1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "image_space.h"
18
19 #include <sys/statvfs.h>
20 #include <sys/types.h>
21 #include <unistd.h>
22
23 #include <random>
24
25 #include "android-base/stringprintf.h"
26 #include "android-base/strings.h"
27 #include "android-base/unique_fd.h"
28
29 #include "arch/instruction_set.h"
30 #include "art_field-inl.h"
31 #include "art_method-inl.h"
32 #include "base/array_ref.h"
33 #include "base/bit_memory_region.h"
34 #include "base/callee_save_type.h"
35 #include "base/enums.h"
36 #include "base/file_utils.h"
37 #include "base/macros.h"
38 #include "base/memfd.h"
39 #include "base/os.h"
40 #include "base/scoped_flock.h"
41 #include "base/stl_util.h"
42 #include "base/string_view_cpp20.h"
43 #include "base/systrace.h"
44 #include "base/time_utils.h"
45 #include "base/utils.h"
46 #include "class_root-inl.h"
47 #include "dex/art_dex_file_loader.h"
48 #include "dex/dex_file_loader.h"
49 #include "exec_utils.h"
50 #include "gc/accounting/space_bitmap-inl.h"
51 #include "gc/task_processor.h"
52 #include "image-inl.h"
53 #include "intern_table-inl.h"
54 #include "mirror/class-inl.h"
55 #include "mirror/executable-inl.h"
56 #include "mirror/object-inl.h"
57 #include "mirror/object-refvisitor-inl.h"
58 #include "oat.h"
59 #include "oat_file.h"
60 #include "profile/profile_compilation_info.h"
61 #include "runtime.h"
62 #include "space-inl.h"
63
64 namespace art {
65 namespace gc {
66 namespace space {
67
68 using android::base::Join;
69 using android::base::StringAppendF;
70 using android::base::StringPrintf;
71
72 // We do not allow the boot image and extensions to take more than 1GiB. They are
73 // supposed to be much smaller and allocating more that this would likely fail anyway.
74 static constexpr size_t kMaxTotalImageReservationSize = 1 * GB;
75
76 Atomic<uint32_t> ImageSpace::bitmap_index_(0);
77
ImageSpace(const std::string & image_filename,const char * image_location,const char * profile_file,MemMap && mem_map,accounting::ContinuousSpaceBitmap && live_bitmap,uint8_t * end)78 ImageSpace::ImageSpace(const std::string& image_filename,
79 const char* image_location,
80 const char* profile_file,
81 MemMap&& mem_map,
82 accounting::ContinuousSpaceBitmap&& live_bitmap,
83 uint8_t* end)
84 : MemMapSpace(image_filename,
85 std::move(mem_map),
86 mem_map.Begin(),
87 end,
88 end,
89 kGcRetentionPolicyNeverCollect),
90 live_bitmap_(std::move(live_bitmap)),
91 oat_file_non_owned_(nullptr),
92 image_location_(image_location),
93 profile_file_(profile_file) {
94 DCHECK(live_bitmap_.IsValid());
95 }
96
ChooseRelocationOffsetDelta(int32_t min_delta,int32_t max_delta)97 static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) {
98 CHECK_ALIGNED(min_delta, kPageSize);
99 CHECK_ALIGNED(max_delta, kPageSize);
100 CHECK_LT(min_delta, max_delta);
101
102 int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta);
103 if (r % 2 == 0) {
104 r = RoundUp(r, kPageSize);
105 } else {
106 r = RoundDown(r, kPageSize);
107 }
108 CHECK_LE(min_delta, r);
109 CHECK_GE(max_delta, r);
110 CHECK_ALIGNED(r, kPageSize);
111 return r;
112 }
113
ChooseRelocationOffsetDelta()114 static int32_t ChooseRelocationOffsetDelta() {
115 return ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA);
116 }
117
FindImageFilenameImpl(const char * image_location,const InstructionSet image_isa,bool * has_system,std::string * system_filename)118 static bool FindImageFilenameImpl(const char* image_location,
119 const InstructionSet image_isa,
120 bool* has_system,
121 std::string* system_filename) {
122 *has_system = false;
123
124 // image_location = /system/framework/boot.art
125 // system_image_location = /system/framework/<image_isa>/boot.art
126 std::string system_image_filename(GetSystemImageFilename(image_location, image_isa));
127 if (OS::FileExists(system_image_filename.c_str())) {
128 *system_filename = system_image_filename;
129 *has_system = true;
130 }
131
132 return *has_system;
133 }
134
FindImageFilename(const char * image_location,const InstructionSet image_isa,std::string * system_filename,bool * has_system)135 bool ImageSpace::FindImageFilename(const char* image_location,
136 const InstructionSet image_isa,
137 std::string* system_filename,
138 bool* has_system) {
139 std::string dalvik_cache_unused;
140 return FindImageFilenameImpl(image_location,
141 image_isa,
142 has_system,
143 system_filename);
144 }
145
ReadSpecificImageHeader(File * image_file,const char * file_description,ImageHeader * image_header,std::string * error_msg)146 static bool ReadSpecificImageHeader(File* image_file,
147 const char* file_description,
148 /*out*/ImageHeader* image_header,
149 /*out*/std::string* error_msg) {
150 if (!image_file->ReadFully(image_header, sizeof(ImageHeader))) {
151 *error_msg = StringPrintf("Unable to read image header from \"%s\"", file_description);
152 return false;
153 }
154 if (!image_header->IsValid()) {
155 *error_msg = StringPrintf("Image header from \"%s\" is invalid", file_description);
156 return false;
157 }
158 return true;
159 }
160
ReadSpecificImageHeader(const char * filename,ImageHeader * image_header,std::string * error_msg)161 static bool ReadSpecificImageHeader(const char* filename,
162 /*out*/ImageHeader* image_header,
163 /*out*/std::string* error_msg) {
164 std::unique_ptr<File> image_file(OS::OpenFileForReading(filename));
165 if (image_file.get() == nullptr) {
166 *error_msg = StringPrintf("Unable to open file \"%s\" for reading image header", filename);
167 return false;
168 }
169 return ReadSpecificImageHeader(image_file.get(), filename, image_header, error_msg);
170 }
171
ReadSpecificImageHeader(const char * filename,std::string * error_msg)172 static std::unique_ptr<ImageHeader> ReadSpecificImageHeader(const char* filename,
173 std::string* error_msg) {
174 std::unique_ptr<ImageHeader> hdr(new ImageHeader);
175 if (!ReadSpecificImageHeader(filename, hdr.get(), error_msg)) {
176 return nullptr;
177 }
178 return hdr;
179 }
180
VerifyImageAllocations()181 void ImageSpace::VerifyImageAllocations() {
182 uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment);
183 while (current < End()) {
184 CHECK_ALIGNED(current, kObjectAlignment);
185 auto* obj = reinterpret_cast<mirror::Object*>(current);
186 CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class";
187 CHECK(live_bitmap_.Test(obj)) << obj->PrettyTypeOf();
188 if (kUseBakerReadBarrier) {
189 obj->AssertReadBarrierState();
190 }
191 current += RoundUp(obj->SizeOf(), kObjectAlignment);
192 }
193 }
194
195 // Helper class for relocating from one range of memory to another.
196 class RelocationRange {
197 public:
198 RelocationRange() = default;
199 RelocationRange(const RelocationRange&) = default;
RelocationRange(uintptr_t source,uintptr_t dest,uintptr_t length)200 RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length)
201 : source_(source),
202 dest_(dest),
203 length_(length) {}
204
InSource(uintptr_t address) const205 bool InSource(uintptr_t address) const {
206 return address - source_ < length_;
207 }
208
InDest(const void * dest) const209 bool InDest(const void* dest) const {
210 return InDest(reinterpret_cast<uintptr_t>(dest));
211 }
212
InDest(uintptr_t address) const213 bool InDest(uintptr_t address) const {
214 return address - dest_ < length_;
215 }
216
217 // Translate a source address to the destination space.
ToDest(uintptr_t address) const218 uintptr_t ToDest(uintptr_t address) const {
219 DCHECK(InSource(address));
220 return address + Delta();
221 }
222
223 template <typename T>
ToDest(T * src) const224 T* ToDest(T* src) const {
225 return reinterpret_cast<T*>(ToDest(reinterpret_cast<uintptr_t>(src)));
226 }
227
228 // Returns the delta between the dest from the source.
Delta() const229 uintptr_t Delta() const {
230 return dest_ - source_;
231 }
232
Source() const233 uintptr_t Source() const {
234 return source_;
235 }
236
Dest() const237 uintptr_t Dest() const {
238 return dest_;
239 }
240
Length() const241 uintptr_t Length() const {
242 return length_;
243 }
244
245 private:
246 const uintptr_t source_;
247 const uintptr_t dest_;
248 const uintptr_t length_;
249 };
250
operator <<(std::ostream & os,const RelocationRange & reloc)251 std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) {
252 return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-"
253 << reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->("
254 << reinterpret_cast<const void*>(reloc.Dest()) << "-"
255 << reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")";
256 }
257
258 template <PointerSize kPointerSize, typename HeapVisitor, typename NativeVisitor>
259 class ImageSpace::PatchObjectVisitor final {
260 public:
PatchObjectVisitor(HeapVisitor heap_visitor,NativeVisitor native_visitor)261 explicit PatchObjectVisitor(HeapVisitor heap_visitor, NativeVisitor native_visitor)
262 : heap_visitor_(heap_visitor), native_visitor_(native_visitor) {}
263
VisitClass(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Class> class_class)264 void VisitClass(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Class> class_class)
265 REQUIRES_SHARED(Locks::mutator_lock_) {
266 // A mirror::Class object consists of
267 // - instance fields inherited from j.l.Object,
268 // - instance fields inherited from j.l.Class,
269 // - embedded tables (vtable, interface method table),
270 // - static fields of the class itself.
271 // The reference fields are at the start of each field section (this is how the
272 // ClassLinker orders fields; except when that would create a gap between superclass
273 // fields and the first reference of the subclass due to alignment, it can be filled
274 // with smaller fields - but that's not the case for j.l.Object and j.l.Class).
275
276 DCHECK_ALIGNED(klass.Ptr(), kObjectAlignment);
277 static_assert(IsAligned<kHeapReferenceSize>(kObjectAlignment), "Object alignment check.");
278 // First, patch the `klass->klass_`, known to be a reference to the j.l.Class.class.
279 // This should be the only reference field in j.l.Object and we assert that below.
280 DCHECK_EQ(class_class,
281 heap_visitor_(klass->GetClass<kVerifyNone, kWithoutReadBarrier>()));
282 klass->SetFieldObjectWithoutWriteBarrier<
283 /*kTransactionActive=*/ false,
284 /*kCheckTransaction=*/ true,
285 kVerifyNone>(mirror::Object::ClassOffset(), class_class);
286 // Then patch the reference instance fields described by j.l.Class.class.
287 // Use the sizeof(Object) to determine where these reference fields start;
288 // this is the same as `class_class->GetFirstReferenceInstanceFieldOffset()`
289 // after patching but the j.l.Class may not have been patched yet.
290 size_t num_reference_instance_fields = class_class->NumReferenceInstanceFields<kVerifyNone>();
291 DCHECK_NE(num_reference_instance_fields, 0u);
292 static_assert(IsAligned<kHeapReferenceSize>(sizeof(mirror::Object)), "Size alignment check.");
293 MemberOffset instance_field_offset(sizeof(mirror::Object));
294 for (size_t i = 0; i != num_reference_instance_fields; ++i) {
295 PatchReferenceField(klass, instance_field_offset);
296 static_assert(sizeof(mirror::HeapReference<mirror::Object>) == kHeapReferenceSize,
297 "Heap reference sizes equality check.");
298 instance_field_offset =
299 MemberOffset(instance_field_offset.Uint32Value() + kHeapReferenceSize);
300 }
301 // Now that we have patched the `super_class_`, if this is the j.l.Class.class,
302 // we can get a reference to j.l.Object.class and assert that it has only one
303 // reference instance field (the `klass_` patched above).
304 if (kIsDebugBuild && klass == class_class) {
305 ObjPtr<mirror::Class> object_class =
306 klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
307 CHECK_EQ(object_class->NumReferenceInstanceFields<kVerifyNone>(), 1u);
308 }
309 // Then patch static fields.
310 size_t num_reference_static_fields = klass->NumReferenceStaticFields<kVerifyNone>();
311 if (num_reference_static_fields != 0u) {
312 MemberOffset static_field_offset =
313 klass->GetFirstReferenceStaticFieldOffset<kVerifyNone>(kPointerSize);
314 for (size_t i = 0; i != num_reference_static_fields; ++i) {
315 PatchReferenceField(klass, static_field_offset);
316 static_assert(sizeof(mirror::HeapReference<mirror::Object>) == kHeapReferenceSize,
317 "Heap reference sizes equality check.");
318 static_field_offset =
319 MemberOffset(static_field_offset.Uint32Value() + kHeapReferenceSize);
320 }
321 }
322 // Then patch native pointers.
323 klass->FixupNativePointers<kVerifyNone>(klass.Ptr(), kPointerSize, *this);
324 }
325
326 template <typename T>
operator ()(T * ptr,void ** dest_addr ATTRIBUTE_UNUSED) const327 T* operator()(T* ptr, void** dest_addr ATTRIBUTE_UNUSED) const {
328 return (ptr != nullptr) ? native_visitor_(ptr) : nullptr;
329 }
330
VisitPointerArray(ObjPtr<mirror::PointerArray> pointer_array)331 void VisitPointerArray(ObjPtr<mirror::PointerArray> pointer_array)
332 REQUIRES_SHARED(Locks::mutator_lock_) {
333 // Fully patch the pointer array, including the `klass_` field.
334 PatchReferenceField</*kMayBeNull=*/ false>(pointer_array, mirror::Object::ClassOffset());
335
336 int32_t length = pointer_array->GetLength<kVerifyNone>();
337 for (int32_t i = 0; i != length; ++i) {
338 ArtMethod** method_entry = reinterpret_cast<ArtMethod**>(
339 pointer_array->ElementAddress<kVerifyNone>(i, kPointerSize));
340 PatchNativePointer</*kMayBeNull=*/ false>(method_entry);
341 }
342 }
343
VisitObject(mirror::Object * object)344 void VisitObject(mirror::Object* object) REQUIRES_SHARED(Locks::mutator_lock_) {
345 // Visit all reference fields.
346 object->VisitReferences</*kVisitNativeRoots=*/ false,
347 kVerifyNone,
348 kWithoutReadBarrier>(*this, *this);
349 // This function should not be called for classes.
350 DCHECK(!object->IsClass<kVerifyNone>());
351 }
352
353 // Visitor for VisitReferences().
operator ()(ObjPtr<mirror::Object> object,MemberOffset field_offset,bool is_static) const354 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> object,
355 MemberOffset field_offset,
356 bool is_static)
357 const REQUIRES_SHARED(Locks::mutator_lock_) {
358 DCHECK(!is_static);
359 PatchReferenceField(object, field_offset);
360 }
361 // Visitor for VisitReferences(), java.lang.ref.Reference case.
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const362 ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
363 REQUIRES_SHARED(Locks::mutator_lock_) {
364 DCHECK(klass->IsTypeOfReferenceClass());
365 this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false);
366 }
367 // Ignore class native roots; not called from VisitReferences() for kVisitNativeRoots == false.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const368 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
369 const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const370 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
371
372 template <bool kMayBeNull = true, typename T>
PatchGcRoot(GcRoot<T> * root) const373 ALWAYS_INLINE void PatchGcRoot(/*inout*/GcRoot<T>* root) const
374 REQUIRES_SHARED(Locks::mutator_lock_) {
375 static_assert(sizeof(GcRoot<mirror::Class*>) == sizeof(uint32_t), "GcRoot size check");
376 T* old_value = root->template Read<kWithoutReadBarrier>();
377 DCHECK(kMayBeNull || old_value != nullptr);
378 if (!kMayBeNull || old_value != nullptr) {
379 *root = GcRoot<T>(heap_visitor_(old_value));
380 }
381 }
382
383 template <bool kMayBeNull = true, typename T>
PatchNativePointer(T ** entry) const384 ALWAYS_INLINE void PatchNativePointer(/*inout*/T** entry) const {
385 if (kPointerSize == PointerSize::k64) {
386 uint64_t* raw_entry = reinterpret_cast<uint64_t*>(entry);
387 T* old_value = reinterpret_cast64<T*>(*raw_entry);
388 DCHECK(kMayBeNull || old_value != nullptr);
389 if (!kMayBeNull || old_value != nullptr) {
390 T* new_value = native_visitor_(old_value);
391 *raw_entry = reinterpret_cast64<uint64_t>(new_value);
392 }
393 } else {
394 uint32_t* raw_entry = reinterpret_cast<uint32_t*>(entry);
395 T* old_value = reinterpret_cast32<T*>(*raw_entry);
396 DCHECK(kMayBeNull || old_value != nullptr);
397 if (!kMayBeNull || old_value != nullptr) {
398 T* new_value = native_visitor_(old_value);
399 *raw_entry = reinterpret_cast32<uint32_t>(new_value);
400 }
401 }
402 }
403
404 template <bool kMayBeNull = true>
PatchReferenceField(ObjPtr<mirror::Object> object,MemberOffset offset) const405 ALWAYS_INLINE void PatchReferenceField(ObjPtr<mirror::Object> object, MemberOffset offset) const
406 REQUIRES_SHARED(Locks::mutator_lock_) {
407 ObjPtr<mirror::Object> old_value =
408 object->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
409 DCHECK(kMayBeNull || old_value != nullptr);
410 if (!kMayBeNull || old_value != nullptr) {
411 ObjPtr<mirror::Object> new_value = heap_visitor_(old_value.Ptr());
412 object->SetFieldObjectWithoutWriteBarrier</*kTransactionActive=*/ false,
413 /*kCheckTransaction=*/ true,
414 kVerifyNone>(offset, new_value);
415 }
416 }
417
418 private:
419 // Heap objects visitor.
420 HeapVisitor heap_visitor_;
421
422 // Native objects visitor.
