sharing make sense; extend later. 1033 SlowPathGenerator<HDeoptimize> deopt_slow_paths_; 1034 }; 1035 1036 } // namespace art 1037 1038 #endif // ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_ 1039