1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_
18 #define ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_
19 
20 #include "arch/instruction_set.h"
21 #include "arch/instruction_set_features.h"
22 #include "base/arena_containers.h"
23 #include "base/arena_object.h"
24 #include "base/array_ref.h"
25 #include "base/bit_field.h"
26 #include "base/bit_utils.h"
27 #include "base/enums.h"
28 #include "base/globals.h"
29 #include "base/memory_region.h"
30 #include "class_root.h"
31 #include "dex/string_reference.h"
32 #include "dex/type_reference.h"
33 #include "graph_visualizer.h"
34 #include "locations.h"
35 #include "nodes.h"
36 #include "optimizing_compiler_stats.h"
37 #include "read_barrier_option.h"
38 #include "stack.h"
39 #include "utils/label.h"
40 
41 namespace art {
42 
43 // Binary encoding of 2^32 for type double.
44 static int64_t constexpr k2Pow32EncodingForDouble = INT64_C(0x41F0000000000000);
45 // Binary encoding of 2^31 for type double.
46 static int64_t constexpr k2Pow31EncodingForDouble = INT64_C(0x41E0000000000000);
47 
48 // Minimum value for a primitive integer.
49 static int32_t constexpr kPrimIntMin = 0x80000000;
50 // Minimum value for a primitive long.
51 static int64_t constexpr kPrimLongMin = INT64_C(0x8000000000000000);
52 
53 // Maximum value for a primitive integer.
54 static int32_t constexpr kPrimIntMax = 0x7fffffff;
55 // Maximum value for a primitive long.
56 static int64_t constexpr kPrimLongMax = INT64_C(0x7fffffffffffffff);
57 
58 static constexpr ReadBarrierOption kCompilerReadBarrierOption =
59     kEmitCompilerReadBarrier ? kWithReadBarrier : kWithoutReadBarrier;
60 
61 class Assembler;
62 class CodeGenerator;
63 class CompilerOptions;
64 class StackMapStream;
65 class ParallelMoveResolver;
66 
67 namespace linker {
68 class LinkerPatch;
69 }  // namespace linker
70 
71 class CodeAllocator {
72  public:
CodeAllocator()73   CodeAllocator() {}
~CodeAllocator()74   virtual ~CodeAllocator() {}
75 
76   virtual uint8_t* Allocate(size_t size) = 0;
77   virtual ArrayRef<const uint8_t> GetMemory() const = 0;
78 
79  private:
80   DISALLOW_COPY_AND_ASSIGN(CodeAllocator);
81 };
82 
83 class SlowPathCode : public DeletableArenaObject<kArenaAllocSlowPaths> {
84  public:
SlowPathCode(HInstruction * instruction)85   explicit SlowPathCode(HInstruction* instruction) : instruction_(instruction) {
86     for (size_t i = 0; i < kMaximumNumberOfExpectedRegisters; ++i) {
87       saved_core_stack_offsets_[i] = kRegisterNotSaved;
88       saved_fpu_stack_offsets_[i] = kRegisterNotSaved;
89     }
90   }
91 
~SlowPathCode()92   virtual ~SlowPathCode() {}
93 
94   virtual void EmitNativeCode(CodeGenerator* codegen) = 0;
95 
96   // Save live core and floating-point caller-save registers and
97   // update the stack mask in `locations` for registers holding object
98   // references.
99   virtual void SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations);
100   // Restore live core and floating-point caller-save registers.
101   virtual void RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations);
102 
IsCoreRegisterSaved(int reg)103   bool IsCoreRegisterSaved(int reg) const {
104     return saved_core_stack_offsets_[reg] != kRegisterNotSaved;
105   }
106 
IsFpuRegisterSaved(int reg)107   bool IsFpuRegisterSaved(int reg) const {
108     return saved_fpu_stack_offsets_[reg] != kRegisterNotSaved;
109   }
110 
GetStackOffsetOfCoreRegister(int reg)111   uint32_t GetStackOffsetOfCoreRegister(int reg) const {
112     return saved_core_stack_offsets_[reg];
113   }
114 
GetStackOffsetOfFpuRegister(int reg)115   uint32_t GetStackOffsetOfFpuRegister(int reg) const {
116     return saved_fpu_stack_offsets_[reg];
117   }
118 
IsFatal()119   virtual bool IsFatal() const { return false; }
120 
121   virtual const char* GetDescription() const = 0;
122 
GetEntryLabel()123   Label* GetEntryLabel() { return &entry_label_; }
GetExitLabel()124   Label* GetExitLabel() { return &exit_label_; }
125 
GetInstruction()126   HInstruction* GetInstruction() const {
127     return instruction_;
128   }
129 
GetDexPc()130   uint32_t GetDexPc() const {
131     return instruction_ != nullptr ? instruction_->GetDexPc() : kNoDexPc;
132   }
133 
134  protected:
135   static constexpr size_t kMaximumNumberOfExpectedRegisters = 32;
136   static constexpr uint32_t kRegisterNotSaved = -1;
137   // The instruction where this slow path is happening.
138   HInstruction* instruction_;
139   uint32_t saved_core_stack_offsets_[kMaximumNumberOfExpectedRegisters];
140   uint32_t saved_fpu_stack_offsets_[kMaximumNumberOfExpectedRegisters];
141 
142  private:
143   Label entry_label_;
144   Label exit_label_;
145 
146   DISALLOW_COPY_AND_ASSIGN(SlowPathCode);
147 };
148 
149 class InvokeDexCallingConventionVisitor {
150  public:
151   virtual Location GetNextLocation(DataType::Type type) = 0;
152   virtual Location GetReturnLocation(DataType::Type type) const = 0;
153   virtual Location GetMethodLocation() const = 0;
154 
155  protected:
InvokeDexCallingConventionVisitor()156   InvokeDexCallingConventionVisitor() {}
~InvokeDexCallingConventionVisitor()157   virtual ~InvokeDexCallingConventionVisitor() {}
158 
159   // The current index for core registers.
160   uint32_t gp_index_ = 0u;
161   // The current index for floating-point registers.
162   uint32_t float_index_ = 0u;
163   // The current stack index.