423 NativeVisitor native_visitor_;
424 };
425
426 template <typename ReferenceVisitor>
427 class ImageSpace::ClassTableVisitor final {
428 public:
ClassTableVisitor(const ReferenceVisitor & reference_visitor)429 explicit ClassTableVisitor(const ReferenceVisitor& reference_visitor)
430 : reference_visitor_(reference_visitor) {}
431
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const432 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
433 REQUIRES_SHARED(Locks::mutator_lock_) {
434 DCHECK(root->AsMirrorPtr() != nullptr);
435 root->Assign(reference_visitor_(root->AsMirrorPtr()));
436 }
437
438 private:
439 ReferenceVisitor reference_visitor_;
440 };
441
442 class ImageSpace::RemapInternedStringsVisitor {
443 public:
RemapInternedStringsVisitor(const SafeMap<mirror::String *,mirror::String * > & intern_remap)444 explicit RemapInternedStringsVisitor(
445 const SafeMap<mirror::String*, mirror::String*>& intern_remap)
446 REQUIRES_SHARED(Locks::mutator_lock_)
447 : intern_remap_(intern_remap),
448 string_class_(GetStringClass()) {}
449
450 // Visitor for VisitReferences().
operator ()(ObjPtr<mirror::Object> object,MemberOffset field_offset,bool is_static ATTRIBUTE_UNUSED) const451 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> object,
452 MemberOffset field_offset,
453 bool is_static ATTRIBUTE_UNUSED)
454 const REQUIRES_SHARED(Locks::mutator_lock_) {
455 ObjPtr<mirror::Object> old_value =
456 object->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(field_offset);
457 if (old_value != nullptr &&
458 old_value->GetClass<kVerifyNone, kWithoutReadBarrier>() == string_class_) {
459 auto it = intern_remap_.find(old_value->AsString().Ptr());
460 if (it != intern_remap_.end()) {
461 mirror::String* new_value = it->second;
462 object->SetFieldObjectWithoutWriteBarrier</*kTransactionActive=*/ false,
463 /*kCheckTransaction=*/ true,
464 kVerifyNone>(field_offset, new_value);
465 }
466 }
467 }
468 // Visitor for VisitReferences(), java.lang.ref.Reference case.
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const469 ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
470 REQUIRES_SHARED(Locks::mutator_lock_) {
471 DCHECK(klass->IsTypeOfReferenceClass());
472 this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false);
473 }
474 // Ignore class native roots; not called from VisitReferences() for kVisitNativeRoots == false.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const475 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
476 const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const477 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
478
479 private:
GetStringClass()480 mirror::Class* GetStringClass() REQUIRES_SHARED(Locks::mutator_lock_) {
481 DCHECK(!intern_remap_.empty());
482 return intern_remap_.begin()->first->GetClass<kVerifyNone, kWithoutReadBarrier>();
483 }
484
485 const SafeMap<mirror::String*, mirror::String*>& intern_remap_;
486 mirror::Class* const string_class_;
487 };
488
489 // Helper class encapsulating loading, so we can access private ImageSpace members (this is a
490 // nested class), but not declare functions in the header.
491 class ImageSpace::Loader {
492 public:
InitAppImage(const char * image_filename,const char * image_location,const OatFile * oat_file,ArrayRef<ImageSpace * const> boot_image_spaces,std::string * error_msg)493 static std::unique_ptr<ImageSpace> InitAppImage(const char* image_filename,
494 const char* image_location,
495 const OatFile* oat_file,
496 ArrayRef<ImageSpace* const> boot_image_spaces,
497 /*out*/std::string* error_msg)
498 REQUIRES_SHARED(Locks::mutator_lock_) {
499 TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image));
500
501 std::unique_ptr<ImageSpace> space = Init(image_filename,
502 image_location,
503 &logger,
504 /*image_reservation=*/ nullptr,
505 error_msg);
506 if (space != nullptr) {
507 space->oat_file_non_owned_ = oat_file;
508 const ImageHeader& image_header = space->GetImageHeader();
509
510 // Check the oat file checksum.
511 const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
512 const uint32_t image_oat_checksum = image_header.GetOatChecksum();
513 if (oat_checksum != image_oat_checksum) {
514 *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s",
515 oat_checksum,
516 image_oat_checksum,
517 image_filename);
518 return nullptr;
519 }
520 size_t boot_image_space_dependencies;
521 if (!ValidateBootImageChecksum(image_filename,
522 image_header,
523 oat_file,
524 boot_image_spaces,
525 &boot_image_space_dependencies,
526 error_msg)) {
527 DCHECK(!error_msg->empty());
528 return nullptr;
529 }
530
531 uint32_t expected_reservation_size = RoundUp(image_header.GetImageSize(), kPageSize);
532 if (!CheckImageReservationSize(*space, expected_reservation_size, error_msg) ||
533 !CheckImageComponentCount(*space, /*expected_component_count=*/ 1u, error_msg)) {
534 return nullptr;
535 }
536
537 {
538 TimingLogger::ScopedTiming timing("RelocateImage", &logger);
539 const PointerSize pointer_size = image_header.GetPointerSize();
540 uint32_t boot_image_begin =
541 reinterpret_cast32<uint32_t>(boot_image_spaces.front()->Begin());
542 bool result;
543 if (pointer_size == PointerSize::k64) {
544 result = RelocateInPlace<PointerSize::k64>(boot_image_begin,
545 space->GetMemMap()->Begin(),
546 space->GetLiveBitmap(),
547 oat_file,
548 error_msg);
549 } else {
550 result = RelocateInPlace<PointerSize::k32>(boot_image_begin,
551 space->GetMemMap()->Begin(),
552 space->GetLiveBitmap(),
553 oat_file,
554 error_msg);
555 }
556 if (!result) {
557 return nullptr;
558 }
559 }
560
561 DCHECK_LE(boot_image_space_dependencies, boot_image_spaces.size());
562 if (boot_image_space_dependencies != boot_image_spaces.size()) {
563 TimingLogger::ScopedTiming timing("DeduplicateInternedStrings", &logger);
564 // There shall be no duplicates with boot image spaces this app image depends on.
565 ArrayRef<ImageSpace* const> old_spaces =
566 boot_image_spaces.SubArray(/*pos=*/ boot_image_space_dependencies);
567 SafeMap<mirror::String*, mirror::String*> intern_remap;
568 RemoveInternTableDuplicates(old_spaces, space.get(), &intern_remap);
569 if (!intern_remap.empty()) {
570 RemapInternedStringDuplicates(intern_remap, space.get());
571 }
572 }
573
574 const ImageHeader& primary_header = boot_image_spaces.front()->GetImageHeader();
575 static_assert(static_cast<size_t>(ImageHeader::kResolutionMethod) == 0u);
576 for (size_t i = 0u; i != static_cast<size_t>(ImageHeader::kImageMethodsCount); ++i) {
577 ImageHeader::ImageMethod method = static_cast<ImageHeader::ImageMethod>(i);
578 CHECK_EQ(primary_header.GetImageMethod(method), image_header.GetImageMethod(method))
579 << method;
580 }
581
582 VLOG(image) << "ImageSpace::Loader::InitAppImage exiting " << *space.get();
583 }
584 if (VLOG_IS_ON(image)) {
585 logger.Dump(LOG_STREAM(INFO));
586 }
587 return space;
588 }
589
Init(const char * image_filename,const char * image_location,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)590 static std::unique_ptr<ImageSpace> Init(const char* image_filename,
591 const char* image_location,
592 TimingLogger* logger,
593 /*inout*/MemMap* image_reservation,
594 /*out*/std::string* error_msg)
595 REQUIRES_SHARED(Locks::mutator_lock_) {
596 CHECK(image_filename != nullptr);
597 CHECK(image_location != nullptr);
598
599 std::unique_ptr<File> file;
600 {
601 TimingLogger::ScopedTiming timing("OpenImageFile", logger);
602 file.reset(OS::OpenFileForReading(image_filename));
603 if (file == nullptr) {
604 *error_msg = StringPrintf("Failed to open '%s'", image_filename);
605 return nullptr;
606 }
607 }
608 return Init(file.get(),
609 image_filename,
610 image_location,
611 /* profile_file=*/ "",
612 /*allow_direct_mapping=*/ true,
613 logger,
614 image_reservation,
615 error_msg);
616 }
617
Init(File * file,const char * image_filename,const char * image_location,const char * profile_file,bool allow_direct_mapping,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)618 static std::unique_ptr<ImageSpace> Init(File* file,
619 const char* image_filename,
620 const char* image_location,
621 const char* profile_file,
622 bool allow_direct_mapping,
623 TimingLogger* logger,
624 /*inout*/MemMap* image_reservation,
625 /*out*/std::string* error_msg)
626 REQUIRES_SHARED(Locks::mutator_lock_) {
627 CHECK(image_filename != nullptr);
628 CHECK(image_location != nullptr);
629
630 VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename;
631
632 ImageHeader image_header;
633 {
634 TimingLogger::ScopedTiming timing("ReadImageHeader", logger);
635 bool success = file->PreadFully(&image_header, sizeof(image_header), /*offset=*/ 0u);
636 if (!success || !image_header.IsValid()) {
637 *error_msg = StringPrintf("Invalid image header in '%s'", image_filename);
638 return nullptr;
639 }
640 }
641 // Check that the file is larger or equal to the header size + data size.
642 const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength());
643 if (image_file_size < sizeof(ImageHeader) + image_header.GetDataSize()) {
644 *error_msg = StringPrintf(
645 "Image file truncated: %" PRIu64 " vs. %" PRIu64 ".",
646 image_file_size,
647 static_cast<uint64_t>(sizeof(ImageHeader) + image_header.GetDataSize()));
648 return nullptr;
649 }
650
651 if (VLOG_IS_ON(startup)) {
652 LOG(INFO) << "Dumping image sections";
653 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
654 const auto section_idx = static_cast<ImageHeader::ImageSections>(i);
655 auto& section = image_header.GetImageSection(section_idx);
656 LOG(INFO) << section_idx << " start="
657 << reinterpret_cast<void*>(image_header.GetImageBegin() + section.Offset()) << " "
658 << section;
659 }
660 }
661
662 const auto& bitmap_section = image_header.GetImageBitmapSection();
663 // The location we want to map from is the first aligned page after the end of the stored
664 // (possibly compressed) data.
665 const size_t image_bitmap_offset =
666 RoundUp(sizeof(ImageHeader) + image_header.GetDataSize(), kPageSize);
667 const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size();
668 if (end_of_bitmap != image_file_size) {
669 *error_msg = StringPrintf(
670 "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.",
671 image_file_size,
672 end_of_bitmap);
673 return nullptr;
674 }
675
676 // GetImageBegin is the preferred address to map the image. If we manage to map the
677 // image at the image begin, the amount of fixup work required is minimized.
678 // If it is pic we will retry with error_msg for the2 failure case. Pass a null error_msg to
679 // avoid reading proc maps for a mapping failure and slowing everything down.
680 // For the boot image, we have already reserved the memory and we load the image
681 // into the `image_reservation`.
682 MemMap map = LoadImageFile(
683 image_filename,
684 image_location,
685 image_header,
686 file->Fd(),
687 allow_direct_mapping,
688 logger,
689 image_reservation,
690 error_msg);
691 if (!map.IsValid()) {
692 DCHECK(!error_msg->empty());
693 return nullptr;
694 }
695 DCHECK_EQ(0, memcmp(&image_header, map.Begin(), sizeof(ImageHeader)));
696
697 MemMap image_bitmap_map = MemMap::MapFile(bitmap_section.Size(),
698 PROT_READ,
699 MAP_PRIVATE,
700 file->Fd(),
701 image_bitmap_offset,
702 /*low_4gb=*/ false,
703 image_filename,
704 error_msg);
705 if (!image_bitmap_map.IsValid()) {
706 *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str());
707 return nullptr;
708 }
709 const uint32_t bitmap_index = ImageSpace::bitmap_index_.fetch_add(1);
710 std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u",
711 image_filename,
712 bitmap_index));
713 // Bitmap only needs to cover until the end of the mirror objects section.
714 const ImageSection& image_objects = image_header.GetObjectsSection();
715 // We only want the mirror object, not the ArtFields and ArtMethods.
716 uint8_t* const image_end = map.Begin() + image_objects.End();
717 accounting::ContinuousSpaceBitmap bitmap;
718 {
719 TimingLogger::ScopedTiming timing("CreateImageBitmap", logger);
720 bitmap = accounting::ContinuousSpaceBitmap::CreateFromMemMap(
721 bitmap_name,
722 std::move(image_bitmap_map),
723 reinterpret_cast<uint8_t*>(map.Begin()),
724 // Make sure the bitmap is aligned to card size instead of just bitmap word size.
725 RoundUp(image_objects.End(), gc::accounting::CardTable::kCardSize));
726 if (!bitmap.IsValid()) {
727 *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str());
728 return nullptr;
729 }
730 }
731 // We only want the mirror object, not the ArtFields and ArtMethods.
732 std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename,
733 image_location,
734 profile_file,
735 std::move(map),
736 std::move(bitmap),
737 image_end));
738 return space;
739 }
740
CheckImageComponentCount(const ImageSpace & space,uint32_t expected_component_count,std::string * error_msg)741 static bool CheckImageComponentCount(const ImageSpace& space,
742 uint32_t expected_component_count,
743 /*out*/std::string* error_msg) {
744 const ImageHeader& header = space.GetImageHeader();
745 if (header.GetComponentCount() != expected_component_count) {
746 *error_msg = StringPrintf("Unexpected component count in %s, received %u, expected %u",
747 space.GetImageFilename().c_str(),
748 header.GetComponentCount(),
749 expected_component_count);
750 return false;
751 }
752 return true;
753 }
754
CheckImageReservationSize(const ImageSpace & space,uint32_t expected_reservation_size,std::string * error_msg)755 static bool CheckImageReservationSize(const ImageSpace& space,
756 uint32_t expected_reservation_size,
757 /*out*/std::string* error_msg) {
758 const ImageHeader& header = space.GetImageHeader();
759 if (header.GetImageReservationSize() != expected_reservation_size) {
760 *error_msg = StringPrintf("Unexpected reservation size in %s, received %u, expected %u",
761 space.GetImageFilename().c_str(),
762 header.GetImageReservationSize(),
763 expected_reservation_size);
764 return false;
765 }
766 return true;
767 }
768
769 template <typename Container>
RemoveInternTableDuplicates(const Container & old_spaces,ImageSpace * new_space,SafeMap<mirror::String *,mirror::String * > * intern_remap)770 static void RemoveInternTableDuplicates(
771 const Container& old_spaces,
772 /*inout*/ImageSpace* new_space,
773 /*inout*/SafeMap<mirror::String*, mirror::String*>* intern_remap)
774 REQUIRES_SHARED(Locks::mutator_lock_) {
775 const ImageSection& new_interns = new_space->GetImageHeader().GetInternedStringsSection();
776 if (new_interns.Size() != 0u) {
777 const uint8_t* new_data = new_space->Begin() + new_interns.Offset();
778 size_t new_read_count;
779 InternTable::UnorderedSet new_set(new_data, /*make_copy_of_data=*/ false, &new_read_count);
780 for (const auto& old_space : old_spaces) {
781 const ImageSection& old_interns = old_space->GetImageHeader().GetInternedStringsSection();
782 if (old_interns.Size() != 0u) {
783 const uint8_t* old_data = old_space->Begin() + old_interns.Offset();
784 size_t old_read_count;
785 InternTable::UnorderedSet old_set(
786 old_data, /*make_copy_of_data=*/ false, &old_read_count);
787 RemoveDuplicates(old_set, &new_set, intern_remap);
788 }
789 }
790 }
791 }
792
RemapInternedStringDuplicates(const SafeMap<mirror::String *,mirror::String * > & intern_remap,ImageSpace * new_space)793 static void RemapInternedStringDuplicates(
794 const SafeMap<mirror::String*, mirror::String*>& intern_remap,
795 ImageSpace* new_space) REQUIRES_SHARED(Locks::mutator_lock_) {
796 RemapInternedStringsVisitor visitor(intern_remap);
797 static_assert(IsAligned<kObjectAlignment>(sizeof(ImageHeader)), "Header alignment check");
798 uint32_t objects_end = new_space->GetImageHeader().GetObjectsSection().Size();
799 DCHECK_ALIGNED(objects_end, kObjectAlignment);
800 for (uint32_t pos = sizeof(ImageHeader); pos != objects_end; ) {
801 mirror::Object* object = reinterpret_cast<mirror::Object*>(new_space->Begin() + pos);
802 object->VisitReferences</*kVisitNativeRoots=*/ false,
803 kVerifyNone,
804 kWithoutReadBarrier>(visitor, visitor);
805 pos += RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment);
806 }
807 }
808
809 private:
810 // Remove duplicates found in the `old_set` from the `new_set`.
811 // Record the removed Strings for remapping. No read barriers are needed as the
812 // tables are either just being loaded and not yet a part of the heap, or boot
813 // image intern tables with non-moveable Strings used when loading an app image.
RemoveDuplicates(const InternTable::UnorderedSet & old_set,InternTable::UnorderedSet * new_set,SafeMap<mirror::String *,mirror::String * > * intern_remap)814 static void RemoveDuplicates(const InternTable::UnorderedSet& old_set,
815 /*inout*/InternTable::UnorderedSet* new_set,
816 /*inout*/SafeMap<mirror::String*, mirror::String*>* intern_remap)
817 REQUIRES_SHARED(Locks::mutator_lock_) {
818 if (old_set.size() < new_set->size()) {
819 for (const GcRoot<mirror::String>& old_s : old_set) {
820 auto new_it = new_set->find(old_s);
821 if (UNLIKELY(new_it != new_set->end())) {
822 intern_remap->Put(new_it->Read<kWithoutReadBarrier>(), old_s.Read<kWithoutReadBarrier>());
823 new_set->erase(new_it);
824 }
825 }
826 } else {
827 for (auto new_it = new_set->begin(), end = new_set->end(); new_it != end; ) {
828 auto old_it = old_set.find(*new_it);
829 if (UNLIKELY(old_it != old_set.end())) {
830 intern_remap->Put(new_it->Read<kWithoutReadBarrier>(),
831 old_it->Read<kWithoutReadBarrier>());
832 new_it = new_set->erase(new_it);
833 } else {
834 ++new_it;
835 }
836 }
837 }
838 }
839
ValidateBootImageChecksum(const char * image_filename,const ImageHeader & image_header,const OatFile * oat_file,ArrayRef<ImageSpace * const> boot_image_spaces,size_t * boot_image_space_dependencies,std::string * error_msg)840 static bool ValidateBootImageChecksum(const char* image_filename,
841 const ImageHeader& image_header,
842 const OatFile* oat_file,
843 ArrayRef<ImageSpace* const> boot_image_spaces,
844 /*out*/size_t* boot_image_space_dependencies,
845 /*out*/std::string* error_msg) {
846 // Use the boot image component count to calculate the checksum from
847 // the appropriate number of boot image chunks.