164   uint32_t stack_index_ = 0u;
165 
166  private:
167   DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConventionVisitor);
168 };
169 
170 class FieldAccessCallingConvention {
171  public:
172   virtual Location GetObjectLocation() const = 0;
173   virtual Location GetFieldIndexLocation() const = 0;
174   virtual Location GetReturnLocation(DataType::Type type) const = 0;
175   virtual Location GetSetValueLocation(DataType::Type type, bool is_instance) const = 0;
176   virtual Location GetFpuLocation(DataType::Type type) const = 0;
~FieldAccessCallingConvention()177   virtual ~FieldAccessCallingConvention() {}
178 
179  protected:
FieldAccessCallingConvention()180   FieldAccessCallingConvention() {}
181 
182  private:
183   DISALLOW_COPY_AND_ASSIGN(FieldAccessCallingConvention);
184 };
185 
186 class CodeGenerator : public DeletableArenaObject<kArenaAllocCodeGenerator> {
187  public:
188   // Compiles the graph to executable instructions.
189   void Compile(CodeAllocator* allocator);
190   static std::unique_ptr<CodeGenerator> Create(HGraph* graph,
191                                                const CompilerOptions& compiler_options,
192                                                OptimizingCompilerStats* stats = nullptr);
193   virtual ~CodeGenerator();
194 
195   // Get the graph. This is the outermost graph, never the graph of a method being inlined.
GetGraph()196   HGraph* GetGraph() const { return graph_; }
197 
198   HBasicBlock* GetNextBlockToEmit() const;
199   HBasicBlock* FirstNonEmptyBlock(HBasicBlock* block) const;
200   bool GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const;
201 
GetStackSlotOfParameter(HParameterValue * parameter)202   size_t GetStackSlotOfParameter(HParameterValue* parameter) const {
203     // Note that this follows the current calling convention.
204     return GetFrameSize()
205         + static_cast<size_t>(InstructionSetPointerSize(GetInstructionSet()))  // Art method
206         + parameter->GetIndex() * kVRegSize;
207   }
208 
209   virtual void Initialize() = 0;
210   virtual void Finalize(CodeAllocator* allocator);
211   virtual void EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches);
212   virtual bool NeedsThunkCode(const linker::LinkerPatch& patch) const;
213   virtual void EmitThunkCode(const linker::LinkerPatch& patch,
214                              /*out*/ ArenaVector<uint8_t>* code,
215                              /*out*/ std::string* debug_name);
216   virtual void GenerateFrameEntry() = 0;
217   virtual void GenerateFrameExit() = 0;
218   virtual void Bind(HBasicBlock* block) = 0;
219   virtual void MoveConstant(Location destination, int32_t value) = 0;
220   virtual void MoveLocation(Location dst, Location src, DataType::Type dst_type) = 0;
221   virtual void AddLocationAsTemp(Location location, LocationSummary* locations) = 0;
222 
223   virtual Assembler* GetAssembler() = 0;
224   virtual const Assembler& GetAssembler() const = 0;
225   virtual size_t GetWordSize() const = 0;
226 
227   // Returns whether the target supports predicated SIMD instructions.
SupportsPredicatedSIMD()228   virtual bool SupportsPredicatedSIMD() const { return false; }
229 
230   // Get FP register width in bytes for spilling/restoring in the slow paths.
231   //
232   // Note: In SIMD graphs this should return SIMD register width as all FP and SIMD registers
233   // alias and live SIMD registers are forced to be spilled in full size in the slow paths.
GetSlowPathFPWidth()234   virtual size_t GetSlowPathFPWidth() const {
235     // Default implementation.
236     return GetCalleePreservedFPWidth();
237   }
238 
239   // Get FP register width required to be preserved by the target ABI.
240   virtual size_t GetCalleePreservedFPWidth() const  = 0;
241 
242   // Get the size of the target SIMD register in bytes.
243   virtual size_t GetSIMDRegisterWidth() const = 0;
244   virtual uintptr_t GetAddressOf(HBasicBlock* block) = 0;
245   void InitializeCodeGeneration(size_t number_of_spill_slots,
246                                 size_t maximum_safepoint_spill_size,
247                                 size_t number_of_out_slots,
248                                 const ArenaVector<HBasicBlock*>& block_order);
249   // Backends can override this as necessary. For most, no special alignment is required.
GetPreferredSlotsAlignment()250   virtual uint32_t GetPreferredSlotsAlignment() const { return 1; }
251 
GetFrameSize()252   uint32_t GetFrameSize() const { return frame_size_; }
SetFrameSize(uint32_t size)253   void SetFrameSize(uint32_t size) { frame_size_ = size; }
GetCoreSpillMask()254   uint32_t GetCoreSpillMask() const { return core_spill_mask_; }
GetFpuSpillMask()255   uint32_t GetFpuSpillMask() const { return fpu_spill_mask_; }
256 
GetNumberOfCoreRegisters()257   size_t GetNumberOfCoreRegisters() const { return number_of_core_registers_; }
GetNumberOfFloatingPointRegisters()258   size_t GetNumberOfFloatingPointRegisters() const { return number_of_fpu_registers_; }
259   virtual void SetupBlockedRegisters() const = 0;
260 
ComputeSpillMask()261   virtual void ComputeSpillMask() {
262     core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
263     DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved";
264     fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
265   }
266 
ComputeRegisterMask(const int * registers,size_t length)267   static uint32_t ComputeRegisterMask(const int* registers, size_t length) {
268     uint32_t mask = 0;
269     for (size_t i = 0, e = length; i < e; ++i) {
270       mask |= (1 << registers[i]);
271     }
272     return mask;
273   }
274 
275   virtual void DumpCoreRegister(std::ostream& stream, int reg) const = 0;
276   virtual void DumpFloatingPointRegister(std::ostream& stream, int reg) const = 0;
277   virtual InstructionSet GetInstructionSet() const = 0;
278 
GetCompilerOptions()279   const CompilerOptions& GetCompilerOptions() const { return compiler_options_; }
280 
281   // Saves the register in the stack. Returns the size taken on stack.
282   virtual size_t SaveCoreRegister(size_t stack_index, uint32_t reg_id) = 0;
283   // Restores the register from the stack. Returns the size taken on stack.
284   virtual size_t RestoreCoreRegister(size_t stack_index, uint32_t reg_id) = 0;
285 
286   virtual size_t SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) = 0;
287   virtual size_t RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) = 0;
288 
289   virtual bool NeedsTwoRegisters(DataType::Type type) const = 0;
290   // Returns whether we should split long moves in parallel moves.
ShouldSplitLongMoves()291   virtual bool ShouldSplitLongMoves() const { return false; }
292 
GetNumberOfCoreCalleeSaveRegisters()293   size_t GetNumberOfCoreCalleeSaveRegisters() const {
294     return POPCOUNT(core_callee_save_mask_);
295   }
296 
GetNumberOfCoreCallerSaveRegisters()297   size_t GetNumberOfCoreCallerSaveRegisters() const {
298     DCHECK_GE(GetNumberOfCoreRegisters(), GetNumberOfCoreCalleeSaveRegisters());
299     return GetNumberOfCoreRegisters() - GetNumberOfCoreCalleeSaveRegisters();
300   }
301 
IsCoreCalleeSaveRegister(int reg)302   bool IsCoreCalleeSaveRegister(int reg) const {
303     return (core_callee_save_mask_ & (1 << reg)) != 0;
304   }
305 
IsFloatingPointCalleeSaveRegister(int reg)306   bool IsFloatingPointCalleeSaveRegister(int reg) const {
307     return (fpu_callee_save_mask_ & (1 << reg)) != 0;
308   }
309 
GetSlowPathSpills(LocationSummary * locations,bool core_registers)310   uint32_t GetSlowPathSpills(LocationSummary* locations, bool core_registers) const {
311     DCHECK(locations->OnlyCallsOnSlowPath() ||
312            (locations->Intrinsified() && locations->CallsOnMainAndSlowPath() &&
313                !locations->HasCustomSlowPathCallingConvention()));
314     uint32_t live_registers = core_registers
315         ? locations->GetLiveRegisters()->GetCoreRegisters()
316         : locations->GetLiveRegisters()->GetFloatingPointRegisters();
317     if (locations->HasCustomSlowPathCallingConvention()) {
318       // Save only the live registers that the custom calling convention wants us to save.
319       uint32_t caller_saves = core_registers
320           ? locations->GetCustomSlowPathCallerSaves().GetCoreRegisters()
321           : locations->GetCustomSlowPathCallerSaves().GetFloatingPointRegisters();
322       return live_registers & caller_saves;
323     } else {
324       // Default ABI, we need to spill non-callee-save live registers.
325       uint32_t callee_saves = core_registers ? core_callee_save_mask_ : fpu_callee_save_mask_;
326       return live_registers & ~callee_saves;
327     }
328   }
329 
GetNumberOfSlowPathSpills(LocationSummary * locations,bool core_registers)330   size_t GetNumberOfSlowPathSpills(LocationSummary* locations, bool core_registers) const {
331     return POPCOUNT(GetSlowPathSpills(locations, core_registers));
332   }
333 
GetStackOffsetOfShouldDeoptimizeFlag()334   size_t GetStackOffsetOfShouldDeoptimizeFlag() const {
335     DCHECK(GetGraph()->HasShouldDeoptimizeFlag());
336     DCHECK_GE(GetFrameSize(), FrameEntrySpillSize() + kShouldDeoptimizeFlagSize);
337     return GetFrameSize() - FrameEntrySpillSize() - kShouldDeoptimizeFlagSize;
338   }
339 
340   // Record native to dex mapping for a suspend point. Required by runtime.
341   void RecordPcInfo(HInstruction* instruction,
342                     uint32_t dex_pc,
343                     uint32_t native_pc,
344                     SlowPathCode* slow_path = nullptr,
345                     bool native_debug_info = false);
346 
347   // Record native to dex mapping for a suspend point.
348   // The native_pc is used from Assembler::CodePosition.
349   //
350   // Note: As Assembler::CodePosition is target dependent, it does not guarantee the exact native_pc
351   // for the instruction. If the exact native_pc is required it must be provided explicitly.
352   void RecordPcInfo(HInstruction* instruction,
353                     uint32_t dex_pc,
354                     SlowPathCode* slow_path = nullptr,
355                     bool native_debug_info = false);
356 
357   // Check whether we have already recorded mapping at this PC.
358   bool HasStackMapAtCurrentPc();
359 
360   // Record extra stack maps if we support native debugging.
361   //
362   // ARM specific behaviour: The recorded native PC might be a branch over pools to instructions
363   // corresponding the dex PC.
364   void MaybeRecordNativeDebugInfo(HInstruction* instruction,
365                                   uint32_t dex_pc,
366                                   SlowPathCode* slow_path = nullptr);
367 
368   bool CanMoveNullCheckToUser(HNullCheck* null_check);
369   virtual void MaybeRecordImplicitNullCheck(HInstruction* instruction);
370   LocationSummary* CreateThrowingSlowPathLocations(
371       HInstruction* instruction, RegisterSet caller_saves = RegisterSet::Empty());
372   void GenerateNullCheck(HNullCheck* null_check);
373   virtual void GenerateImplicitNullCheck(HNullCheck* null_check) = 0;
374   virtual void GenerateExplicitNullCheck(HNullCheck* null_check) = 0;
375 
376   // Records a stack map which the runtime might use to set catch phi values
377   // during exception delivery.
378   // TODO: Replace with a catch-entering instruction that records the environment.
379   void RecordCatchBlockInfo();
380 
381   // Get the ScopedArenaAllocator used for codegen memory allocation.
382   ScopedArenaAllocator* GetScopedAllocator();
383 
384   void AddSlowPath(SlowPathCode* slow_path);
385 
386   ScopedArenaVector<uint8_t> BuildStackMaps(const dex::CodeItem* code_item_for_osr_check);
387   size_t GetNumberOfJitRoots() const;
388 
389   // Fills the `literals` array with literals collected during code generation.
390   // Also emits literal patches.
391   void EmitJitRoots(uint8_t* code,
392                     const uint8_t* roots_data,
393                     /*out*/std::vector<Handle<mirror::Object>>* roots)
394       REQUIRES_SHARED(Locks::mutator_lock_);
395 
IsLeafMethod()396   bool IsLeafMethod() const {
397     return is_leaf_;
398   }
399 
MarkNotLeaf()400   void MarkNotLeaf() {
401     is_leaf_ = false;
402     requires_current_method_ = true;
403   }
404 
SetRequiresCurrentMethod()405   void SetRequiresCurrentMethod() {
406     requires_current_method_ = true;
407   }
408 
RequiresCurrentMethod()409   bool RequiresCurrentMethod() const {
410     return requires_current_method_;
411   }
412 
413   // Clears the spill slots taken by loop phis in the `LocationSummary` of the
414   // suspend check. This is called when the code generator generates code
415   // for the suspend check at the back edge (instead of where the suspend check
416   // is, which is the loop entry). At this point, the spill slots for the phis
417   // have not been written to.