848 uint32_t boot_image_component_count = image_header.GetBootImageComponentCount();
849 size_t expected_image_component_count = ImageSpace::GetNumberOfComponents(boot_image_spaces);
850 if (boot_image_component_count > expected_image_component_count) {
851 *error_msg = StringPrintf("Too many boot image dependencies (%u > %zu) in image %s",
852 boot_image_component_count,
853 expected_image_component_count,
854 image_filename);
855 return false;
856 }
857 uint32_t checksum = 0u;
858 size_t chunk_count = 0u;
859 size_t space_pos = 0u;
860 uint64_t boot_image_size = 0u;
861 for (size_t component_count = 0u; component_count != boot_image_component_count; ) {
862 const ImageHeader& current_header = boot_image_spaces[space_pos]->GetImageHeader();
863 if (current_header.GetComponentCount() > boot_image_component_count - component_count) {
864 *error_msg = StringPrintf("Boot image component count in %s ends in the middle of a chunk, "
865 "%u is between %zu and %zu",
866 image_filename,
867 boot_image_component_count,
868 component_count,
869 component_count + current_header.GetComponentCount());
870 return false;
871 }
872 component_count += current_header.GetComponentCount();
873 checksum ^= current_header.GetImageChecksum();
874 chunk_count += 1u;
875 space_pos += current_header.GetImageSpaceCount();
876 boot_image_size += current_header.GetImageReservationSize();
877 }
878 if (image_header.GetBootImageChecksum() != checksum) {
879 *error_msg = StringPrintf("Boot image checksum mismatch (0x%08x != 0x%08x) in image %s",
880 image_header.GetBootImageChecksum(),
881 checksum,
882 image_filename);
883 return false;
884 }
885 if (image_header.GetBootImageSize() != boot_image_size) {
886 *error_msg = StringPrintf("Boot image size mismatch (0x%08x != 0x%08" PRIx64 ") in image %s",
887 image_header.GetBootImageSize(),
888 boot_image_size,
889 image_filename);
890 return false;
891 }
892 // Oat checksums, if present, have already been validated, so we know that
893 // they match the loaded image spaces. Therefore, we just verify that they
894 // are consistent in the number of boot image chunks they list by looking
895 // for the kImageChecksumPrefix at the start of each component.
896 const char* oat_boot_class_path_checksums =
897 oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathChecksumsKey);
898 if (oat_boot_class_path_checksums != nullptr) {
899 size_t oat_bcp_chunk_count = 0u;
900 while (*oat_boot_class_path_checksums == kImageChecksumPrefix) {
901 oat_bcp_chunk_count += 1u;
902 // Find the start of the next component if any.
903 const char* separator = strchr(oat_boot_class_path_checksums, ':');
904 oat_boot_class_path_checksums = (separator != nullptr) ? separator + 1u : "";
905 }
906 if (oat_bcp_chunk_count != chunk_count) {
907 *error_msg = StringPrintf("Boot image chunk count mismatch (%zu != %zu) in image %s",
908 oat_bcp_chunk_count,
909 chunk_count,
910 image_filename);
911 return false;
912 }
913 }
914 *boot_image_space_dependencies = space_pos;
915 return true;
916 }
917
LoadImageFile(const char * image_filename,const char * image_location,const ImageHeader & image_header,int fd,bool allow_direct_mapping,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)918 static MemMap LoadImageFile(const char* image_filename,
919 const char* image_location,
920 const ImageHeader& image_header,
921 int fd,
922 bool allow_direct_mapping,
923 TimingLogger* logger,
924 /*inout*/MemMap* image_reservation,
925 /*out*/std::string* error_msg)
926 REQUIRES_SHARED(Locks::mutator_lock_) {
927 TimingLogger::ScopedTiming timing("MapImageFile", logger);
928 std::string temp_error_msg;
929 const bool is_compressed = image_header.HasCompressedBlock();
930 if (!is_compressed && allow_direct_mapping) {
931 uint8_t* address = (image_reservation != nullptr) ? image_reservation->Begin() : nullptr;
932 return MemMap::MapFileAtAddress(address,
933 image_header.GetImageSize(),
934 PROT_READ | PROT_WRITE,
935 MAP_PRIVATE,
936 fd,
937 /*start=*/ 0,
938 /*low_4gb=*/ true,
939 image_filename,
940 /*reuse=*/ false,
941 image_reservation,
942 error_msg);
943 }
944
945 // Reserve output and copy/decompress into it.
946 MemMap map = MemMap::MapAnonymous(image_location,
947 image_header.GetImageSize(),
948 PROT_READ | PROT_WRITE,
949 /*low_4gb=*/ true,
950 image_reservation,
951 error_msg);
952 if (map.IsValid()) {
953 const size_t stored_size = image_header.GetDataSize();
954 MemMap temp_map = MemMap::MapFile(sizeof(ImageHeader) + stored_size,
955 PROT_READ,
956 MAP_PRIVATE,
957 fd,
958 /*start=*/ 0,
959 /*low_4gb=*/ false,
960 image_filename,
961 error_msg);
962 if (!temp_map.IsValid()) {
963 DCHECK(error_msg == nullptr || !error_msg->empty());
964 return MemMap::Invalid();
965 }
966
967 Runtime* runtime = Runtime::Current();
968 // The runtime might not be available at this point if we're running
969 // dex2oat or oatdump.
970 if (runtime != nullptr) {
971 size_t madvise_size_limit = runtime->GetMadviseWillNeedSizeArt();
972 Runtime::MadviseFileForRange(madvise_size_limit,
973 temp_map.Size(),
974 temp_map.Begin(),
975 temp_map.End(),
976 image_filename);
977 }
978
979 if (is_compressed) {
980 memcpy(map.Begin(), &image_header, sizeof(ImageHeader));
981
982 Runtime::ScopedThreadPoolUsage stpu;
983 ThreadPool* const pool = stpu.GetThreadPool();
984 const uint64_t start = NanoTime();
985 Thread* const self = Thread::Current();
986 static constexpr size_t kMinBlocks = 2u;
987 const bool use_parallel = pool != nullptr && image_header.GetBlockCount() >= kMinBlocks;
988 for (const ImageHeader::Block& block : image_header.GetBlocks(temp_map.Begin())) {
989 auto function = [&](Thread*) {
990 const uint64_t start2 = NanoTime();
991 ScopedTrace trace("LZ4 decompress block");
992 bool result = block.Decompress(/*out_ptr=*/map.Begin(),
993 /*in_ptr=*/temp_map.Begin(),
994 error_msg);
995 if (!result && error_msg != nullptr) {
996 *error_msg = "Failed to decompress image block " + *error_msg;
997 }
998 VLOG(image) << "Decompress block " << block.GetDataSize() << " -> "
999 << block.GetImageSize() << " in " << PrettyDuration(NanoTime() - start2);
1000 };
1001 if (use_parallel) {
1002 pool->AddTask(self, new FunctionTask(std::move(function)));
1003 } else {
1004 function(self);
1005 }
1006 }
1007 if (use_parallel) {
1008 ScopedTrace trace("Waiting for workers");
1009 // Go to native since we don't want to suspend while holding the mutator lock.
1010 ScopedThreadSuspension sts(Thread::Current(), kNative);
1011 pool->Wait(self, true, false);
1012 }
1013 const uint64_t time = NanoTime() - start;
1014 // Add one 1 ns to prevent possible divide by 0.
1015 VLOG(image) << "Decompressing image took " << PrettyDuration(time) << " ("
1016 << PrettySize(static_cast<uint64_t>(map.Size()) * MsToNs(1000) / (time + 1))
1017 << "/s)";
1018 } else {
1019 DCHECK(!allow_direct_mapping);
1020 // We do not allow direct mapping for boot image extensions compiled to a memfd.
1021 // This prevents wasting memory by kernel keeping the contents of the file alive
1022 // despite these contents being unreachable once the file descriptor is closed
1023 // and mmapped memory is copied for all existing mappings.
1024 //
1025 // Most pages would be copied during relocation while there is only one mapping.
1026 // We could use MAP_SHARED for relocation and then msync() and remap MAP_PRIVATE
1027 // as required for forking from zygote, but there would still be some pages
1028 // wasted anyway and we want to avoid that. (For example, static synchronized
1029 // methods use the class object for locking and thus modify its lockword.)
1030
1031 // No other process should race to overwrite the extension in memfd.
1032 DCHECK_EQ(memcmp(temp_map.Begin(), &image_header, sizeof(ImageHeader)), 0);
1033 memcpy(map.Begin(), temp_map.Begin(), temp_map.Size());
1034 }
1035 }
1036
1037 return map;
1038 }
1039
1040 class EmptyRange {
1041 public:
InSource(uintptr_t) const1042 ALWAYS_INLINE bool InSource(uintptr_t) const { return false; }
InDest(uintptr_t) const1043 ALWAYS_INLINE bool InDest(uintptr_t) const { return false; }
ToDest(uintptr_t) const1044 ALWAYS_INLINE uintptr_t ToDest(uintptr_t) const { UNREACHABLE(); }
1045 };
1046
1047 template <typename Range0, typename Range1 = EmptyRange, typename Range2 = EmptyRange>
1048 class ForwardAddress {
1049 public:
ForwardAddress(const Range0 & range0=Range0 (),const Range1 & range1=Range1 (),const Range2 & range2=Range2 ())1050 explicit ForwardAddress(const Range0& range0 = Range0(),
1051 const Range1& range1 = Range1(),
1052 const Range2& range2 = Range2())
1053 : range0_(range0), range1_(range1), range2_(range2) {}
1054
1055 // Return the relocated address of a heap object.
1056 // Null checks must be performed in the caller (for performance reasons).
1057 template <typename T>
operator ()(T * src) const1058 ALWAYS_INLINE T* operator()(T* src) const {
1059 DCHECK(src != nullptr);
1060 const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
1061 if (range2_.InSource(uint_src)) {
1062 return reinterpret_cast<T*>(range2_.ToDest(uint_src));
1063 }
1064 if (range1_.InSource(uint_src)) {
1065 return reinterpret_cast<T*>(range1_.ToDest(uint_src));
1066 }
1067 CHECK(range0_.InSource(uint_src))
1068 << reinterpret_cast<const void*>(src) << " not in "
1069 << reinterpret_cast<const void*>(range0_.Source()) << "-"
1070 << reinterpret_cast<const void*>(range0_.Source() + range0_.Length());
1071 return reinterpret_cast<T*>(range0_.ToDest(uint_src));
1072 }
1073
1074 private:
1075 const Range0 range0_;
1076 const Range1 range1_;
1077 const Range2 range2_;
1078 };
1079
1080 template <typename Forward>
1081 class FixupRootVisitor {
1082 public:
1083 template<typename... Args>
FixupRootVisitor(Args...args)1084 explicit FixupRootVisitor(Args... args) : forward_(args...) {}
1085
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1086 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1087 REQUIRES_SHARED(Locks::mutator_lock_) {
1088 if (!root->IsNull()) {
1089 VisitRoot(root);
1090 }
1091 }
1092
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1093 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1094 REQUIRES_SHARED(Locks::mutator_lock_) {
1095 mirror::Object* ref = root->AsMirrorPtr();
1096 mirror::Object* new_ref = forward_(ref);
1097 if (ref != new_ref) {
1098 root->Assign(new_ref);
1099 }
1100 }
1101
1102 private:
1103 Forward forward_;
1104 };
1105
1106 template <typename Forward>
1107 class FixupObjectVisitor {
1108 public:
FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap * visited,const Forward & forward)1109 explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited,
1110 const Forward& forward)
1111 : visited_(visited), forward_(forward) {}
1112
1113 // Fix up separately since we also need to fix up method entrypoints.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const1114 ALWAYS_INLINE void VisitRootIfNonNull(
1115 mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
1116
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const1117 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
1118 const {}
1119
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1120 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj,
1121 MemberOffset offset,
1122 bool is_static ATTRIBUTE_UNUSED) const
1123 NO_THREAD_SAFETY_ANALYSIS {
1124 // Space is not yet added to the heap, don't do a read barrier.
1125 mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(
1126 offset);
1127 if (ref != nullptr) {
1128 // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
1129 // image.
1130 obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, forward_(ref));
1131 }
1132 }
1133
1134 // java.lang.ref.Reference visitor.
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1135 ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
1136 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
1137 DCHECK(klass->IsTypeOfReferenceClass());
1138 this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false);
1139 }
1140
operator ()(mirror::Object * obj) const1141 void operator()(mirror::Object* obj) const
1142 NO_THREAD_SAFETY_ANALYSIS {
1143 if (!visited_->Set(obj)) {
1144 // Not already visited.
1145 obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>(
1146 *this,
1147 *this);
1148 CHECK(!obj->IsClass());
1149 }
1150 }
1151
1152 private:
1153 gc::accounting::ContinuousSpaceBitmap* const visited_;
1154 Forward forward_;
1155 };
1156
1157 // Relocate an image space mapped at target_base which possibly used to be at a different base
1158 // address. In place means modifying a single ImageSpace in place rather than relocating from
1159 // one ImageSpace to another.
1160 template <PointerSize kPointerSize>
RelocateInPlace(uint32_t boot_image_begin,uint8_t * target_base,accounting::ContinuousSpaceBitmap * bitmap,const OatFile * app_oat_file,std::string * error_msg)1161 static bool RelocateInPlace(uint32_t boot_image_begin,
1162 uint8_t* target_base,
1163 accounting::ContinuousSpaceBitmap* bitmap,
1164 const OatFile* app_oat_file,
1165 std::string* error_msg) {
1166 DCHECK(error_msg != nullptr);
1167 // Set up sections.
1168 ImageHeader* image_header = reinterpret_cast<ImageHeader*>(target_base);
1169 const uint32_t boot_image_size = image_header->GetBootImageSize();
1170 const ImageSection& objects_section = image_header->GetObjectsSection();
1171 // Where the app image objects are mapped to.
1172 uint8_t* objects_location = target_base + objects_section.Offset();
1173 TimingLogger logger(__FUNCTION__, true, false);
1174 RelocationRange boot_image(image_header->GetBootImageBegin(),
1175 boot_image_begin,
1176 boot_image_size);
1177 // Metadata is everything after the objects section, use exclusion to be safe.
1178 RelocationRange app_image_metadata(
1179 reinterpret_cast<uintptr_t>(image_header->GetImageBegin()) + objects_section.End(),
1180 reinterpret_cast<uintptr_t>(target_base) + objects_section.End(),
1181 image_header->GetImageSize() - objects_section.End());
1182 // App image heap objects, may be mapped in the heap.
1183 RelocationRange app_image_objects(
1184 reinterpret_cast<uintptr_t>(image_header->GetImageBegin()) + objects_section.Offset(),
1185 reinterpret_cast<uintptr_t>(objects_location),
1186 objects_section.Size());
1187 // Use the oat data section since this is where the OatFile::Begin is.
1188 RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header->GetOatDataBegin()),
1189 // Not necessarily in low 4GB.
1190 reinterpret_cast<uintptr_t>(app_oat_file->Begin()),
1191 image_header->GetOatDataEnd() - image_header->GetOatDataBegin());
1192 VLOG(image) << "App image metadata " << app_image_metadata;
1193 VLOG(image) << "App image objects " << app_image_objects;
1194 VLOG(image) << "App oat " << app_oat;
1195 VLOG(image) << "Boot image " << boot_image;
1196 // True if we need to fixup any heap pointers.
1197 const bool fixup_image = boot_image.Delta() != 0 || app_image_metadata.Delta() != 0 ||
1198 app_image_objects.Delta() != 0;
1199 if (!fixup_image) {
1200 // Nothing to fix up.
1201 return true;
1202 }
1203 ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
1204
1205 using ForwardObject = ForwardAddress<RelocationRange, RelocationRange>;
1206 ForwardObject forward_object(boot_image, app_image_objects);
1207 ForwardObject forward_metadata(boot_image, app_image_metadata);
1208 using ForwardCode = ForwardAddress<RelocationRange, RelocationRange>;
1209 ForwardCode forward_code(boot_image, app_oat);
1210 PatchObjectVisitor<kPointerSize, ForwardObject, ForwardCode> patch_object_visitor(
1211 forward_object,
1212 forward_metadata);
1213 if (fixup_image) {
1214 // Two pass approach, fix up all classes first, then fix up non class-objects.
1215 // The visited bitmap is used to ensure that pointer arrays are not forwarded twice.
1216 gc::accounting::ContinuousSpaceBitmap visited_bitmap(
1217 gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap",
1218 target_base,
1219 image_header->GetImageSize()));
1220 {
1221 TimingLogger::ScopedTiming timing("Fixup classes", &logger);
1222 ObjPtr<mirror::Class> class_class = [&]() NO_THREAD_SAFETY_ANALYSIS {
1223 ObjPtr<mirror::ObjectArray<mirror::Object>> image_roots = app_image_objects.ToDest(
1224 image_header->GetImageRoots<kWithoutReadBarrier>().Ptr());
1225 int32_t class_roots_index = enum_cast<int32_t>(ImageHeader::kClassRoots);
1226 DCHECK_LT(class_roots_index, image_roots->GetLength<kVerifyNone>());
1227 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
1228 ObjPtr<mirror::ObjectArray<mirror::Class>>::DownCast(boot_image.ToDest(
1229 image_roots->GetWithoutChecks<kVerifyNone>(class_roots_index).Ptr()));
1230 return GetClassRoot<mirror::Class, kWithoutReadBarrier>(class_roots);
1231 }();
1232 const auto& class_table_section = image_header->GetClassTableSection();
1233 if (class_table_section.Size() > 0u) {
1234 ScopedObjectAccess soa(Thread::Current());
1235 ClassTableVisitor class_table_visitor(forward_object);
1236 size_t read_count = 0u;
1237 const uint8_t* data = target_base + class_table_section.Offset();
1238 // We avoid making a copy of the data since we want modifications to be propagated to the
1239 // memory map.