418   void ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check,
419                                              HParallelMove* spills) const;
420 
GetBlockedCoreRegisters()421   bool* GetBlockedCoreRegisters() const { return blocked_core_registers_; }
GetBlockedFloatingPointRegisters()422   bool* GetBlockedFloatingPointRegisters() const { return blocked_fpu_registers_; }
423 
IsBlockedCoreRegister(size_t i)424   bool IsBlockedCoreRegister(size_t i) { return blocked_core_registers_[i]; }
IsBlockedFloatingPointRegister(size_t i)425   bool IsBlockedFloatingPointRegister(size_t i) { return blocked_fpu_registers_[i]; }
426 
427   // Helper that returns the offset of the array's length field.
428   // Note: Besides the normal arrays, we also use the HArrayLength for
429   // accessing the String's `count` field in String intrinsics.
430   static uint32_t GetArrayLengthOffset(HArrayLength* array_length);
431 
432   // Helper that returns the offset of the array's data.
433   // Note: Besides the normal arrays, we also use the HArrayGet for
434   // accessing the String's `value` field in String intrinsics.
435   static uint32_t GetArrayDataOffset(HArrayGet* array_get);
436 
437   void EmitParallelMoves(Location from1,
438                          Location to1,
439                          DataType::Type type1,
440                          Location from2,
441                          Location to2,
442                          DataType::Type type2);
443 
InstanceOfNeedsReadBarrier(HInstanceOf * instance_of)444   static bool InstanceOfNeedsReadBarrier(HInstanceOf* instance_of) {
445     // Used only for kExactCheck, kAbstractClassCheck, kClassHierarchyCheck and kArrayObjectCheck.
446     DCHECK(instance_of->GetTypeCheckKind() == TypeCheckKind::kExactCheck ||
447            instance_of->GetTypeCheckKind() == TypeCheckKind::kAbstractClassCheck ||
448            instance_of->GetTypeCheckKind() == TypeCheckKind::kClassHierarchyCheck ||
449            instance_of->GetTypeCheckKind() == TypeCheckKind::kArrayObjectCheck)
450         << instance_of->GetTypeCheckKind();
451     // If the target class is in the boot image, it's non-moveable and it doesn't matter
452     // if we compare it with a from-space or to-space reference, the result is the same.
453     // It's OK to traverse a class hierarchy jumping between from-space and to-space.
454     return kEmitCompilerReadBarrier && !instance_of->GetTargetClass()->IsInBootImage();
455   }
456 
ReadBarrierOptionForInstanceOf(HInstanceOf * instance_of)457   static ReadBarrierOption ReadBarrierOptionForInstanceOf(HInstanceOf* instance_of) {
458     return InstanceOfNeedsReadBarrier(instance_of) ? kWithReadBarrier : kWithoutReadBarrier;
459   }
460 
IsTypeCheckSlowPathFatal(HCheckCast * check_cast)461   static bool IsTypeCheckSlowPathFatal(HCheckCast* check_cast) {
462     switch (check_cast->GetTypeCheckKind()) {
463       case TypeCheckKind::kExactCheck:
464       case TypeCheckKind::kAbstractClassCheck:
465       case TypeCheckKind::kClassHierarchyCheck:
466       case TypeCheckKind::kArrayObjectCheck:
467       case TypeCheckKind::kInterfaceCheck: {
468         bool needs_read_barrier =
469             kEmitCompilerReadBarrier && !check_cast->GetTargetClass()->IsInBootImage();
470         // We do not emit read barriers for HCheckCast, so we can get false negatives
471         // and the slow path shall re-check and simply return if the cast is actually OK.
472         return !needs_read_barrier;
473       }
474       case TypeCheckKind::kArrayCheck:
475       case TypeCheckKind::kUnresolvedCheck:
476         return false;
477       case TypeCheckKind::kBitstringCheck:
478         return true;
479     }
480     LOG(FATAL) << "Unreachable";
481     UNREACHABLE();
482   }
483 
GetCheckCastCallKind(HCheckCast * check_cast)484   static LocationSummary::CallKind GetCheckCastCallKind(HCheckCast* check_cast) {
485     return (IsTypeCheckSlowPathFatal(check_cast) && !check_cast->CanThrowIntoCatchBlock())
486         ? LocationSummary::kNoCall  // In fact, call on a fatal (non-returning) slow path.
487         : LocationSummary::kCallOnSlowPath;
488   }
489 
StoreNeedsWriteBarrier(DataType::Type type,HInstruction * value)490   static bool StoreNeedsWriteBarrier(DataType::Type type, HInstruction* value) {
491     // Check that null value is not represented as an integer constant.
492     DCHECK(type != DataType::Type::kReference || !value->IsIntConstant());
493     return type == DataType::Type::kReference && !value->IsNullConstant();
494   }
495 
496 
497   // Performs checks pertaining to an InvokeRuntime call.
498   void ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,
499                              HInstruction* instruction,
500                              SlowPathCode* slow_path);
501 
502   // Performs checks pertaining to an InvokeRuntimeWithoutRecordingPcInfo call.
503   static void ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction* instruction,
504                                                           SlowPathCode* slow_path);
505 
AddAllocatedRegister(Location location)506   void AddAllocatedRegister(Location location) {
507     allocated_registers_.Add(location);
508   }
509 
HasAllocatedRegister(bool is_core,int reg)510   bool HasAllocatedRegister(bool is_core, int reg) const {
511     return is_core
512         ? allocated_registers_.ContainsCoreRegister(reg)
513         : allocated_registers_.ContainsFloatingPointRegister(reg);
514   }
515 
516   void AllocateLocations(HInstruction* instruction);
517 
518   // Tells whether the stack frame of the compiled method is
519   // considered "empty", that is either actually having a size of zero,
520   // or just containing the saved return address register.