1240 ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
1241 for (ClassTable::TableSlot& slot : temp_set) {
1242 slot.VisitRoot(class_table_visitor);
1243 ObjPtr<mirror::Class> klass = slot.Read<kWithoutReadBarrier>();
1244 if (!app_image_objects.InDest(klass.Ptr())) {
1245 continue;
1246 }
1247 const bool already_marked = visited_bitmap.Set(klass.Ptr());
1248 CHECK(!already_marked) << "App image class already visited";
1249 patch_object_visitor.VisitClass(klass, class_class);
1250 // Then patch the non-embedded vtable and iftable.
1251 ObjPtr<mirror::PointerArray> vtable =
1252 klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
1253 if (vtable != nullptr &&
1254 app_image_objects.InDest(vtable.Ptr()) &&
1255 !visited_bitmap.Set(vtable.Ptr())) {
1256 patch_object_visitor.VisitPointerArray(vtable);
1257 }
1258 ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
1259 if (iftable != nullptr && app_image_objects.InDest(iftable.Ptr())) {
1260 // Avoid processing the fields of iftable since we will process them later anyways
1261 // below.
1262 int32_t ifcount = klass->GetIfTableCount<kVerifyNone>();
1263 for (int32_t i = 0; i != ifcount; ++i) {
1264 ObjPtr<mirror::PointerArray> unpatched_ifarray =
1265 iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
1266 if (unpatched_ifarray != nullptr) {
1267 // The iftable has not been patched, so we need to explicitly adjust the pointer.
1268 ObjPtr<mirror::PointerArray> ifarray = forward_object(unpatched_ifarray.Ptr());
1269 if (app_image_objects.InDest(ifarray.Ptr()) &&
1270 !visited_bitmap.Set(ifarray.Ptr())) {
1271 patch_object_visitor.VisitPointerArray(ifarray);
1272 }
1273 }
1274 }
1275 }
1276 }
1277 }
1278 }
1279
1280 // Fixup objects may read fields in the boot image so we hold the mutator lock (although it is
1281 // probably not required).
1282 TimingLogger::ScopedTiming timing("Fixup objects", &logger);
1283 ScopedObjectAccess soa(Thread::Current());
1284 // Need to update the image to be at the target base.
1285 uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset());
1286 uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End());
1287 FixupObjectVisitor<ForwardObject> fixup_object_visitor(&visited_bitmap, forward_object);
1288 bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor);
1289 // Fixup image roots.
1290 CHECK(app_image_objects.InSource(reinterpret_cast<uintptr_t>(
1291 image_header->GetImageRoots<kWithoutReadBarrier>().Ptr())));
1292 image_header->RelocateImageReferences(app_image_objects.Delta());
1293 image_header->RelocateBootImageReferences(boot_image.Delta());
1294 CHECK_EQ(image_header->GetImageBegin(), target_base);
1295 }
1296 {
1297 // Only touches objects in the app image, no need for mutator lock.
1298 TimingLogger::ScopedTiming timing("Fixup methods", &logger);
1299 image_header->VisitPackedArtMethods([&](ArtMethod& method) NO_THREAD_SAFETY_ANALYSIS {
1300 // TODO: Consider a separate visitor for runtime vs normal methods.
1301 if (UNLIKELY(method.IsRuntimeMethod())) {
1302 ImtConflictTable* table = method.GetImtConflictTable(kPointerSize);
1303 if (table != nullptr) {
1304 ImtConflictTable* new_table = forward_metadata(table);
1305 if (table != new_table) {
1306 method.SetImtConflictTable(new_table, kPointerSize);
1307 }
1308 }
1309 const void* old_code = method.GetEntryPointFromQuickCompiledCodePtrSize(kPointerSize);
1310 const void* new_code = forward_code(old_code);
1311 if (old_code != new_code) {
1312 method.SetEntryPointFromQuickCompiledCodePtrSize(new_code, kPointerSize);
1313 }
1314 } else {
1315 patch_object_visitor.PatchGcRoot(&method.DeclaringClassRoot());
1316 method.UpdateEntrypoints(forward_code, kPointerSize);
1317 }
1318 }, target_base, kPointerSize);
1319 }
1320 if (fixup_image) {
1321 {
1322 // Only touches objects in the app image, no need for mutator lock.
1323 TimingLogger::ScopedTiming timing("Fixup fields", &logger);
1324 image_header->VisitPackedArtFields([&](ArtField& field) NO_THREAD_SAFETY_ANALYSIS {
1325 patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(
1326 &field.DeclaringClassRoot());
1327 }, target_base);
1328 }
1329 {
1330 TimingLogger::ScopedTiming timing("Fixup imt", &logger);
1331 image_header->VisitPackedImTables(forward_metadata, target_base, kPointerSize);
1332 }
1333 {
1334 TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger);
1335 image_header->VisitPackedImtConflictTables(forward_metadata, target_base, kPointerSize);
1336 }
1337 // Fix up the intern table.
1338 const auto& intern_table_section = image_header->GetInternedStringsSection();
1339 if (intern_table_section.Size() > 0u) {
1340 TimingLogger::ScopedTiming timing("Fixup intern table", &logger);
1341 ScopedObjectAccess soa(Thread::Current());
1342 // Fixup the pointers in the newly written intern table to contain image addresses.
1343 InternTable temp_intern_table;
1344 // Note that we require that ReadFromMemory does not make an internal copy of the elements
1345 // so that the VisitRoots() will update the memory directly rather than the copies.
1346 temp_intern_table.AddTableFromMemory(target_base + intern_table_section.Offset(),
1347 [&](InternTable::UnorderedSet& strings)
1348 REQUIRES_SHARED(Locks::mutator_lock_) {
1349 for (GcRoot<mirror::String>& root : strings) {
1350 root = GcRoot<mirror::String>(forward_object(root.Read<kWithoutReadBarrier>()));
1351 }
1352 }, /*is_boot_image=*/ false);
1353 }
1354 }
1355 if (VLOG_IS_ON(image)) {
1356 logger.Dump(LOG_STREAM(INFO));
1357 }
1358 return true;
1359 }
1360 };
1361
AppendImageChecksum(uint32_t component_count,uint32_t checksum,std::string * checksums)1362 static void AppendImageChecksum(uint32_t component_count,
1363 uint32_t checksum,
1364 /*inout*/std::string* checksums) {
1365 static_assert(ImageSpace::kImageChecksumPrefix == 'i', "Format prefix check.");
1366 StringAppendF(checksums, "i;%u/%08x", component_count, checksum);
1367 }
1368
CheckAndRemoveImageChecksum(uint32_t component_count,uint32_t checksum,std::string_view * oat_checksums,std::string * error_msg)1369 static bool CheckAndRemoveImageChecksum(uint32_t component_count,
1370 uint32_t checksum,
1371 /*inout*/std::string_view* oat_checksums,
1372 /*out*/std::string* error_msg) {
1373 std::string image_checksum;
1374 AppendImageChecksum(component_count, checksum, &image_checksum);
1375 if (!StartsWith(*oat_checksums, image_checksum)) {
1376 *error_msg = StringPrintf("Image checksum mismatch, expected %s to start with %s",
1377 std::string(*oat_checksums).c_str(),
1378 image_checksum.c_str());
1379 return false;
1380 }
1381 oat_checksums->remove_prefix(image_checksum.size());
1382 return true;
1383 }
1384
1385 // Helper class to find the primary boot image and boot image extensions
1386 // and determine the boot image layout.
1387 class ImageSpace::BootImageLayout {
1388 public:
1389 // Description of a "chunk" of the boot image, i.e. either primary boot image
1390 // or a boot image extension, used in conjunction with the boot class path to
1391 // load boot image components.
1392 struct ImageChunk {
1393 std::string base_location;
1394 std::string base_filename;
1395 std::string profile_file;
1396 size_t start_index;
1397 uint32_t component_count;
1398 uint32_t image_space_count;
1399 uint32_t reservation_size;
1400 uint32_t checksum;
1401 uint32_t boot_image_component_count;
1402 uint32_t boot_image_checksum;
1403 uint32_t boot_image_size;
1404
1405 // The following file descriptors hold the memfd files for extensions compiled
1406 // in memory and described by the above fields. We want to use them to mmap()
1407 // the contents and then close them while treating the ImageChunk description
1408 // as immutable (const), so make these fields explicitly mutable.
1409 mutable android::base::unique_fd art_fd;
1410 mutable android::base::unique_fd vdex_fd;
1411 mutable android::base::unique_fd oat_fd;
1412 };
1413
BootImageLayout(const std::string & image_location,ArrayRef<const std::string> boot_class_path,ArrayRef<const std::string> boot_class_path_locations)1414 BootImageLayout(const std::string& image_location,
1415 ArrayRef<const std::string> boot_class_path,
1416 ArrayRef<const std::string> boot_class_path_locations)
1417 : image_location_(image_location),
1418 boot_class_path_(boot_class_path),
1419 boot_class_path_locations_(boot_class_path_locations) {}
1420
1421 std::string GetPrimaryImageLocation();
1422
LoadFromSystem(InstructionSet image_isa,std::string * error_msg)1423 bool LoadFromSystem(InstructionSet image_isa, /*out*/std::string* error_msg) {
1424 return LoadOrValidateFromSystem(image_isa, /*oat_checksums=*/ nullptr, error_msg);
1425 }
1426
ValidateFromSystem(InstructionSet image_isa,std::string_view * oat_checksums,std::string * error_msg)1427 bool ValidateFromSystem(InstructionSet image_isa,
1428 /*inout*/std::string_view* oat_checksums,
1429 /*out*/std::string* error_msg) {
1430 DCHECK(oat_checksums != nullptr);
1431 return LoadOrValidateFromSystem(image_isa, oat_checksums, error_msg);
1432 }
1433
GetChunks() const1434 ArrayRef<const ImageChunk> GetChunks() const {
1435 return ArrayRef<const ImageChunk>(chunks_);
1436 }
1437
GetBaseAddress() const1438 uint32_t GetBaseAddress() const {
1439 return base_address_;
1440 }
1441
GetNextBcpIndex() const1442 size_t GetNextBcpIndex() const {
1443 return next_bcp_index_;
1444 }
1445
GetTotalComponentCount() const1446 size_t GetTotalComponentCount() const {
1447 return total_component_count_;
1448 }
1449
GetTotalReservationSize() const1450 size_t GetTotalReservationSize() const {
1451 return total_reservation_size_;
1452 }
1453
1454 private:
1455 struct NamedComponentLocation {
1456 std::string base_location;
1457 size_t bcp_index;
1458 std::string profile_filename;
1459 };
1460
ExpandLocationImpl(const std::string & location,size_t bcp_index,bool boot_image_extension)1461 std::string ExpandLocationImpl(const std::string& location,
1462 size_t bcp_index,
1463 bool boot_image_extension) {
1464 std::vector<std::string> expanded = ExpandMultiImageLocations(
1465 ArrayRef<const std::string>(boot_class_path_).SubArray(bcp_index, 1u),
1466 location,
1467 boot_image_extension);
1468 DCHECK_EQ(expanded.size(), 1u);
1469 return expanded[0];
1470 }
1471
ExpandLocation(const std::string & location,size_t bcp_index)1472 std::string ExpandLocation(const std::string& location, size_t bcp_index) {
1473 if (bcp_index == 0u) {
1474 DCHECK_EQ(location, ExpandLocationImpl(location, bcp_index, /*boot_image_extension=*/ false));
1475 return location;
1476 } else {
1477 return ExpandLocationImpl(location, bcp_index, /*boot_image_extension=*/ true);
1478 }
1479 }
1480
GetBcpComponentPath(size_t bcp_index)1481 std::string GetBcpComponentPath(size_t bcp_index) {
1482 DCHECK_LE(bcp_index, boot_class_path_.size());
1483 size_t bcp_slash_pos = boot_class_path_[bcp_index].rfind('/');
1484 DCHECK_NE(bcp_slash_pos, std::string::npos);
1485 return boot_class_path_[bcp_index].substr(0u, bcp_slash_pos + 1u);
1486 }
1487
1488 bool VerifyImageLocation(const std::vector<std::string>& components,
1489 /*out*/size_t* named_components_count,
1490 /*out*/std::string* error_msg);
1491
1492 bool MatchNamedComponents(
1493 ArrayRef<const std::string> named_components,
1494 /*out*/std::vector<NamedComponentLocation>* named_component_locations,
1495 /*out*/std::string* error_msg);
1496
1497 bool ValidateBootImageChecksum(const char* file_description,
1498 const ImageHeader& header,
1499 /*out*/std::string* error_msg);
1500
1501 bool ValidateHeader(const ImageHeader& header,
1502 size_t bcp_index,
1503 const char* file_description,
1504 /*out*/std::string* error_msg);
1505
1506 bool ReadHeader(const std::string& base_location,
1507 const std::string& base_filename,
1508 size_t bcp_index,
1509 /*out*/std::string* error_msg);
1510
1511 bool CompileExtension(const std::string& base_location,
1512 const std::string& base_filename,
1513 size_t bcp_index,
1514 const std::string& profile_filename,
1515 ArrayRef<std::string> dependencies,
1516 /*out*/std::string* error_msg);
1517
1518 bool CheckAndRemoveLastChunkChecksum(/*inout*/std::string_view* oat_checksums,
1519 /*out*/std::string* error_msg);
1520
1521 template <typename FilenameFn>
1522 bool LoadOrValidate(FilenameFn&& filename_fn,
1523 /*inout*/std::string_view* oat_checksums,
1524 /*out*/std::string* error_msg);
1525
1526 bool LoadOrValidateFromSystem(InstructionSet image_isa,
1527 /*inout*/std::string_view* oat_checksums,
1528 /*out*/std::string* error_msg);
1529
1530 const std::string& image_location_;
1531 ArrayRef<const std::string> boot_class_path_;
1532 ArrayRef<const std::string> boot_class_path_locations_;
1533
1534 std::vector<ImageChunk> chunks_;
1535 uint32_t base_address_ = 0u;
1536 size_t next_bcp_index_ = 0u;
1537 size_t total_component_count_ = 0u;
1538 size_t total_reservation_size_ = 0u;
1539 };
1540
GetPrimaryImageLocation()1541 std::string ImageSpace::BootImageLayout::GetPrimaryImageLocation() {
1542 size_t location_start = 0u;
1543 size_t location_end = image_location_.find(kComponentSeparator);
1544 while (location_end == location_start) {
1545 ++location_start;
1546 location_end = image_location_.find(location_start, kComponentSeparator);
1547 }
1548 std::string location = (location_end == std::string::npos)
1549 ? image_location_.substr(location_start)
1550 : image_location_.substr(location_start, location_end - location_start);
1551 if (location.find('/') == std::string::npos) {
1552 // No path, so use the path from the first boot class path component.
1553 size_t slash_pos = boot_class_path_.empty()
1554 ? std::string::npos
1555 : boot_class_path_[0].rfind('/');
1556 if (slash_pos == std::string::npos) {
1557 return std::string();
1558 }
1559 location.insert(0u, boot_class_path_[0].substr(0u, slash_pos + 1u));
1560 }
1561 return location;
1562 }
1563
VerifyImageLocation(const std::vector<std::string> & components,size_t * named_components_count,std::string * error_msg)1564 bool ImageSpace::BootImageLayout::VerifyImageLocation(
1565 const std::vector<std::string>& components,
1566 /*out*/size_t* named_components_count,
1567 /*out*/std::string* error_msg) {
1568 DCHECK(named_components_count != nullptr);
1569
1570 // Validate boot class path. Require a path and non-empty name in each component.
1571 for (const std::string& bcp_component : boot_class_path_) {
1572 size_t bcp_slash_pos = bcp_component.rfind('/');
1573 if (bcp_slash_pos == std::string::npos || bcp_slash_pos == bcp_component.size() - 1u) {
1574 *error_msg = StringPrintf("Invalid boot class path component: %s", bcp_component.c_str());
1575 return false;
1576 }
1577 }
1578
1579 // Validate the format of image location components.
1580 size_t components_size = components.size();
1581 if (components_size == 0u) {
1582 *error_msg = "Empty image location.";
1583 return false;
1584 }
1585 size_t wildcards_start = components_size; // No wildcards.
1586 for (size_t i = 0; i != components_size; ++i) {
1587 const std::string& component = components[i];
1588 DCHECK(!component.empty()); // Guaranteed by Split().
1589 const size_t profile_separator_pos = component.find(kProfileSeparator);
1590 size_t wildcard_pos = component.find('*');
1591 if (wildcard_pos == std::string::npos) {
1592 if (wildcards_start != components.size()) {
1593 *error_msg =
1594 StringPrintf("Image component without wildcard after component with wildcard: %s",
1595 component.c_str());
1596 return false;
1597 }
1598 if (profile_separator_pos != std::string::npos) {
1599 if (component.find(kProfileSeparator, profile_separator_pos + 1u) != std::string::npos) {
1600 *error_msg = StringPrintf("Multiple profile delimiters in %s", component.c_str());
1601 return false;
1602 }
1603 if (profile_separator_pos == 0u || profile_separator_pos + 1u == component.size()) {
1604 *error_msg = StringPrintf("Missing component and/or profile name in %s",
1605 component.c_str());
1606 return false;
1607 }
1608 if (component.back() == '/') {
1609 *error_msg = StringPrintf("Profile name ends with path separator: %s",
1610 component.c_str());
1611 return false;
1612 }
1613 }
1614 size_t component_name_length =
1615 profile_separator_pos != std::string::npos ? profile_separator_pos : component.size();
1616 if (component[component_name_length - 1u] == '/') {
1617 *error_msg = StringPrintf("Image component ends with path separator: %s",
1618 component.c_str());
1619 return false;
1620 }
1621 } else {
1622 if (profile_separator_pos != std::string::npos) {
1623 *error_msg = StringPrintf("Unsupproted wildcard (*) and profile delimiter (!) in %s",
1624 component.c_str());
1625 return false;
1626 }
1627 if (wildcards_start == components_size) {
1628 wildcards_start = i;
1629 }
1630 // Wildcard must be the last character.
1631 if (wildcard_pos != component.size() - 1u) {
1632 *error_msg = StringPrintf("Unsupported wildcard (*) position in %s", component.c_str());
1633 return false;
1634 }
1635 // And it must be either plain wildcard or preceded by a path separator.