HasEmptyFrame()521   bool HasEmptyFrame() const {
522     return GetFrameSize() == (CallPushesPC() ? GetWordSize() : 0);
523   }
524 
GetInt8ValueOf(HConstant * constant)525   static int8_t GetInt8ValueOf(HConstant* constant) {
526     DCHECK(constant->IsIntConstant());
527     return constant->AsIntConstant()->GetValue();
528   }
529 
GetInt16ValueOf(HConstant * constant)530   static int16_t GetInt16ValueOf(HConstant* constant) {
531     DCHECK(constant->IsIntConstant());
532     return constant->AsIntConstant()->GetValue();
533   }
534 
GetInt32ValueOf(HConstant * constant)535   static int32_t GetInt32ValueOf(HConstant* constant) {
536     if (constant->IsIntConstant()) {
537       return constant->AsIntConstant()->GetValue();
538     } else if (constant->IsNullConstant()) {
539       return 0;
540     } else {
541       DCHECK(constant->IsFloatConstant());
542       return bit_cast<int32_t, float>(constant->AsFloatConstant()->GetValue());
543     }
544   }
545 
GetInt64ValueOf(HConstant * constant)546   static int64_t GetInt64ValueOf(HConstant* constant) {
547     if (constant->IsIntConstant()) {
548       return constant->AsIntConstant()->GetValue();
549     } else if (constant->IsNullConstant()) {
550       return 0;
551     } else if (constant->IsFloatConstant()) {
552       return bit_cast<int32_t, float>(constant->AsFloatConstant()->GetValue());
553     } else if (constant->IsLongConstant()) {
554       return constant->AsLongConstant()->GetValue();
555     } else {
556       DCHECK(constant->IsDoubleConstant());
557       return bit_cast<int64_t, double>(constant->AsDoubleConstant()->GetValue());
558     }
559   }
560 
GetFirstRegisterSlotInSlowPath()561   size_t GetFirstRegisterSlotInSlowPath() const {
562     return first_register_slot_in_slow_path_;
563   }
564 
FrameEntrySpillSize()565   uint32_t FrameEntrySpillSize() const {
566     return GetFpuSpillSize() + GetCoreSpillSize();
567   }
568 
569   virtual ParallelMoveResolver* GetMoveResolver() = 0;
570 
571   static void CreateCommonInvokeLocationSummary(
572       HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor);
573 
574   template <typename CriticalNativeCallingConventionVisitor,
575             size_t kNativeStackAlignment,
576             size_t GetCriticalNativeDirectCallFrameSize(const char* shorty, uint32_t shorty_len)>
PrepareCriticalNativeCall(HInvokeStaticOrDirect * invoke)577   size_t PrepareCriticalNativeCall(HInvokeStaticOrDirect* invoke) {
578       DCHECK(!invoke->GetLocations()->Intrinsified());
579       CriticalNativeCallingConventionVisitor calling_convention_visitor(
580           /*for_register_allocation=*/ false);
581       HParallelMove parallel_move(GetGraph()->GetAllocator());
582       PrepareCriticalNativeArgumentMoves(invoke, &calling_convention_visitor, &parallel_move);
583       size_t out_frame_size =
584           RoundUp(calling_convention_visitor.GetStackOffset(), kNativeStackAlignment);
585       if (kIsDebugBuild) {
586         uint32_t shorty_len;
587         const char* shorty = GetCriticalNativeShorty(invoke, &shorty_len);
588         DCHECK_EQ(GetCriticalNativeDirectCallFrameSize(shorty, shorty_len), out_frame_size);
589       }
590       if (out_frame_size != 0u) {
591         FinishCriticalNativeFrameSetup(out_frame_size, &parallel_move);
592       }
593       return out_frame_size;
594   }
595 
596   void GenerateInvokeStaticOrDirectRuntimeCall(
597       HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path);
598 
599   void GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved* invoke);
600 
601   void GenerateInvokePolymorphicCall(HInvokePolymorphic* invoke, SlowPathCode* slow_path = nullptr);
602 
603   void GenerateInvokeCustomCall(HInvokeCustom* invoke);
604 
605   void CreateStringBuilderAppendLocations(HStringBuilderAppend* instruction, Location out);
606 
607   void CreateUnresolvedFieldLocationSummary(
608       HInstruction* field_access,
609       DataType::Type field_type,
610       const FieldAccessCallingConvention& calling_convention);
611 
612   void GenerateUnresolvedFieldAccess(
613       HInstruction* field_access,
614       DataType::Type field_type,
615       uint32_t field_index,
616       uint32_t dex_pc,
617       const FieldAccessCallingConvention& calling_convention);
618 
619   static void CreateLoadClassRuntimeCallLocationSummary(HLoadClass* cls,
620                                                         Location runtime_type_index_location,
621                                                         Location runtime_return_location);
622   void GenerateLoadClassRuntimeCall(HLoadClass* cls);
623 
624   static void CreateLoadMethodHandleRuntimeCallLocationSummary(HLoadMethodHandle* method_handle,
625                                                              Location runtime_handle_index_location,
626                                                              Location runtime_return_location);
627   void GenerateLoadMethodHandleRuntimeCall(HLoadMethodHandle* method_handle);
628 
629   static void CreateLoadMethodTypeRuntimeCallLocationSummary(HLoadMethodType* method_type,
630                                                              Location runtime_type_index_location,
631                                                              Location runtime_return_location);
632   void GenerateLoadMethodTypeRuntimeCall(HLoadMethodType* method_type);
633 
634   static uint32_t GetBootImageOffset(ObjPtr<mirror::Object> object)
635       REQUIRES_SHARED(Locks::mutator_lock_);
636   static uint32_t GetBootImageOffset(HLoadClass* load_class);
637   static uint32_t GetBootImageOffset(HLoadString* load_string);
638   static uint32_t GetBootImageOffset(HInvoke* invoke);
639   static uint32_t GetBootImageOffset(ClassRoot class_root);
640   static uint32_t GetBootImageOffsetOfIntrinsicDeclaringClass(HInvoke* invoke);
641 
642   static void CreateSystemArrayCopyLocationSummary(HInvoke* invoke);
643 
SetDisassemblyInformation(DisassemblyInformation * info)644   void SetDisassemblyInformation(DisassemblyInformation* info) { disasm_info_ = info; }
GetDisassemblyInformation()645   DisassemblyInformation* GetDisassemblyInformation() const { return disasm_info_; }
646 
647   virtual void InvokeRuntime(QuickEntrypointEnum entrypoint,
648                              HInstruction* instruction,
649                              uint32_t dex_pc,
650                              SlowPathCode* slow_path = nullptr) = 0;
651 
652   // Check if the desired_string_load_kind is supported. If it is, return it,
653   // otherwise return a fall-back kind that should be used instead.
654   virtual HLoadString::LoadKind GetSupportedLoadStringKind(
655       HLoadString::LoadKind desired_string_load_kind) = 0;
656 
657   // Check if the desired_class_load_kind is supported. If it is, return it,
658   // otherwise return a fall-back kind that should be used instead.
659   virtual HLoadClass::LoadKind GetSupportedLoadClassKind(
660       HLoadClass::LoadKind desired_class_load_kind) = 0;
661 
GetLoadStringCallKind(HLoadString * load)662   static LocationSummary::CallKind GetLoadStringCallKind(HLoadString* load) {
663     switch (load->GetLoadKind()) {
664       case HLoadString::LoadKind::kBssEntry:
665         DCHECK(load->NeedsEnvironment());
666         return LocationSummary::kCallOnSlowPath;
667       case HLoadString::LoadKind::kRuntimeCall:
668         DCHECK(load->NeedsEnvironment());
669         return LocationSummary::kCallOnMainOnly;
670       case HLoadString::LoadKind::kJitTableAddress:
671         DCHECK(!load->NeedsEnvironment());
672         return kEmitCompilerReadBarrier
673             ? LocationSummary::kCallOnSlowPath
674             : LocationSummary::kNoCall;
675         break;
676       default:
677         DCHECK(!load->NeedsEnvironment());
678         return LocationSummary::kNoCall;
679     }
680   }
681 
682   // Check if the desired_dispatch_info is supported. If it is, return it,
683   // otherwise return a fall-back info that should be used instead.
684   virtual HInvokeStaticOrDirect::DispatchInfo GetSupportedInvokeStaticOrDirectDispatch(
685       const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
686       ArtMethod* method) = 0;
687 
688   // Generate a call to a static or direct method.
689   virtual void GenerateStaticOrDirectCall(
690       HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path = nullptr) = 0;
691   // Generate a call to a virtual method.
692   virtual void GenerateVirtualCall(
693       HInvokeVirtual* invoke, Location temp, SlowPathCode* slow_path = nullptr) = 0;
694 
695   // Copy the result of a call into the given target.
696   virtual void MoveFromReturnRegister(Location trg, DataType::Type type) = 0;
697 
698   virtual void IncreaseFrame(size_t adjustment) = 0;
699   virtual void DecreaseFrame(size_t adjustment) = 0;
700 
701   virtual void GenerateNop() = 0;
702 
703   static QuickEntrypointEnum GetArrayAllocationEntrypoint(HNewArray* new_array);
704 
705  protected:
706   // Patch info used for recording locations of required linker patches and their targets,
707   // i.e. target method, string, type or code identified by their dex file and index,
708   // or .data.bimg.rel.ro entries identified by the boot image offset.
709   template <typename LabelType>
710   struct PatchInfo {
PatchInfoPatchInfo711     PatchInfo(const DexFile* dex_file, uint32_t off_or_idx)
712         : target_dex_file(dex_file), offset_or_index(off_or_idx), label() { }
713 
714     // Target dex file or null for .data.bmig.rel.ro patches.
715     const DexFile* target_dex_file;
716     // Either the boot image offset (to write to .data.bmig.rel.ro) or string/type/method index.
717     uint32_t offset_or_index;
718     // Label for the instruction to patch.
719     LabelType label;
720   };
721 
722   CodeGenerator(HGraph* graph,
723                 size_t number_of_core_registers,
724                 size_t number_of_fpu_registers,
725                 size_t number_of_register_pairs,
726                 uint32_t core_callee_save_mask,
727                 uint32_t fpu_callee_save_mask,
728                 const CompilerOptions& compiler_options,
729                 OptimizingCompilerStats* stats);
730 
731   virtual HGraphVisitor* GetLocationBuilder() = 0;
732   virtual HGraphVisitor* GetInstructionVisitor() = 0;
733 
734   // Returns the location of the first spilled entry for floating point registers,
735   // relative to the stack pointer.
GetFpuSpillStart()736   uint32_t GetFpuSpillStart() const {
737     return GetFrameSize() - FrameEntrySpillSize();
738   }
739 
GetFpuSpillSize()740   uint32_t GetFpuSpillSize() const {
741     return POPCOUNT(fpu_spill_mask_) * GetCalleePreservedFPWidth();
742   }
743 
GetCoreSpillSize()744   uint32_t GetCoreSpillSize() const {
745     return POPCOUNT(core_spill_mask_) * GetWordSize();
746   }
747 
HasAllocatedCalleeSaveRegisters()748   virtual bool HasAllocatedCalleeSaveRegisters() const {
749     // We check the core registers against 1 because it always comprises the return PC.
750     return (POPCOUNT(allocated_registers_.GetCoreRegisters() & core_callee_save_mask_) != 1)
751       || (POPCOUNT(allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_) != 0);
752   }
753 
CallPushesPC()754   bool CallPushesPC() const {
755     InstructionSet instruction_set = GetInstructionSet();
756     return instruction_set == InstructionSet::kX86 || instruction_set == InstructionSet::kX86_64;
757   }
758 
759   // Arm64 has its own type for a label, so we need to templatize these methods
760   // to share the logic.
761 
762   template <typename LabelType>
CommonInitializeLabels()763   LabelType* CommonInitializeLabels() {
764     // We use raw array allocations instead of ArenaVector<> because Labels are
765     // non-constructible and non-movable and as such cannot be held in a vector.