1636 if (component.size() != 1u && component[wildcard_pos - 1u] != '/') {
1637 *error_msg = StringPrintf("Non-plain wildcard (*) not preceded by path separator '/': %s",
1638 component.c_str());
1639 return false;
1640 }
1641 if (i == 0) {
1642 *error_msg = StringPrintf("Primary component contains wildcard (*): %s", component.c_str());
1643 return false;
1644 }
1645 }
1646 }
1647
1648 *named_components_count = wildcards_start;
1649 return true;
1650 }
1651
MatchNamedComponents(ArrayRef<const std::string> named_components,std::vector<NamedComponentLocation> * named_component_locations,std::string * error_msg)1652 bool ImageSpace::BootImageLayout::MatchNamedComponents(
1653 ArrayRef<const std::string> named_components,
1654 /*out*/std::vector<NamedComponentLocation>* named_component_locations,
1655 /*out*/std::string* error_msg) {
1656 DCHECK(!named_components.empty());
1657 DCHECK(named_component_locations->empty());
1658 named_component_locations->reserve(named_components.size());
1659 size_t bcp_component_count = boot_class_path_.size();
1660 size_t bcp_pos = 0;
1661 std::string base_name;
1662 for (size_t i = 0, size = named_components.size(); i != size; ++i) {
1663 std::string component = named_components[i];
1664 std::string profile_filename; // Empty.
1665 const size_t profile_separator_pos = component.find(kProfileSeparator);
1666 if (profile_separator_pos != std::string::npos) {
1667 profile_filename = component.substr(profile_separator_pos + 1u);
1668 DCHECK(!profile_filename.empty()); // Checked by VerifyImageLocation()
1669 component.resize(profile_separator_pos);
1670 DCHECK(!component.empty()); // Checked by VerifyImageLocation()
1671 }
1672 size_t slash_pos = component.rfind('/');
1673 std::string base_location;
1674 if (i == 0u) {
1675 // The primary boot image name is taken as provided. It forms the base
1676 // for expanding the extension filenames.
1677 if (slash_pos != std::string::npos) {
1678 base_name = component.substr(slash_pos + 1u);
1679 base_location = component;
1680 } else {
1681 base_name = component;
1682 base_location = GetBcpComponentPath(0u) + component;
1683 }
1684 } else {
1685 std::string to_match;
1686 if (slash_pos != std::string::npos) {
1687 // If we have the full path, we just need to match the filename to the BCP component.
1688 base_location = component.substr(0u, slash_pos + 1u) + base_name;
1689 to_match = component;
1690 }
1691 while (true) {
1692 if (slash_pos == std::string::npos) {
1693 // If we do not have a full path, we need to update the path based on the BCP location.
1694 std::string path = GetBcpComponentPath(bcp_pos);
1695 to_match = path + component;
1696 base_location = path + base_name;
1697 }
1698 if (ExpandLocation(base_location, bcp_pos) == to_match) {
1699 break;
1700 }
1701 ++bcp_pos;
1702 if (bcp_pos == bcp_component_count) {
1703 *error_msg = StringPrintf("Image component %s does not match a boot class path component",
1704 component.c_str());
1705 return false;
1706 }
1707 }
1708 }
1709 if (!profile_filename.empty() && profile_filename.find('/') == std::string::npos) {
1710 profile_filename.insert(/*pos*/ 0u, GetBcpComponentPath(bcp_pos));
1711 }
1712 NamedComponentLocation location;
1713 location.base_location = base_location;
1714 location.bcp_index = bcp_pos;
1715 location.profile_filename = profile_filename;
1716 named_component_locations->push_back(location);
1717 ++bcp_pos;
1718 }
1719 return true;
1720 }
1721
ValidateBootImageChecksum(const char * file_description,const ImageHeader & header,std::string * error_msg)1722 bool ImageSpace::BootImageLayout::ValidateBootImageChecksum(const char* file_description,
1723 const ImageHeader& header,
1724 /*out*/std::string* error_msg) {
1725 uint32_t boot_image_component_count = header.GetBootImageComponentCount();
1726 if (chunks_.empty() != (boot_image_component_count == 0u)) {
1727 *error_msg = StringPrintf("Unexpected boot image component count in %s: %u, %s",
1728 file_description,
1729 boot_image_component_count,
1730 chunks_.empty() ? "should be 0" : "should not be 0");
1731 return false;
1732 }
1733 uint32_t component_count = 0u;
1734 uint32_t composite_checksum = 0u;
1735 uint64_t boot_image_size = 0u;
1736 for (const ImageChunk& chunk : chunks_) {
1737 if (component_count == boot_image_component_count) {
1738 break; // Hit the component count.
1739 }
1740 if (chunk.start_index != component_count) {
1741 break; // End of contiguous chunks, fail below; same as reaching end of `chunks_`.
1742 }
1743 if (chunk.component_count > boot_image_component_count - component_count) {
1744 *error_msg = StringPrintf("Boot image component count in %s ends in the middle of a chunk, "
1745 "%u is between %u and %u",
1746 file_description,
1747 boot_image_component_count,
1748 component_count,
1749 component_count + chunk.component_count);
1750 return false;
1751 }
1752 component_count += chunk.component_count;
1753 composite_checksum ^= chunk.checksum;
1754 boot_image_size += chunk.reservation_size;
1755 }
1756 DCHECK_LE(component_count, boot_image_component_count);
1757 if (component_count != boot_image_component_count) {
1758 *error_msg = StringPrintf("Missing boot image components for checksum in %s: %u > %u",
1759 file_description,
1760 boot_image_component_count,
1761 component_count);
1762 return false;
1763 }
1764 if (composite_checksum != header.GetBootImageChecksum()) {
1765 *error_msg = StringPrintf("Boot image checksum mismatch in %s: 0x%08x != 0x%08x",
1766 file_description,
1767 header.GetBootImageChecksum(),
1768 composite_checksum);
1769 return false;
1770 }
1771 if (boot_image_size != header.GetBootImageSize()) {
1772 *error_msg = StringPrintf("Boot image size mismatch in %s: 0x%08x != 0x%08" PRIx64,
1773 file_description,
1774 header.GetBootImageSize(),
1775 boot_image_size);
1776 return false;
1777 }
1778 return true;
1779 }
1780
ValidateHeader(const ImageHeader & header,size_t bcp_index,const char * file_description,std::string * error_msg)1781 bool ImageSpace::BootImageLayout::ValidateHeader(const ImageHeader& header,
1782 size_t bcp_index,
1783 const char* file_description,
1784 /*out*/std::string* error_msg) {
1785 size_t bcp_component_count = boot_class_path_.size();
1786 DCHECK_LT(bcp_index, bcp_component_count);
1787 size_t allowed_component_count = bcp_component_count - bcp_index;
1788 DCHECK_LE(total_reservation_size_, kMaxTotalImageReservationSize);
1789 size_t allowed_reservation_size = kMaxTotalImageReservationSize - total_reservation_size_;
1790
1791 if (header.GetComponentCount() == 0u ||
1792 header.GetComponentCount() > allowed_component_count) {
1793 *error_msg = StringPrintf("Unexpected component count in %s, received %u, "
1794 "expected non-zero and <= %zu",
1795 file_description,
1796 header.GetComponentCount(),
1797 allowed_component_count);
1798 return false;
1799 }
1800 if (header.GetImageReservationSize() > allowed_reservation_size) {
1801 *error_msg = StringPrintf("Reservation size too big in %s: %u > %zu",
1802 file_description,
1803 header.GetImageReservationSize(),
1804 allowed_reservation_size);
1805 return false;
1806 }
1807 if (!ValidateBootImageChecksum(file_description, header, error_msg)) {
1808 return false;
1809 }
1810
1811 return true;
1812 }
1813
ReadHeader(const std::string & base_location,const std::string & base_filename,size_t bcp_index,std::string * error_msg)1814 bool ImageSpace::BootImageLayout::ReadHeader(const std::string& base_location,
1815 const std::string& base_filename,
1816 size_t bcp_index,
1817 /*out*/std::string* error_msg) {
1818 DCHECK_LE(next_bcp_index_, bcp_index);
1819 DCHECK_LT(bcp_index, boot_class_path_.size());
1820
1821 std::string actual_filename = ExpandLocation(base_filename, bcp_index);
1822 ImageHeader header;
1823 if (!ReadSpecificImageHeader(actual_filename.c_str(), &header, error_msg)) {
1824 return false;
1825 }
1826 const char* file_description = actual_filename.c_str();
1827 if (!ValidateHeader(header, bcp_index, file_description, error_msg)) {
1828 return false;
1829 }
1830
1831 if (chunks_.empty()) {
1832 base_address_ = reinterpret_cast32<uint32_t>(header.GetImageBegin());
1833 }
1834 ImageChunk chunk;
1835 chunk.base_location = base_location;
1836 chunk.base_filename = base_filename;
1837 chunk.start_index = bcp_index;
1838 chunk.component_count = header.GetComponentCount();
1839 chunk.image_space_count = header.GetImageSpaceCount();
1840 chunk.reservation_size = header.GetImageReservationSize();
1841 chunk.checksum = header.GetImageChecksum();
1842 chunk.boot_image_component_count = header.GetBootImageComponentCount();
1843 chunk.boot_image_checksum = header.GetBootImageChecksum();
1844 chunk.boot_image_size = header.GetBootImageSize();
1845 chunks_.push_back(std::move(chunk));
1846 next_bcp_index_ = bcp_index + header.GetComponentCount();
1847 total_component_count_ += header.GetComponentCount();
1848 total_reservation_size_ += header.GetImageReservationSize();
1849 return true;
1850 }
1851
CompileExtension(const std::string & base_location,const std::string & base_filename,size_t bcp_index,const std::string & profile_filename,ArrayRef<std::string> dependencies,std::string * error_msg)1852 bool ImageSpace::BootImageLayout::CompileExtension(const std::string& base_location,
1853 const std::string& base_filename,
1854 size_t bcp_index,
1855 const std::string& profile_filename,
1856 ArrayRef<std::string> dependencies,
1857 /*out*/std::string* error_msg) {
1858 DCHECK_LE(total_component_count_, next_bcp_index_);
1859 DCHECK_LE(next_bcp_index_, bcp_index);
1860 size_t bcp_component_count = boot_class_path_.size();
1861 DCHECK_LT(bcp_index, bcp_component_count);
1862 DCHECK(!profile_filename.empty());
1863 if (total_component_count_ != bcp_index) {
1864 // We require all previous BCP components to have a boot image space (primary or extension).
1865 *error_msg = "Cannot compile extension because of missing dependencies.";
1866 return false;
1867 }
1868 Runtime* runtime = Runtime::Current();
1869 if (!runtime->IsImageDex2OatEnabled()) {
1870 *error_msg = "Cannot compile extension because dex2oat for image compilation is disabled.";
1871 return false;
1872 }
1873
1874 // Check dependencies.
1875 DCHECK(!dependencies.empty());
1876 size_t dependency_component_count = 0;
1877 for (size_t i = 0, size = dependencies.size(); i != size; ++i) {
1878 if (chunks_.size() == i || chunks_[i].start_index != dependency_component_count) {
1879 *error_msg = StringPrintf("Missing extension dependency \"%s\"", dependencies[i].c_str());
1880 return false;
1881 }
1882 dependency_component_count += chunks_[i].component_count;
1883 }
1884
1885 // Collect locations from the profile.
1886 std::set<std::string> dex_locations;
1887 {
1888 std::unique_ptr<File> profile_file(OS::OpenFileForReading(profile_filename.c_str()));
1889 if (profile_file == nullptr) {
1890 *error_msg = StringPrintf("Failed to open profile file \"%s\" for reading, error: %s",
1891 profile_filename.c_str(),
1892 strerror(errno));
1893 return false;
1894 }
1895
1896 // TODO: Rewrite ProfileCompilationInfo to provide a better interface and
1897 // to store the dex locations in uncompressed section of the file.
1898 auto collect_fn = [&dex_locations](const std::string& dex_location,
1899 uint32_t checksum ATTRIBUTE_UNUSED) {
1900 dex_locations.insert(dex_location); // Just collect locations.
1901 return false; // Do not read the profile data.
1902 };
1903 ProfileCompilationInfo info(/*for_boot_image=*/ true);
1904 if (!info.Load(profile_file->Fd(), /*merge_classes=*/ true, collect_fn)) {
1905 *error_msg = StringPrintf("Failed to scan profile from %s", profile_filename.c_str());
1906 return false;
1907 }
1908 }
1909
1910 // Match boot class path components to locations from profile.
1911 // Note that the profile records only filenames without paths.
1912 size_t bcp_end = bcp_index;
1913 for (; bcp_end != bcp_component_count; ++bcp_end) {
1914 const std::string& bcp_component = boot_class_path_locations_[bcp_end];
1915 size_t slash_pos = bcp_component.rfind('/');
1916 DCHECK_NE(slash_pos, std::string::npos);
1917 std::string bcp_component_name = bcp_component.substr(slash_pos + 1u);
1918 if (dex_locations.count(bcp_component_name) == 0u) {
1919 break; // Did not find the current location in dex file.
1920 }
1921 }
1922
1923 if (bcp_end == bcp_index) {
1924 // No data for the first (requested) component.
1925 *error_msg = StringPrintf("The profile does not contain data for %s",
1926 boot_class_path_locations_[bcp_index].c_str());
1927 return false;
1928 }
1929
1930 // Create in-memory files.
1931 std::string art_filename = ExpandLocation(base_filename, bcp_index);
1932 std::string vdex_filename = ImageHeader::GetVdexLocationFromImageLocation(art_filename);
1933 std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(art_filename);
1934 android::base::unique_fd art_fd(memfd_create_compat(art_filename.c_str(), /*flags=*/ 0));
1935 android::base::unique_fd vdex_fd(memfd_create_compat(vdex_filename.c_str(), /*flags=*/ 0));
1936 android::base::unique_fd oat_fd(memfd_create_compat(oat_filename.c_str(), /*flags=*/ 0));
1937 if (art_fd.get() == -1 || vdex_fd.get() == -1 || oat_fd.get() == -1) {
1938 *error_msg = StringPrintf("Failed to create memfd handles for compiling extension for %s",
1939 boot_class_path_locations_[bcp_index].c_str());
1940 return false;
1941 }
1942
1943 // Construct the dex2oat command line.
1944 std::string dex2oat = runtime->GetCompilerExecutable();
1945 ArrayRef<const std::string> head_bcp =
1946 boot_class_path_.SubArray(/*pos=*/ 0u, /*length=*/ dependency_component_count);
1947 ArrayRef<const std::string> head_bcp_locations =
1948 boot_class_path_locations_.SubArray(/*pos=*/ 0u, /*length=*/ dependency_component_count);
1949 ArrayRef<const std::string> extension_bcp =
1950 boot_class_path_.SubArray(/*pos=*/ bcp_index, /*length=*/ bcp_end - bcp_index);
1951 ArrayRef<const std::string> extension_bcp_locations =
1952 boot_class_path_locations_.SubArray(/*pos=*/ bcp_index, /*length=*/ bcp_end - bcp_index);
1953 std::string boot_class_path = Join(head_bcp, ':') + ':' + Join(extension_bcp, ':');
1954 std::string boot_class_path_locations =
1955 Join(head_bcp_locations, ':') + ':' + Join(extension_bcp_locations, ':');
1956
1957 std::vector<std::string> args;
1958 args.push_back(dex2oat);
1959 args.push_back("--runtime-arg");
1960 args.push_back("-Xbootclasspath:" + boot_class_path);
1961 args.push_back("--runtime-arg");
1962 args.push_back("-Xbootclasspath-locations:" + boot_class_path_locations);
1963 args.push_back("--boot-image=" + Join(dependencies, kComponentSeparator));
1964 for (size_t i = bcp_index; i != bcp_end; ++i) {
1965 args.push_back("--dex-file=" + boot_class_path_[i]);
1966 args.push_back("--dex-location=" + boot_class_path_locations_[i]);
1967 }
1968 args.push_back("--image-fd=" + std::to_string(art_fd.get()));
1969 args.push_back("--output-vdex-fd=" + std::to_string(vdex_fd.get()));
1970 args.push_back("--oat-fd=" + std::to_string(oat_fd.get()));
1971 args.push_back("--oat-location=" + ImageHeader::GetOatLocationFromImageLocation(base_filename));
1972 args.push_back("--single-image");
1973 args.push_back("--image-format=uncompressed");
1974
1975 // We currently cannot guarantee that the boot class path has no verification failures.
1976 // And we do not want to compile anything, compilation should be done by JIT in zygote.
1977 args.push_back("--compiler-filter=verify");
1978
1979 // Pass the profile.
1980 args.push_back("--profile-file=" + profile_filename);
1981
1982 // Do not let the file descriptor numbers change the compilation output.
1983 args.push_back("--avoid-storing-invocation");
1984
1985 runtime->AddCurrentRuntimeFeaturesAsDex2OatArguments(&args);
1986
1987 if (!kIsTargetBuild) {
1988 args.push_back("--host");
1989 }
1990
1991 // Image compiler options go last to allow overriding above args, such as --compiler-filter.
1992 for (const std::string& compiler_option : runtime->GetImageCompilerOptions()) {
1993 args.push_back(compiler_option);
1994 }
1995
1996 // Compile the extension.
1997 VLOG(image) << "Compiling boot image extension for " << (bcp_end - bcp_index)
1998 << " components, starting from " << boot_class_path_locations_[bcp_index];
1999 if (!Exec(args, error_msg)) {
2000 return false;
2001 }
2002
2003 // Read and validate the image header.
2004 ImageHeader header;
2005 {
2006 File image_file(art_fd.release(), /*check_usage=*/ false);
2007 if (!ReadSpecificImageHeader(&image_file, "compiled image file", &header, error_msg)) {
2008 return false;
2009 }
2010 art_fd.reset(image_file.Release());
2011 }
2012 const char* file_description = "compiled image file";
2013 if (!ValidateHeader(header, bcp_index, file_description, error_msg)) {
2014 return false;
2015 }
2016
2017 DCHECK(!chunks_.empty());
2018 ImageChunk chunk;
2019 chunk.base_location = base_location;
2020 chunk.base_filename = base_filename;
2021 chunk.profile_file = profile_filename;
2022 chunk.start_index = bcp_index;
2023 chunk.component_count = header.GetComponentCount();
2024 chunk.image_space_count = header.GetImageSpaceCount();
2025 chunk.reservation_size = header.GetImageReservationSize();
2026 chunk.checksum = header.GetImageChecksum();
2027 chunk.boot_image_component_count = header.GetBootImageComponentCount();
2028 chunk.boot_image_checksum = header.GetBootImageChecksum();
2029 chunk.boot_image_size = header.GetBootImageSize();
2030 chunk.art_fd.reset(art_fd.release());
2031 chunk.vdex_fd.reset(vdex_fd.release());
2032 chunk.oat_fd.reset(oat_fd.release());
2033 chunks_.push_back(std::move(chunk));
2034 next_bcp_index_ = bcp_index + header.GetComponentCount();
2035 total_component_count_ += header.GetComponentCount();
2036 total_reservation_size_ += header.GetImageReservationSize();
2037 return true;
2038 }
2039
CheckAndRemoveLastChunkChecksum(std::string_view * oat_checksums,std::string * error_msg)2040 bool ImageSpace::BootImageLayout::CheckAndRemoveLastChunkChecksum(
2041 /*inout*/std::string_view* oat_checksums,
2042 /*out*/std::string* error_msg) {
2043 DCHECK(oat_checksums != nullptr);
2044 DCHECK(!chunks_.empty());
2045 const ImageChunk& chunk = chunks_.back();
2046 size_t component_count = chunk.component_count;
2047 size_t checksum = chunk.checksum;
2048 if (!CheckAndRemoveImageChecksum(component_count, checksum, oat_checksums, error_msg)) {
2049 DCHECK(!error_msg->empty());
2050 return false;
2051 }
2052 if (oat_checksums->empty()) {
2053 if (next_bcp_index_ != boot_class_path_.size()) {
2054 *error_msg = StringPrintf("Checksum too short, missing %zu components.",
2055 boot_class_path_.size() - next_bcp_index_);
2056 return false;
2057 }
2058 return true;
2059 }
2060 if (!StartsWith(*oat_checksums, ":")) {
2061 *error_msg = StringPrintf("Missing ':' separator at start of %s",
2062 std::string(*oat_checksums).c_str());
2063 return false;
2064 }
2065 oat_checksums->remove_prefix(1u);
2066 if (oat_checksums->empty()) {
2067 *error_msg = "Missing checksums after the ':' separator.";
2068 return false;
2069 }
2070 return true;
2071 }
2072
2073 template <typename FilenameFn>
LoadOrValidate(FilenameFn && filename_fn,std::string_view * oat_checksums,std::string * error_msg)2074 bool ImageSpace::BootImageLayout::LoadOrValidate(FilenameFn&& filename_fn,
2075 /*inout*/std::string_view* oat_checksums,
2076 /*out*/std::string* error_msg) {
2077 DCHECK(GetChunks().empty());
2078 DCHECK_EQ(GetBaseAddress(), 0u);
2079 bool validate = (oat_checksums != nullptr);
2080 static_assert(ImageSpace::kImageChecksumPrefix == 'i', "Format prefix check.");
2081 DCHECK(!validate || StartsWith(*oat_checksums, "i"));
2082
2083 std::vector<std::string> components;
2084 Split(image_location_, kComponentSeparator, &components);
2085 size_t named_components_count = 0u;
2086 if (!VerifyImageLocation(components, &named_components_count, error_msg)) {
2087 return false;
2088 }
2089
2090 ArrayRef<const std::string> named_components =
2091 ArrayRef<const std::string>(components).SubArray(/*pos=*/ 0u, named_components_count);
2092
2093 std::vector<NamedComponentLocation> named_component_locations;
2094 if (!MatchNamedComponents(named_components, &named_component_locations, error_msg)) {
2095 return false;
2096 }
2097
2098 // Load the image headers of named components.
2099 DCHECK_EQ(named_component_locations.size(), named_components.size());
2100 const size_t bcp_component_count = boot_class_path_.size();
2101 size_t bcp_pos = 0u;
2102 ArrayRef<std::string> extension_dependencies;
2103 for (size_t i = 0, size = named_components.size(); i != size; ++i) {
2104 const std::string& base_location = named_component_locations[i].base_location;
2105 size_t bcp_index = named_component_locations[i].bcp_index;
2106 const std::string& profile_filename = named_component_locations[i].profile_filename;
2107 if (extension_dependencies.empty() && !profile_filename.empty()) {
2108 // Each extension is compiled against the same dependencies, namely the leading
2109 // named components that were specified without providing the profile filename.
2110 extension_dependencies =
2111 ArrayRef<std::string>(components).SubArray(/*pos=*/ 0, /*length=*/ i);
2112 }
2113 if (bcp_index < bcp_pos) {
2114 DCHECK_NE(i, 0u);
2115 LOG(ERROR) << "Named image component already covered by previous image: " << base_location;
2116 continue;
2117 }
2118 if (validate && bcp_index > bcp_pos) {
2119 *error_msg = StringPrintf("End of contiguous boot class path images, remaining checksum: %s",
2120 std::string(*oat_checksums).c_str());
2121 return false;
2122 }
2123 std::string local_error_msg;
2124 std::string* err_msg = (i == 0 || validate) ? error_msg : &local_error_msg;
2125 std::string base_filename;
2126 if (!filename_fn(base_location, &base_filename, err_msg) ||
2127 !ReadHeader(base_location, base_filename, bcp_index, err_msg)) {
2128 if (i == 0u || validate) {
2129 return false;
2130 }
2131 VLOG(image) << "Error reading named image component header for " << base_location
2132 << ", error: " << local_error_msg;
2133 if (profile_filename.empty() ||
2134 !CompileExtension(base_location,
2135 base_filename,
2136 bcp_index,
2137 profile_filename,
2138 extension_dependencies,
2139 &local_error_msg)) {
2140 if (!profile_filename.empty()) {
2141 VLOG(image) << "Error compiling extension for " << boot_class_path_[bcp_index]
2142 << " error: " << local_error_msg;
2143 }
2144 bcp_pos = bcp_index + 1u; // Skip at least this component.
2145 DCHECK_GT(bcp_pos, GetNextBcpIndex());
2146 continue;
2147 }
2148 }
2149 if (validate) {
2150 if (!CheckAndRemoveLastChunkChecksum(oat_checksums, error_msg)) {
2151 return false;
2152 }
2153 if (oat_checksums->empty() || !StartsWith(*oat_checksums, "i")) {
2154 return true; // Let the caller deal with the dex file checksums if any.
2155 }
2156 }
2157 bcp_pos = GetNextBcpIndex();
2158 }
2159
2160 // Look for remaining components if there are any wildcard specifications.
2161 ArrayRef<const std::string> search_paths =
2162 ArrayRef<const std::string>(components).SubArray(/*pos=*/ named_components_count);
2163 if (!search_paths.empty()) {
2164 const std::string& primary_base_location = named_component_locations[0].base_location;
2165 size_t base_slash_pos = primary_base_location.rfind('/');
2166 DCHECK_NE(base_slash_pos, std::string::npos);
2167 std::string base_name = primary_base_location.substr(base_slash_pos + 1u);
2168 DCHECK(!base_name.empty());
2169 while (bcp_pos != bcp_component_count) {
2170 const std::string& bcp_component = boot_class_path_[bcp_pos];
2171 bool found = false;
2172 for (const std::string& path : search_paths) {
2173 std::string base_location;
2174 if (path.size() == 1u) {
2175 DCHECK_EQ(path, "*");
2176 size_t slash_pos = bcp_component.rfind('/');
2177 DCHECK_NE(slash_pos, std::string::npos);
2178 base_location = bcp_component.substr(0u, slash_pos + 1u) + base_name;
2179 } else {
2180 DCHECK(EndsWith(path, "/*"));
2181 base_location = path.substr(0u, path.size() - 1u) + base_name;
2182 }
2183 std::string err_msg; // Ignored.
2184 std::string base_filename;
2185 if (filename_fn(base_location, &base_filename, &err_msg) &&
2186 ReadHeader(base_location, base_filename, bcp_pos, &err_msg)) {
2187 VLOG(image) << "Found image extension for " << ExpandLocation(base_location, bcp_pos);
2188 bcp_pos = GetNextBcpIndex();
2189 found = true;
2190 if (validate) {
2191 if (!CheckAndRemoveLastChunkChecksum(oat_checksums, error_msg)) {
2192 return false;
2193 }
2194 if (oat_checksums->empty() || !StartsWith(*oat_checksums, "i")) {
2195 return true; // Let the caller deal with the dex file checksums if any.
2196 }
2197 }
2198 break;
2199 }
2200 }
2201 if (!found) {
2202 if (validate) {
2203 *error_msg = StringPrintf("Missing extension for %s, remaining checksum: %s",
2204 bcp_component.c_str(),
2205 std::string(*oat_checksums).c_str());
2206 return false;
2207 }
2208 ++bcp_pos;
2209 }
2210 }
2211 }
2212
2213 return true;
2214 }
2215
LoadOrValidateFromSystem(InstructionSet image_isa,std::string_view * oat_checksums,std::string * error_msg)2216 bool ImageSpace::BootImageLayout::LoadOrValidateFromSystem(InstructionSet image_isa,
2217 /*inout*/std::string_view* oat_checksums,
2218 /*out*/std::string* error_msg) {
2219 auto filename_fn = [image_isa](const std::string& location,
2220 /*out*/std::string* filename,
2221 /*out*/std::string* err_msg ATTRIBUTE_UNUSED) {
2222 *filename = GetSystemImageFilename(location.c_str(), image_isa);
2223 return true;
2224 };
2225 return LoadOrValidate(filename_fn, oat_checksums, error_msg);
2226 }
2227
2228 class ImageSpace::BootImageLoader {
2229 public:
BootImageLoader(const std::vector<std::string> & boot_class_path,const std::vector<std::string> & boot_class_path_locations,const std::string & image_location,InstructionSet image_isa,bool relocate,bool executable)2230 BootImageLoader(const std::vector<std::string>& boot_class_path,
2231 const std::vector<std::string>& boot_class_path_locations,
2232 const std::string& image_location,
2233 InstructionSet image_isa,
2234 bool relocate,
2235 bool executable)
2236 : boot_class_path_(boot_class_path),
2237 boot_class_path_locations_(boot_class_path_locations),
2238 image_location_(image_location),
2239 image_isa_(image_isa),
2240 relocate_(relocate),
2241 executable_(executable),
2242 has_system_(false) {
2243 }
2244
FindImageFiles()2245 void FindImageFiles() {
2246 BootImageLayout layout(image_location_, boot_class_path_, boot_class_path_locations_);
2247 std::string image_location = layout.GetPrimaryImageLocation();
2248 std::string system_filename;
2249 bool found_image = FindImageFilenameImpl(image_location.c_str(),
2250 image_isa_,
2251 &has_system_,
2252 &system_filename);
2253 DCHECK_EQ(found_image, has_system_);
2254 }
2255
HasSystem() const2256 bool HasSystem() const { return has_system_; }
2257
2258 bool LoadFromSystem(size_t extra_reservation_size,
2259 /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
2260 /*out*/MemMap* extra_reservation,
2261 /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_);
2262
2263 private:
LoadImage(const BootImageLayout & layout,bool validate_oat_file,size_t extra_reservation_size,TimingLogger * logger,std::vector<std::unique_ptr<ImageSpace>> * boot_image_spaces,MemMap * extra_reservation,std::string * error_msg)2264 bool LoadImage(
2265 const BootImageLayout& layout,
2266 bool validate_oat_file,
2267 size_t extra_reservation_size,
2268 TimingLogger* logger,
2269 /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
2270 /*out*/MemMap* extra_reservation,
2271 /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) {
2272 ArrayRef<const BootImageLayout::ImageChunk> chunks = layout.GetChunks();
2273 DCHECK(!chunks.empty());
2274 const uint32_t base_address = layout.GetBaseAddress();
2275 const size_t image_component_count = layout.GetTotalComponentCount();
2276 const size_t image_reservation_size = layout.GetTotalReservationSize();
2277
2278 DCHECK_LE(image_reservation_size, kMaxTotalImageReservationSize);
2279 static_assert(kMaxTotalImageReservationSize < std::numeric_limits<uint32_t>::max());
2280 if (extra_reservation_size > std::numeric_limits<uint32_t>::max() - image_reservation_size) {
2281 // Since the `image_reservation_size` is limited to kMaxTotalImageReservationSize,
2282 // the `extra_reservation_size` would have to be really excessive to fail this check.
2283 *error_msg = StringPrintf("Excessive extra reservation size: %zu", extra_reservation_size);
2284 return false;
2285 }
2286
2287 // Reserve address space. If relocating, choose a random address for ALSR.
2288 uint8_t* addr = reinterpret_cast<uint8_t*>(
2289 relocate_ ? ART_BASE_ADDRESS + ChooseRelocationOffsetDelta() : base_address);
2290 MemMap image_reservation =
2291 ReserveBootImageMemory(addr, image_reservation_size + extra_reservation_size, error_msg);
2292 if (!image_reservation.IsValid()) {
2293 return false;
2294 }
2295
2296 // Load components.
2297 std::vector<std::unique_ptr<ImageSpace>> spaces;
2298 spaces.reserve(image_component_count);
2299 size_t max_image_space_dependencies = 0u;
2300 for (size_t i = 0, num_chunks = chunks.size(); i != num_chunks; ++i) {
2301 const BootImageLayout::ImageChunk& chunk = chunks[i];
2302 std::string extension_error_msg;
2303 uint8_t* old_reservation_begin = image_reservation.Begin();
2304 size_t old_reservation_size = image_reservation.Size();
2305 DCHECK_LE(chunk.reservation_size, old_reservation_size);
2306 if (!LoadComponents(chunk,
2307 validate_oat_file,
2308 max_image_space_dependencies,
2309 logger,
2310 &spaces,
2311 &image_reservation,
2312 (i == 0) ? error_msg : &extension_error_msg)) {
2313 // Failed to load the chunk. If this is the primary boot image, report the error.
2314 if (i == 0) {
2315 return false;
2316 }
2317 // For extension, shrink the reservation (and remap if needed, see below).
2318 size_t new_reservation_size = old_reservation_size - chunk.reservation_size;
2319 if (new_reservation_size == 0u) {
2320 DCHECK_EQ(extra_reservation_size, 0u);
2321 DCHECK_EQ(i + 1u, num_chunks);
2322 image_reservation.Reset();
2323 } else if (old_reservation_begin != image_reservation.Begin()) {
2324 // Part of the image reservation has been used and then unmapped when
2325 // rollling back the partial boot image extension load. Try to remap
2326 // the image reservation. As this should be running single-threaded,
2327 // the address range should still be available to mmap().
2328 image_reservation.Reset();
2329 std::string remap_error_msg;
2330 image_reservation = ReserveBootImageMemory(old_reservation_begin,
2331 new_reservation_size,
2332 &remap_error_msg);
2333 if (!image_reservation.IsValid()) {
2334 *error_msg = StringPrintf("Failed to remap boot image reservation after failing "
2335 "to load boot image extension (%s: %s): %s",
2336 boot_class_path_locations_[chunk.start_index].c_str(),
2337 extension_error_msg.c_str(),
2338 remap_error_msg.c_str());
2339 return false;
2340 }
2341 } else {
2342 DCHECK_EQ(old_reservation_size, image_reservation.Size());
2343 image_reservation.SetSize(new_reservation_size);
2344 }
2345 LOG(ERROR) << "Failed to load boot image extension "
2346 << boot_class_path_locations_[chunk.start_index] << ": " << extension_error_msg;
2347 }
2348 // Update `max_image_space_dependencies` if all previous BCP components
2349 // were covered and loading the current chunk succeeded.
2350 if (max_image_space_dependencies == chunk.start_index &&
2351 spaces.size() == chunk.start_index + chunk.component_count) {
2352 max_image_space_dependencies = chunk.start_index + chunk.component_count;
2353 }
2354 }
2355
2356 MemMap local_extra_reservation;
2357 if (!RemapExtraReservation(extra_reservation_size,
2358 &image_reservation,
2359 &local_extra_reservation,
2360 error_msg)) {
2361 return false;
2362 }
2363
2364 MaybeRelocateSpaces(spaces, logger);
2365 DeduplicateInternedStrings(ArrayRef<const std::unique_ptr<ImageSpace>>(spaces), logger);
2366 boot_image_spaces->swap(spaces);
2367 *extra_reservation = std::move(local_extra_reservation);
2368 return true;
2369 }
2370
2371 private:
2372 class SimpleRelocateVisitor {
2373 public:
SimpleRelocateVisitor(uint32_t diff,uint32_t begin,uint32_t size)2374 SimpleRelocateVisitor(uint32_t diff, uint32_t begin, uint32_t size)
2375 : diff_(diff), begin_(begin), size_(size) {}
2376
2377 // Adapter taking the same arguments as SplitRangeRelocateVisitor
2378 // to simplify constructing the various visitors in DoRelocateSpaces().
SimpleRelocateVisitor(uint32_t base_diff,uint32_t current_diff,uint32_t bound,uint32_t begin,uint32_t size)2379 SimpleRelocateVisitor(uint32_t base_diff,
2380 uint32_t current_diff,
2381 uint32_t bound,
2382 uint32_t begin,
2383 uint32_t size)
2384 : SimpleRelocateVisitor(base_diff, begin, size) {
2385 // Check arguments unused by this class.
2386 DCHECK_EQ(base_diff, current_diff);
2387 DCHECK_EQ(bound, begin);
2388 }
2389
2390 template <typename T>
operator ()(T * src) const2391 ALWAYS_INLINE T* operator()(T* src) const {
2392 DCHECK(InSource(src));
2393 uint32_t raw_src = reinterpret_cast32<uint32_t>(src);
2394 return reinterpret_cast32<T*>(raw_src + diff_);
2395 }
2396
2397 template <typename T>
InSource(T * ptr) const2398 ALWAYS_INLINE bool InSource(T* ptr) const {
2399 uint32_t raw_ptr = reinterpret_cast32<uint32_t>(ptr);
2400 return raw_ptr - begin_ < size_;
2401 }
2402
2403 template <typename T>
InDest(T * ptr) const2404 ALWAYS_INLINE bool InDest(T* ptr) const {
2405 uint32_t raw_ptr = reinterpret_cast32<uint32_t>(ptr);
2406 uint32_t src_ptr = raw_ptr - diff_;
2407 return src_ptr - begin_ < size_;
2408 }
2409
2410 private:
2411 const uint32_t diff_;
2412 const uint32_t begin_;
2413 const uint32_t size_;
2414 };
2415
2416 class SplitRangeRelocateVisitor {
2417 public:
SplitRangeRelocateVisitor(uint32_t base_diff,uint32_t current_diff,uint32_t bound,uint32_t begin,uint32_t size)2418 SplitRangeRelocateVisitor(uint32_t base_diff,
2419 uint32_t current_diff,
2420 uint32_t bound,
2421 uint32_t begin,
2422 uint32_t size)
2423 : base_diff_(base_diff),
2424 current_diff_(current_diff),
2425 bound_(bound),
2426 begin_(begin),
2427 size_(size) {
2428 DCHECK_NE(begin_, bound_);
2429 // The bound separates the boot image range and the extension range.