766     size_t size = GetGraph()->GetBlocks().size();
767     LabelType* labels =
768         GetGraph()->GetAllocator()->AllocArray<LabelType>(size, kArenaAllocCodeGenerator);
769     for (size_t i = 0; i != size; ++i) {
770       new(labels + i) LabelType();
771     }
772     return labels;
773   }
774 
775   template <typename LabelType>
CommonGetLabelOf(LabelType * raw_pointer_to_labels_array,HBasicBlock * block)776   LabelType* CommonGetLabelOf(LabelType* raw_pointer_to_labels_array, HBasicBlock* block) const {
777     block = FirstNonEmptyBlock(block);
778     return raw_pointer_to_labels_array + block->GetBlockId();
779   }
780 
GetCurrentSlowPath()781   SlowPathCode* GetCurrentSlowPath() {
782     return current_slow_path_;
783   }
784 
785   StackMapStream* GetStackMapStream();
786 
787   void ReserveJitStringRoot(StringReference string_reference, Handle<mirror::String> string);
788   uint64_t GetJitStringRootIndex(StringReference string_reference);
789   void ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass);
790   uint64_t GetJitClassRootIndex(TypeReference type_reference);
791 
792   // Emit the patches assocatied with JIT roots. Only applies to JIT compiled code.
793   virtual void EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data);
794 
795   // Frame size required for this method.
796   uint32_t frame_size_;
797   uint32_t core_spill_mask_;
798   uint32_t fpu_spill_mask_;
799   uint32_t first_register_slot_in_slow_path_;
800 
801   // Registers that were allocated during linear scan.
802   RegisterSet allocated_registers_;
803 
804   // Arrays used when doing register allocation to know which
805   // registers we can allocate. `SetupBlockedRegisters` updates the
806   // arrays.
807   bool* const blocked_core_registers_;
808   bool* const blocked_fpu_registers_;
809   size_t number_of_core_registers_;
810   size_t number_of_fpu_registers_;
811   size_t number_of_register_pairs_;
812   const uint32_t core_callee_save_mask_;
813   const uint32_t fpu_callee_save_mask_;
814 
815   // The order to use for code generation.
816   const ArenaVector<HBasicBlock*>* block_order_;
817 
818   DisassemblyInformation* disasm_info_;
819 
820  private:
821   class CodeGenerationData;
822 
823   void InitializeCodeGenerationData();
824   size_t GetStackOffsetOfSavedRegister(size_t index);
825   void GenerateSlowPaths();
826   void BlockIfInRegister(Location location, bool is_out = false) const;
827   void EmitEnvironment(HEnvironment* environment,
828                        SlowPathCode* slow_path,
829                        bool needs_vreg_info = true);
830   void EmitVRegInfo(HEnvironment* environment, SlowPathCode* slow_path);
831 
832   static void PrepareCriticalNativeArgumentMoves(
833       HInvokeStaticOrDirect* invoke,
834       /*inout*/InvokeDexCallingConventionVisitor* visitor,
835       /*out*/HParallelMove* parallel_move);
836 
837   void FinishCriticalNativeFrameSetup(size_t out_frame_size, /*inout*/HParallelMove* parallel_move);
838 
839   static const char* GetCriticalNativeShorty(HInvokeStaticOrDirect* invoke, uint32_t* shorty_len);
840 
841   OptimizingCompilerStats* stats_;
842 
843   HGraph* const graph_;
844   const CompilerOptions& compiler_options_;
845 
846   // The current slow-path that we're generating code for.
847   SlowPathCode* current_slow_path_;
848 
849   // The current block index in `block_order_` of the block
850   // we are generating code for.
851   size_t current_block_index_;
852 
853   // Whether the method is a leaf method.
854   bool is_leaf_;
855 
856   // Whether an instruction in the graph accesses the current method.
857   // TODO: Rename: this actually indicates that some instruction in the method
858   // needs the environment including a valid stack frame.
859   bool requires_current_method_;
860 
861   // The CodeGenerationData contains a ScopedArenaAllocator intended for reusing the
862   // ArenaStack memory allocated in previous passes instead of adding to the memory
863   // held by the ArenaAllocator. This ScopedArenaAllocator is created in
864   // CodeGenerator::Compile() and remains alive until the CodeGenerator is destroyed.
865   std::unique_ptr<CodeGenerationData> code_generation_data_;
866 
867   friend class OptimizingCFITest;
868   ART_FRIEND_TEST(CodegenTest, ARM64FrameSizeSIMD);
869   ART_FRIEND_TEST(CodegenTest, ARM64FrameSizeNoSIMD);
870 
871   DISALLOW_COPY_AND_ASSIGN(CodeGenerator);
872 };
873 
874 template <typename C, typename F>
875 class CallingConvention {
876  public:
CallingConvention(const C * registers,size_t number_of_registers,const F * fpu_registers,size_t number_of_fpu_registers,PointerSize pointer_size)877   CallingConvention(const C* registers,
878                     size_t number_of_registers,
879                     const F* fpu_registers,
880                     size_t number_of_fpu_registers,
881                     PointerSize pointer_size)
882       : registers_(registers),
883         number_of_registers_(number_of_registers),
884         fpu_registers_(fpu_registers),
885         number_of_fpu_registers_(number_of_fpu_registers),
886         pointer_size_(pointer_size) {}
887 
GetNumberOfRegisters()888   size_t GetNumberOfRegisters() const { return number_of_registers_; }
GetNumberOfFpuRegisters()889   size_t GetNumberOfFpuRegisters() const { return number_of_fpu_registers_; }
890 
GetRegisterAt(size_t index)891   C GetRegisterAt(size_t index) const {
892     DCHECK_LT(index, number_of_registers_);
893     return registers_[index];
894   }
895 
GetFpuRegisterAt(size_t index)896   F GetFpuRegisterAt(size_t index) const {
897     DCHECK_LT(index, number_of_fpu_registers_);
898     return fpu_registers_[index];
899   }
900 
GetStackOffsetOf(size_t index)901   size_t GetStackOffsetOf(size_t index) const {
902     // We still reserve the space for parameters passed by registers.
903     // Add space for the method pointer.
904     return static_cast<size_t>(pointer_size_) + index * kVRegSize;
905   }
906 
907  private:
908   const C* registers_;
909   const size_t number_of_registers_;
910   const F* fpu_registers_;
911   const size_t number_of_fpu_registers_;
912   const PointerSize pointer_size_;
913 
914   DISALLOW_COPY_AND_ASSIGN(CallingConvention);
915 };
916 
917 /**
918  * A templated class SlowPathGenerator with a templated method NewSlowPath()
919  * that can be used by any code generator to share equivalent slow-paths with
920  * the objective of reducing generated code size.