2430 DCHECK_LT(bound_ - begin_, size_);
2431 }
2432
2433 template <typename T>
operator ()(T * src) const2434 ALWAYS_INLINE T* operator()(T* src) const {
2435 DCHECK(InSource(src));
2436 uint32_t raw_src = reinterpret_cast32<uint32_t>(src);
2437 uint32_t diff = (raw_src < bound_) ? base_diff_ : current_diff_;
2438 return reinterpret_cast32<T*>(raw_src + diff);
2439 }
2440
2441 template <typename T>
InSource(T * ptr) const2442 ALWAYS_INLINE bool InSource(T* ptr) const {
2443 uint32_t raw_ptr = reinterpret_cast32<uint32_t>(ptr);
2444 return raw_ptr - begin_ < size_;
2445 }
2446
2447 private:
2448 const uint32_t base_diff_;
2449 const uint32_t current_diff_;
2450 const uint32_t bound_;
2451 const uint32_t begin_;
2452 const uint32_t size_;
2453 };
2454
PointerAddress(ArtMethod * method,MemberOffset offset)2455 static void** PointerAddress(ArtMethod* method, MemberOffset offset) {
2456 return reinterpret_cast<void**>(reinterpret_cast<uint8_t*>(method) + offset.Uint32Value());
2457 }
2458
2459 template <PointerSize kPointerSize>
DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>> & spaces,int64_t base_diff64)2460 static void DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>>& spaces,
2461 int64_t base_diff64) REQUIRES_SHARED(Locks::mutator_lock_) {
2462 DCHECK(!spaces.empty());
2463 gc::accounting::ContinuousSpaceBitmap patched_objects(
2464 gc::accounting::ContinuousSpaceBitmap::Create(
2465 "Marked objects",
2466 spaces.front()->Begin(),
2467 spaces.back()->End() - spaces.front()->Begin()));
2468 const ImageHeader& base_header = spaces[0]->GetImageHeader();
2469 size_t base_image_space_count = base_header.GetImageSpaceCount();
2470 DCHECK_LE(base_image_space_count, spaces.size());
2471 DoRelocateSpaces<kPointerSize, /*kExtension=*/ false>(
2472 spaces.SubArray(/*pos=*/ 0u, base_image_space_count),
2473 base_diff64,
2474 &patched_objects);
2475
2476 for (size_t i = base_image_space_count, size = spaces.size(); i != size; ) {
2477 const ImageHeader& ext_header = spaces[i]->GetImageHeader();
2478 size_t ext_image_space_count = ext_header.GetImageSpaceCount();
2479 DCHECK_LE(ext_image_space_count, size - i);
2480 DoRelocateSpaces<kPointerSize, /*kExtension=*/ true>(
2481 spaces.SubArray(/*pos=*/ i, ext_image_space_count),
2482 base_diff64,
2483 &patched_objects);
2484 i += ext_image_space_count;
2485 }
2486 }
2487
2488 template <PointerSize kPointerSize, bool kExtension>
DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>> spaces,int64_t base_diff64,gc::accounting::ContinuousSpaceBitmap * patched_objects)2489 static void DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>> spaces,
2490 int64_t base_diff64,
2491 gc::accounting::ContinuousSpaceBitmap* patched_objects)
2492 REQUIRES_SHARED(Locks::mutator_lock_) {
2493 DCHECK(!spaces.empty());
2494 const ImageHeader& first_header = spaces.front()->GetImageHeader();
2495 uint32_t image_begin = reinterpret_cast32<uint32_t>(first_header.GetImageBegin());
2496 uint32_t image_size = first_header.GetImageReservationSize();
2497 DCHECK_NE(image_size, 0u);
2498 uint32_t source_begin = kExtension ? first_header.GetBootImageBegin() : image_begin;
2499 uint32_t source_size = kExtension ? first_header.GetBootImageSize() + image_size : image_size;
2500 if (kExtension) {
2501 DCHECK_EQ(first_header.GetBootImageBegin() + first_header.GetBootImageSize(), image_begin);
2502 }
2503 int64_t current_diff64 = kExtension
2504 ? static_cast<int64_t>(reinterpret_cast32<uint32_t>(spaces.front()->Begin())) -
2505 static_cast<int64_t>(image_begin)
2506 : base_diff64;
2507 if (base_diff64 == 0 && current_diff64 == 0) {
2508 return;
2509 }
2510 uint32_t base_diff = static_cast<uint32_t>(base_diff64);
2511 uint32_t current_diff = static_cast<uint32_t>(current_diff64);
2512
2513 // For boot image the main visitor is a SimpleRelocateVisitor. For the boot image extension we
2514 // mostly use a SplitRelocationVisitor but some work can still use the SimpleRelocationVisitor.
2515 using MainRelocateVisitor = typename std::conditional<
2516 kExtension, SplitRangeRelocateVisitor, SimpleRelocateVisitor>::type;
2517 SimpleRelocateVisitor simple_relocate_visitor(current_diff, image_begin, image_size);
2518 MainRelocateVisitor main_relocate_visitor(
2519 base_diff, current_diff, /*bound=*/ image_begin, source_begin, source_size);
2520
2521 using MainPatchRelocateVisitor =
2522 PatchObjectVisitor<kPointerSize, MainRelocateVisitor, MainRelocateVisitor>;
2523 using SimplePatchRelocateVisitor =
2524 PatchObjectVisitor<kPointerSize, SimpleRelocateVisitor, SimpleRelocateVisitor>;
2525 MainPatchRelocateVisitor main_patch_object_visitor(main_relocate_visitor,
2526 main_relocate_visitor);
2527 SimplePatchRelocateVisitor simple_patch_object_visitor(simple_relocate_visitor,
2528 simple_relocate_visitor);
2529
2530 // Retrieve the Class.class, Method.class and Constructor.class needed in the loops below.
2531 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots;
2532 ObjPtr<mirror::Class> class_class;
2533 ObjPtr<mirror::Class> method_class;
2534 ObjPtr<mirror::Class> constructor_class;
2535 {
2536 ObjPtr<mirror::ObjectArray<mirror::Object>> image_roots =
2537 simple_relocate_visitor(first_header.GetImageRoots<kWithoutReadBarrier>().Ptr());
2538 DCHECK(!patched_objects->Test(image_roots.Ptr()));
2539
2540 SimpleRelocateVisitor base_relocate_visitor(
2541 base_diff,
2542 source_begin,
2543 kExtension ? source_size - image_size : image_size);
2544 int32_t class_roots_index = enum_cast<int32_t>(ImageHeader::kClassRoots);
2545 DCHECK_LT(class_roots_index, image_roots->GetLength<kVerifyNone>());
2546 class_roots = ObjPtr<mirror::ObjectArray<mirror::Class>>::DownCast(base_relocate_visitor(
2547 image_roots->GetWithoutChecks<kVerifyNone>(class_roots_index).Ptr()));
2548 if (kExtension) {
2549 // Class roots must have been visited if we relocated the primary boot image.
2550 DCHECK(base_diff == 0 || patched_objects->Test(class_roots.Ptr()));
2551 class_class = GetClassRoot<mirror::Class, kWithoutReadBarrier>(class_roots);
2552 method_class = GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots);
2553 constructor_class = GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots);
2554 } else {
2555 DCHECK(!patched_objects->Test(class_roots.Ptr()));
2556 class_class = simple_relocate_visitor(
2557 GetClassRoot<mirror::Class, kWithoutReadBarrier>(class_roots).Ptr());
2558 method_class = simple_relocate_visitor(
2559 GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots).Ptr());
2560 constructor_class = simple_relocate_visitor(
2561 GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots).Ptr());
2562 }
2563 }
2564
2565 for (const std::unique_ptr<ImageSpace>& space : spaces) {
2566 // First patch the image header.
2567 reinterpret_cast<ImageHeader*>(space->Begin())->RelocateImageReferences(current_diff64);
2568 reinterpret_cast<ImageHeader*>(space->Begin())->RelocateBootImageReferences(base_diff64);
2569
2570 // Patch fields and methods.
2571 const ImageHeader& image_header = space->GetImageHeader();
2572 image_header.VisitPackedArtFields([&](ArtField& field) REQUIRES_SHARED(Locks::mutator_lock_) {
2573 // Fields always reference class in the current image.
2574 simple_patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(
2575 &field.DeclaringClassRoot());
2576 }, space->Begin());
2577 image_header.VisitPackedArtMethods([&](ArtMethod& method)
2578 REQUIRES_SHARED(Locks::mutator_lock_) {
2579 main_patch_object_visitor.PatchGcRoot(&method.DeclaringClassRoot());
2580 if (!method.HasCodeItem()) {
2581 void** data_address = PointerAddress(&method, ArtMethod::DataOffset(kPointerSize));
2582 main_patch_object_visitor.PatchNativePointer(data_address);
2583 }
2584 void** entrypoint_address =
2585 PointerAddress(&method, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kPointerSize));
2586 main_patch_object_visitor.PatchNativePointer(entrypoint_address);
2587 }, space->Begin(), kPointerSize);
2588 auto method_table_visitor = [&](ArtMethod* method) {
2589 DCHECK(method != nullptr);
2590 return main_relocate_visitor(method);
2591 };
2592 image_header.VisitPackedImTables(method_table_visitor, space->Begin(), kPointerSize);
2593 image_header.VisitPackedImtConflictTables(method_table_visitor, space->Begin(), kPointerSize);
2594
2595 // Patch the intern table.
2596 if (image_header.GetInternedStringsSection().Size() != 0u) {
2597 const uint8_t* data = space->Begin() + image_header.GetInternedStringsSection().Offset();
2598 size_t read_count;
2599 InternTable::UnorderedSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
2600 for (GcRoot<mirror::String>& slot : temp_set) {
2601 // The intern table contains only strings in the current image.
2602 simple_patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(&slot);
2603 }
2604 }
2605
2606 // Patch the class table and classes, so that we can traverse class hierarchy to
2607 // determine the types of other objects when we visit them later.
2608 if (image_header.GetClassTableSection().Size() != 0u) {
2609 uint8_t* data = space->Begin() + image_header.GetClassTableSection().Offset();
2610 size_t read_count;
2611 ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
2612 DCHECK(!temp_set.empty());
2613 // The class table contains only classes in the current image.
2614 ClassTableVisitor class_table_visitor(simple_relocate_visitor);
2615 for (ClassTable::TableSlot& slot : temp_set) {
2616 slot.VisitRoot(class_table_visitor);
2617 ObjPtr<mirror::Class> klass = slot.Read<kWithoutReadBarrier>();
2618 DCHECK(klass != nullptr);
2619 DCHECK(!patched_objects->Test(klass.Ptr()));
2620 patched_objects->Set(klass.Ptr());
2621 main_patch_object_visitor.VisitClass(klass, class_class);
2622 // Then patch the non-embedded vtable and iftable.
2623 ObjPtr<mirror::PointerArray> vtable =
2624 klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
2625 if ((kExtension ? simple_relocate_visitor.InDest(vtable.Ptr()) : vtable != nullptr) &&
2626 !patched_objects->Set(vtable.Ptr())) {
2627 main_patch_object_visitor.VisitPointerArray(vtable);
2628 }
2629 ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
2630 if (iftable != nullptr) {
2631 int32_t ifcount = klass->GetIfTableCount<kVerifyNone>();
2632 for (int32_t i = 0; i != ifcount; ++i) {
2633 ObjPtr<mirror::PointerArray> unpatched_ifarray =
2634 iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
2635 if (kExtension ? simple_relocate_visitor.InSource(unpatched_ifarray.Ptr())
2636 : unpatched_ifarray != nullptr) {
2637 // The iftable has not been patched, so we need to explicitly adjust the pointer.
2638 ObjPtr<mirror::PointerArray> ifarray =
2639 simple_relocate_visitor(unpatched_ifarray.Ptr());
2640 if (!patched_objects->Set(ifarray.Ptr())) {
2641 main_patch_object_visitor.VisitPointerArray(ifarray);
2642 }
2643 }
2644 }
2645 }
2646 }
2647 }
2648 }
2649
2650 for (const std::unique_ptr<ImageSpace>& space : spaces) {
2651 const ImageHeader& image_header = space->GetImageHeader();
2652
2653 static_assert(IsAligned<kObjectAlignment>(sizeof(ImageHeader)), "Header alignment check");
2654 uint32_t objects_end = image_header.GetObjectsSection().Size();
2655 DCHECK_ALIGNED(objects_end, kObjectAlignment);
2656 for (uint32_t pos = sizeof(ImageHeader); pos != objects_end; ) {
2657 mirror::Object* object = reinterpret_cast<mirror::Object*>(space->Begin() + pos);
2658 // Note: use Test() rather than Set() as this is the last time we're checking this object.
2659 if (!patched_objects->Test(object)) {
2660 // This is the last pass over objects, so we do not need to Set().
2661 main_patch_object_visitor.VisitObject(object);
2662 ObjPtr<mirror::Class> klass = object->GetClass<kVerifyNone, kWithoutReadBarrier>();
2663 if (klass == method_class || klass == constructor_class) {
2664 // Patch the ArtMethod* in the mirror::Executable subobject.
2665 ObjPtr<mirror::Executable> as_executable =
2666 ObjPtr<mirror::Executable>::DownCast(object);
2667 ArtMethod* unpatched_method = as_executable->GetArtMethod<kVerifyNone>();
2668 ArtMethod* patched_method = main_relocate_visitor(unpatched_method);
2669 as_executable->SetArtMethod</*kTransactionActive=*/ false,
2670 /*kCheckTransaction=*/ true,
2671 kVerifyNone>(patched_method);
2672 }
2673 }
2674 pos += RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment);
2675 }
2676 }
2677 if (kIsDebugBuild && !kExtension) {
2678 // We used just Test() instead of Set() above but we need to use Set()
2679 // for class roots to satisfy a DCHECK() for extensions.
2680 DCHECK(!patched_objects->Test(class_roots.Ptr()));
2681 patched_objects->Set(class_roots.Ptr());
2682 }
2683 }
2684
MaybeRelocateSpaces(const std::vector<std::unique_ptr<ImageSpace>> & spaces,TimingLogger * logger)2685 void MaybeRelocateSpaces(const std::vector<std::unique_ptr<ImageSpace>>& spaces,
2686 TimingLogger* logger)
2687 REQUIRES_SHARED(Locks::mutator_lock_) {
2688 TimingLogger::ScopedTiming timing("MaybeRelocateSpaces", logger);
2689 ImageSpace* first_space = spaces.front().get();
2690 const ImageHeader& first_space_header = first_space->GetImageHeader();
2691 int64_t base_diff64 =
2692 static_cast<int64_t>(reinterpret_cast32<uint32_t>(first_space->Begin())) -
2693 static_cast<int64_t>(reinterpret_cast32<uint32_t>(first_space_header.GetImageBegin()));
2694 if (!relocate_) {
2695 DCHECK_EQ(base_diff64, 0);
2696 }
2697
2698 ArrayRef<const std::unique_ptr<ImageSpace>> spaces_ref(spaces);
2699 PointerSize pointer_size = first_space_header.GetPointerSize();
2700 if (pointer_size == PointerSize::k64) {
2701 DoRelocateSpaces<PointerSize::k64>(spaces_ref, base_diff64);
2702 } else {
2703 DoRelocateSpaces<PointerSize::k32>(spaces_ref, base_diff64);
2704 }
2705 }
2706
DeduplicateInternedStrings(ArrayRef<const std::unique_ptr<ImageSpace>> spaces,TimingLogger * logger)2707 void DeduplicateInternedStrings(ArrayRef<const std::unique_ptr<ImageSpace>> spaces,
2708 TimingLogger* logger) REQUIRES_SHARED(Locks::mutator_lock_) {
2709 TimingLogger::ScopedTiming timing("DeduplicateInternedStrings", logger);
2710 DCHECK(!spaces.empty());
2711 size_t num_spaces = spaces.size();
2712 const ImageHeader& primary_header = spaces.front()->GetImageHeader();
2713 size_t primary_image_count = primary_header.GetImageSpaceCount();
2714 DCHECK_LE(primary_image_count, num_spaces);
2715 DCHECK_EQ(primary_image_count, primary_header.GetComponentCount());
2716 size_t component_count = primary_image_count;
2717 size_t space_pos = primary_image_count;
2718 while (space_pos != num_spaces) {
2719 const ImageHeader& current_header = spaces[space_pos]->GetImageHeader();
2720 size_t image_space_count = current_header.GetImageSpaceCount();
2721 DCHECK_LE(image_space_count, num_spaces - space_pos);
2722 size_t dependency_component_count = current_header.GetBootImageComponentCount();
2723 DCHECK_LE(dependency_component_count, component_count);
2724 if (dependency_component_count < component_count) {
2725 // There shall be no duplicate strings with the components that this space depends on.
2726 // Find the end of the dependencies, i.e. start of non-dependency images.
2727 size_t start_component_count = primary_image_count;
2728 size_t start_pos = primary_image_count;
2729 while (start_component_count != dependency_component_count) {
2730 const ImageHeader& dependency_header = spaces[start_pos]->GetImageHeader();
2731 DCHECK_LE(dependency_header.GetComponentCount(),
2732 dependency_component_count - start_component_count);
2733 start_component_count += dependency_header.GetComponentCount();
2734 start_pos += dependency_header.GetImageSpaceCount();
2735 }
2736 // Remove duplicates from all intern tables belonging to the chunk.