921  *
922  * InstructionType:  instruction that requires SlowPathCodeType
923  * SlowPathCodeType: subclass of SlowPathCode, with constructor SlowPathCodeType(InstructionType *)
924  */
925 template <typename InstructionType>
926 class SlowPathGenerator {
927   static_assert(std::is_base_of<HInstruction, InstructionType>::value,
928                 "InstructionType is not a subclass of art::HInstruction");
929 
930  public:
SlowPathGenerator(HGraph * graph,CodeGenerator * codegen)931   SlowPathGenerator(HGraph* graph, CodeGenerator* codegen)
932       : graph_(graph),
933         codegen_(codegen),
934         slow_path_map_(std::less<uint32_t>(),
935                        graph->GetAllocator()->Adapter(kArenaAllocSlowPaths)) {}
936 
937   // Creates and adds a new slow-path, if needed, or returns existing one otherwise.
938   // Templating the method (rather than the whole class) on the slow-path type enables
939   // keeping this code at a generic, non architecture-specific place.
940   //
941   // NOTE: This approach assumes each InstructionType only generates one SlowPathCodeType.
942   //       To relax this requirement, we would need some RTTI on the stored slow-paths,
943   //       or template the class as a whole on SlowPathType.
944   template <typename SlowPathCodeType>
NewSlowPath(InstructionType * instruction)945   SlowPathCodeType* NewSlowPath(InstructionType* instruction) {
946     static_assert(std::is_base_of<SlowPathCode, SlowPathCodeType>::value,
947                   "SlowPathCodeType is not a subclass of art::SlowPathCode");
948     static_assert(std::is_constructible<SlowPathCodeType, InstructionType*>::value,
949                   "SlowPathCodeType is not constructible from InstructionType*");
950     // Iterate over potential candidates for sharing. Currently, only same-typed
951     // slow-paths with exactly the same dex-pc are viable candidates.
952     // TODO: pass dex-pc/slow-path-type to run-time to allow even more sharing?
953     const uint32_t dex_pc = instruction->GetDexPc();
954     auto iter = slow_path_map_.find(dex_pc);
955     if (iter != slow_path_map_.end()) {
956       const ArenaVector<std::pair<InstructionType*, SlowPathCode*>>& candidates = iter->second;
957       for (const auto& it : candidates) {
958         InstructionType* other_instruction = it.first;
959         SlowPathCodeType* other_slow_path = down_cast<SlowPathCodeType*>(it.second);
960         // Determine if the instructions allow for slow-path sharing.
961         if (HaveSameLiveRegisters(instruction, other_instruction) &&
962             HaveSameStackMap(instruction, other_instruction)) {
963           // Can share: reuse existing one.
964           return other_slow_path;
965         }
966       }
967     } else {
968       // First time this dex-pc is seen.
969       iter = slow_path_map_.Put(dex_pc,
970                                 {{}, {graph_->GetAllocator()->Adapter(kArenaAllocSlowPaths)}});
971     }
972     // Cannot share: create and add new slow-path for this particular dex-pc.
973     SlowPathCodeType* slow_path =
974         new (codegen_->GetScopedAllocator()) SlowPathCodeType(instruction);
975     iter->second.emplace_back(std::make_pair(instruction, slow_path));
976     codegen_->AddSlowPath(slow_path);
977     return slow_path;
978   }
979 
980  private:
981   // Tests if both instructions have same set of live physical registers. This ensures
982   // the slow-path has exactly the same preamble on saving these registers to stack.
HaveSameLiveRegisters(const InstructionType * i1,const InstructionType * i2)983   bool HaveSameLiveRegisters(const InstructionType* i1, const InstructionType* i2) const {
984     const uint32_t core_spill = ~codegen_->GetCoreSpillMask();
985     const uint32_t fpu_spill = ~codegen_->GetFpuSpillMask();
986     RegisterSet* live1 = i1->GetLocations()->GetLiveRegisters();
987     RegisterSet* live2 = i2->GetLocations()->GetLiveRegisters();
988     return (((live1->GetCoreRegisters() & core_spill) ==
989              (live2->GetCoreRegisters() & core_spill)) &&
990             ((live1->GetFloatingPointRegisters() & fpu_spill) ==
991              (live2->GetFloatingPointRegisters() & fpu_spill)));
992   }
993 
994   // Tests if both instructions have the same stack map. This ensures the interpreter
995   // will find exactly the same dex-registers at the same entries.
HaveSameStackMap(const InstructionType * i1,const InstructionType * i2)996   bool HaveSameStackMap(const InstructionType* i1, const InstructionType* i2) const {
997     DCHECK(i1->HasEnvironment());
998     DCHECK(i2->HasEnvironment());
999     // We conservatively test if the two instructions find exactly the same instructions
1000     // and location in each dex-register. This guarantees they will have the same stack map.
1001     HEnvironment* e1 = i1->GetEnvironment();
1002     HEnvironment* e2 = i2->GetEnvironment();
1003     if (e1->GetParent() != e2->GetParent() || e1->Size() != e2->Size()) {
1004       return false;
1005     }
1006     for (size_t i = 0, sz = e1->Size(); i < sz; ++i) {
1007       if (e1->GetInstructionAt(i) != e2->GetInstructionAt(i) ||
1008           !e1->GetLocationAt(i).Equals(e2->GetLocationAt(i))) {
1009         return false;
1010       }
1011     }
1012     return true;
1013   }
1014 
1015   HGraph* const graph_;
1016   CodeGenerator* const codegen_;
1017 
1018   // Map from dex-pc to vector of already existing instruction/slow-path pairs.
1019   ArenaSafeMap<uint32_t, ArenaVector<std::pair<InstructionType*, SlowPathCode*>>> slow_path_map_;
1020 
1021   DISALLOW_COPY_AND_ASSIGN(SlowPathGenerator);
1022 };
1023 
1024 class InstructionCodeGenerator : public HGraphVisitor {
1025  public:
InstructionCodeGenerator(HGraph * graph,CodeGenerator * codegen)1026   InstructionCodeGenerator(HGraph* graph, CodeGenerator* codegen)
1027       : HGraphVisitor(graph),
1028         deopt_slow_paths_(graph, codegen) {}
1029 
1030  protected:
1031   // Add slow-path generator for each instruction/slow-path combination that desires sharing.
1032   // TODO: under current regime, only deopt sharing make sense; extend later.
1033   SlowPathGenerator<HDeoptimize> deopt_slow_paths_;
1034 };
1035 
1036 }  // namespace art
1037 
1038 #endif  // ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_
1039