2737 ArrayRef<const std::unique_ptr<ImageSpace>> old_spaces =
2738 spaces.SubArray(/*pos=*/ start_pos, space_pos - start_pos);
2739 SafeMap<mirror::String*, mirror::String*> intern_remap;
2740 for (size_t i = 0; i != image_space_count; ++i) {
2741 ImageSpace* new_space = spaces[space_pos + i].get();
2742 Loader::RemoveInternTableDuplicates(old_spaces, new_space, &intern_remap);
2743 }
2744 // Remap string for all spaces belonging to the chunk.
2745 if (!intern_remap.empty()) {
2746 for (size_t i = 0; i != image_space_count; ++i) {
2747 ImageSpace* new_space = spaces[space_pos + i].get();
2748 Loader::RemapInternedStringDuplicates(intern_remap, new_space);
2749 }
2750 }
2751 }
2752 component_count += current_header.GetComponentCount();
2753 space_pos += image_space_count;
2754 }
2755 }
2756
Load(const std::string & image_location,const std::string & image_filename,const std::string & profile_file,android::base::unique_fd art_fd,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)2757 std::unique_ptr<ImageSpace> Load(const std::string& image_location,
2758 const std::string& image_filename,
2759 const std::string& profile_file,
2760 android::base::unique_fd art_fd,
2761 TimingLogger* logger,
2762 /*inout*/MemMap* image_reservation,
2763 /*out*/std::string* error_msg)
2764 REQUIRES_SHARED(Locks::mutator_lock_) {
2765 if (art_fd.get() != -1) {
2766 // No need to lock memfd for which we hold the only file descriptor
2767 // (see locking with ScopedFlock for normal files below).
2768 VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location "
2769 << image_location << " for compiled extension";
2770
2771 File image_file(art_fd.release(), image_filename, /*check_usage=*/ false);
2772 std::unique_ptr<ImageSpace> result = Loader::Init(&image_file,
2773 image_filename.c_str(),
2774 image_location.c_str(),
2775 profile_file.c_str(),
2776 /*allow_direct_mapping=*/ false,
2777 logger,
2778 image_reservation,
2779 error_msg);
2780 // Note: We're closing the image file descriptor here when we destroy
2781 // the `image_file` as we no longer need it.
2782 return result;
2783 }
2784
2785 // Note that we must not use the file descriptor associated with
2786 // ScopedFlock::GetFile to Init the image file. We want the file
2787 // descriptor (and the associated exclusive lock) to be released when
2788 // we leave Create.
2789 ScopedFlock image = LockedFile::Open(image_filename.c_str(),
2790 /*flags=*/ O_RDONLY,
2791 /*block=*/ true,
2792 error_msg);
2793
2794 VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location "
2795 << image_location;
2796
2797 // If we are in /system we can assume the image is good. We can also
2798 // assume this if we are using a relocated image (i.e. image checksum
2799 // matches) since this is only different by the offset. We need this to
2800 // make sure that host tests continue to work.
2801 // Since we are the boot image, pass null since we load the oat file from the boot image oat
2802 // file name.
2803 return Loader::Init(image_filename.c_str(),
2804 image_location.c_str(),
2805 logger,
2806 image_reservation,
2807 error_msg);
2808 }
2809
OpenOatFile(ImageSpace * space,android::base::unique_fd vdex_fd,android::base::unique_fd oat_fd,ArrayRef<const std::string> dex_filenames,bool validate_oat_file,ArrayRef<const std::unique_ptr<ImageSpace>> dependencies,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)2810 bool OpenOatFile(ImageSpace* space,
2811 android::base::unique_fd vdex_fd,
2812 android::base::unique_fd oat_fd,
2813 ArrayRef<const std::string> dex_filenames,
2814 bool validate_oat_file,
2815 ArrayRef<const std::unique_ptr<ImageSpace>> dependencies,
2816 TimingLogger* logger,
2817 /*inout*/MemMap* image_reservation,
2818 /*out*/std::string* error_msg) {
2819 // VerifyImageAllocations() will be called later in Runtime::Init()
2820 // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_
2821 // and ArtField::java_lang_reflect_ArtField_, which are used from
2822 // Object::SizeOf() which VerifyImageAllocations() calls, are not
2823 // set yet at this point.
2824 DCHECK(image_reservation != nullptr);
2825 std::unique_ptr<OatFile> oat_file;
2826 {
2827 TimingLogger::ScopedTiming timing("OpenOatFile", logger);
2828 std::string oat_filename =
2829 ImageHeader::GetOatLocationFromImageLocation(space->GetImageFilename());
2830 std::string oat_location =
2831 ImageHeader::GetOatLocationFromImageLocation(space->GetImageLocation());
2832
2833 DCHECK_EQ(vdex_fd.get() != -1, oat_fd.get() != -1);
2834 if (vdex_fd.get() == -1) {
2835 oat_file.reset(OatFile::Open(/*zip_fd=*/ -1,
2836 oat_filename,
2837 oat_location,
2838 executable_,
2839 /*low_4gb=*/ false,
2840 dex_filenames,
2841 image_reservation,
2842 error_msg));
2843 } else {
2844 oat_file.reset(OatFile::Open(/*zip_fd=*/ -1,
2845 vdex_fd.get(),
2846 oat_fd.get(),
2847 oat_location,
2848 executable_,
2849 /*low_4gb=*/ false,
2850 dex_filenames,
2851 image_reservation,
2852 error_msg));
2853 // We no longer need the file descriptors and they will be closed by
2854 // the unique_fd destructor when we leave this function.
2855 }
2856
2857 if (oat_file == nullptr) {
2858 *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s",
2859 oat_filename.c_str(),
2860 space->GetName(),
2861 error_msg->c_str());
2862 return false;
2863 }
2864 const ImageHeader& image_header = space->GetImageHeader();
2865 uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
2866 uint32_t image_oat_checksum = image_header.GetOatChecksum();
2867 if (oat_checksum != image_oat_checksum) {
2868 *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum"
2869 " 0x%x in image %s",
2870 oat_checksum,
2871 image_oat_checksum,
2872 space->GetName());
2873 return false;
2874 }
2875 const char* oat_boot_class_path =
2876 oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathKey);
2877 oat_boot_class_path = (oat_boot_class_path != nullptr) ? oat_boot_class_path : "";
2878 const char* oat_boot_class_path_checksums =
2879 oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathChecksumsKey);
2880 oat_boot_class_path_checksums =
2881 (oat_boot_class_path_checksums != nullptr) ? oat_boot_class_path_checksums : "";
2882 size_t component_count = image_header.GetComponentCount();
2883 if (component_count == 0u) {
2884 if (oat_boot_class_path[0] != 0 || oat_boot_class_path_checksums[0] != 0) {
2885 *error_msg = StringPrintf("Unexpected non-empty boot class path %s and/or checksums %s"
2886 " in image %s",
2887 oat_boot_class_path,
2888 oat_boot_class_path_checksums,
2889 space->GetName());
2890 return false;
2891 }
2892 } else if (dependencies.empty()) {
2893 std::string expected_boot_class_path = Join(ArrayRef<const std::string>(
2894 boot_class_path_locations_).SubArray(0u, component_count), ':');
2895 if (expected_boot_class_path != oat_boot_class_path) {
2896 *error_msg = StringPrintf("Failed to match oat boot class path %s to expected "
2897 "boot class path %s in image %s",
2898 oat_boot_class_path,
2899 expected_boot_class_path.c_str(),
2900 space->GetName());
2901 return false;
2902 }
2903 } else {
2904 std::string local_error_msg;
2905 if (!VerifyBootClassPathChecksums(
2906 oat_boot_class_path_checksums,
2907 oat_boot_class_path,
2908 dependencies,
2909 ArrayRef<const std::string>(boot_class_path_locations_),
2910 ArrayRef<const std::string>(boot_class_path_),
2911 &local_error_msg)) {
2912 *error_msg = StringPrintf("Failed to verify BCP %s with checksums %s in image %s: %s",
2913 oat_boot_class_path,
2914 oat_boot_class_path_checksums,
2915 space->GetName(),
2916 local_error_msg.c_str());
2917 return false;
2918 }
2919 }
2920 ptrdiff_t relocation_diff = space->Begin() - image_header.GetImageBegin();
2921 CHECK(image_header.GetOatDataBegin() != nullptr);
2922 uint8_t* oat_data_begin = image_header.GetOatDataBegin() + relocation_diff;
2923 if (oat_file->Begin() != oat_data_begin) {
2924 *error_msg = StringPrintf("Oat file '%s' referenced from image %s has unexpected begin"
2925 " %p v. %p",
2926 oat_filename.c_str(),
2927 space->GetName(),
2928 oat_file->Begin(),
2929 oat_data_begin);
2930 return false;
2931 }
2932 }
2933 if (validate_oat_file) {
2934 TimingLogger::ScopedTiming timing("ValidateOatFile", logger);
2935 if (!ImageSpace::ValidateOatFile(*oat_file, error_msg)) {
2936 DCHECK(!error_msg->empty());
2937 return false;
2938 }
2939 }
2940 space->oat_file_ = std::move(oat_file);
2941 space->oat_file_non_owned_ = space->oat_file_.get();
2942 return true;
2943 }
2944
LoadComponents(const BootImageLayout::ImageChunk & chunk,bool validate_oat_file,size_t max_image_space_dependencies,TimingLogger * logger,std::vector<std::unique_ptr<ImageSpace>> * spaces,MemMap * image_reservation,std::string * error_msg)2945 bool LoadComponents(const BootImageLayout::ImageChunk& chunk,
2946 bool validate_oat_file,
2947 size_t max_image_space_dependencies,
2948 TimingLogger* logger,
2949 /*inout*/std::vector<std::unique_ptr<ImageSpace>>* spaces,
2950 /*inout*/MemMap* image_reservation,
2951 /*out*/std::string* error_msg)
2952 REQUIRES_SHARED(Locks::mutator_lock_) {
2953 // Make sure we destroy the spaces we created if we're returning an error.
2954 // Note that this can unmap part of the original `image_reservation`.
2955 class Guard {
2956 public:
2957 explicit Guard(std::vector<std::unique_ptr<ImageSpace>>* spaces_in)
2958 : spaces_(spaces_in), committed_(spaces_->size()) {}
2959 void Commit() {
2960 DCHECK_LT(committed_, spaces_->size());
2961 committed_ = spaces_->size();
2962 }
2963 ~Guard() {
2964 DCHECK_LE(committed_, spaces_->size());
2965 spaces_->resize(committed_);
2966 }
2967 private:
2968 std::vector<std::unique_ptr<ImageSpace>>* const spaces_;
2969 size_t committed_;
2970 };
2971 Guard guard(spaces);
2972
2973 bool is_extension = (chunk.start_index != 0u);
2974 DCHECK_NE(spaces->empty(), is_extension);
2975 if (max_image_space_dependencies < chunk.boot_image_component_count) {
2976 DCHECK(is_extension);
2977 *error_msg = StringPrintf("Missing dependencies for extension component %s, %zu < %u",
2978 boot_class_path_locations_[chunk.start_index].c_str(),
2979 max_image_space_dependencies,
2980 chunk.boot_image_component_count);
2981 return false;
2982 }
2983 ArrayRef<const std::string> requested_bcp_locations =
2984 ArrayRef<const std::string>(boot_class_path_locations_).SubArray(
2985 chunk.start_index, chunk.image_space_count);
2986 std::vector<std::string> locations =
2987 ExpandMultiImageLocations(requested_bcp_locations, chunk.base_location, is_extension);
2988 std::vector<std::string> filenames =
2989 ExpandMultiImageLocations(requested_bcp_locations, chunk.base_filename, is_extension);
2990 DCHECK_EQ(locations.size(), filenames.size());
2991 for (size_t i = 0u, size = locations.size(); i != size; ++i) {
2992 spaces->push_back(Load(locations[i],
2993 filenames[i],
2994 chunk.profile_file,
2995 std::move(chunk.art_fd),
2996 logger,
2997 image_reservation,
2998 error_msg));
2999 const ImageSpace* space = spaces->back().get();
3000 if (space == nullptr) {
3001 return false;
3002 }
3003 uint32_t expected_component_count = (i == 0u) ? chunk.component_count : 0u;
3004 uint32_t expected_reservation_size = (i == 0u) ? chunk.reservation_size : 0u;
3005 if (!Loader::CheckImageReservationSize(*space, expected_reservation_size, error_msg) ||
3006 !Loader::CheckImageComponentCount(*space, expected_component_count, error_msg)) {
3007 return false;
3008 }
3009 const ImageHeader& header = space->GetImageHeader();
3010 if (i == 0 && (chunk.checksum != header.GetImageChecksum() ||
3011 chunk.image_space_count != header.GetImageSpaceCount() ||
3012 chunk.boot_image_component_count != header.GetBootImageComponentCount() ||
3013 chunk.boot_image_checksum != header.GetBootImageChecksum() ||
3014 chunk.boot_image_size != header.GetBootImageSize())) {
3015 *error_msg = StringPrintf("Image header modified since previously read from %s; "
3016 "checksum: 0x%08x -> 0x%08x,"
3017 "image_space_count: %u -> %u"
3018 "boot_image_component_count: %u -> %u, "
3019 "boot_image_checksum: 0x%08x -> 0x%08x"
3020 "boot_image_size: 0x%08x -> 0x%08x",
3021 space->GetImageFilename().c_str(),
3022 chunk.checksum,
3023 chunk.image_space_count,
3024 header.GetImageSpaceCount(),
3025 header.GetImageChecksum(),
3026 chunk.boot_image_component_count,
3027 header.GetBootImageComponentCount(),
3028 chunk.boot_image_checksum,
3029 header.GetBootImageChecksum(),
3030 chunk.boot_image_size,
3031 header.GetBootImageSize());
3032 return false;
3033 }
3034 }
3035 DCHECK_GE(max_image_space_dependencies, chunk.boot_image_component_count);
3036 ArrayRef<const std::unique_ptr<ImageSpace>> dependencies =
3037 ArrayRef<const std::unique_ptr<ImageSpace>>(*spaces).SubArray(
3038 /*pos=*/ 0u, chunk.boot_image_component_count);
3039 for (size_t i = 0u, size = locations.size(); i != size; ++i) {
3040 ImageSpace* space = (*spaces)[spaces->size() - chunk.image_space_count + i].get();
3041 size_t bcp_chunk_size = (chunk.image_space_count == 1u) ? chunk.component_count : 1u;
3042 if (!OpenOatFile(space,
3043 std::move(chunk.vdex_fd),
3044 std::move(chunk.oat_fd),
3045 boot_class_path_.SubArray(/*pos=*/ chunk.start_index + i, bcp_chunk_size),
3046 validate_oat_file,
3047 dependencies,
3048 logger,
3049 image_reservation,
3050 error_msg)) {
3051 return false;
3052 }
3053 }
3054
3055 guard.Commit();
3056 return true;
3057 }
3058
ReserveBootImageMemory(uint8_t * addr,uint32_t reservation_size,std::string * error_msg)3059 MemMap ReserveBootImageMemory(uint8_t* addr,
3060 uint32_t reservation_size,
3061 /*out*/std::string* error_msg) {
3062 DCHECK_ALIGNED(reservation_size, kPageSize);
3063 DCHECK_ALIGNED(addr, kPageSize);
3064 return MemMap::MapAnonymous("Boot image reservation",
3065 addr,
3066 reservation_size,
3067 PROT_NONE,
3068 /*low_4gb=*/ true,
3069 /*reuse=*/ false,
3070 /*reservation=*/ nullptr,
3071 error_msg);
3072 }
3073
RemapExtraReservation(size_t extra_reservation_size,MemMap * image_reservation,MemMap * extra_reservation,std::string * error_msg)3074 bool RemapExtraReservation(size_t extra_reservation_size,
3075 /*inout*/MemMap* image_reservation,
3076 /*out*/MemMap* extra_reservation,
3077 /*out*/std::string* error_msg) {
3078 DCHECK_ALIGNED(extra_reservation_size, kPageSize);
3079 DCHECK(!extra_reservation->IsValid());
3080 size_t expected_size = image_reservation->IsValid() ? image_reservation->Size() : 0u;
3081 if (extra_reservation_size != expected_size) {
3082 *error_msg = StringPrintf("Image reservation mismatch after loading boot image: %zu != %zu",
3083 extra_reservation_size,
3084 expected_size);
3085 return false;
3086 }
3087 if (extra_reservation_size != 0u) {
3088 DCHECK(image_reservation->IsValid());
3089 DCHECK_EQ(extra_reservation_size, image_reservation->Size());
3090 *extra_reservation = image_reservation->RemapAtEnd(image_reservation->Begin(),
3091 "Boot image extra reservation",
3092 PROT_NONE,
3093 error_msg);
3094 if (!extra_reservation->IsValid()) {
3095 return false;
3096 }
3097 }
3098 DCHECK(!image_reservation->IsValid());
3099 return true;
3100 }
3101
3102 const ArrayRef<const std::string> boot_class_path_;
3103 const ArrayRef<const std::string> boot_class_path_locations_;
3104 const std::string image_location_;
3105 const InstructionSet image_isa_;
3106 const bool relocate_;
3107 const bool executable_;
3108 bool has_system_;
3109 };
3110
LoadFromSystem(size_t extra_reservation_size,std::vector<std::unique_ptr<ImageSpace>> * boot_image_spaces,MemMap * extra_reservation,std::string * error_msg)3111 bool ImageSpace::BootImageLoader::LoadFromSystem(
3112 size_t extra_reservation_size,
3113 /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
3114 /*out*/MemMap* extra_reservation,
3115 /*out*/std::string* error_msg) {
3116 TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image));
3117
3118 BootImageLayout layout(image_location_, boot_class_path_, boot_class_path_locations_);
3119 if (!layout.LoadFromSystem(image_isa_, error_msg)) {
3120 return false;
3121 }
3122
3123 if (!LoadImage(layout,
3124 /*validate_oat_file=*/ false,
3125 extra_reservation_size,
3126 &logger,
3127 boot_image_spaces,
3128 extra_reservation,
3129 error_msg)) {
3130 return false;
3131 }
3132
3133 if (VLOG_IS_ON(image)) {
3134 LOG(INFO) << "ImageSpace::BootImageLoader::LoadFromSystem exiting "
3135 << *boot_image_spaces->front();
3136 logger.Dump(LOG_STREAM(INFO));
3137 }
3138 return true;
3139 }
3140
IsBootClassPathOnDisk(InstructionSet image_isa)3141 bool ImageSpace::IsBootClassPathOnDisk(InstructionSet image_isa) {
3142 Runtime* runtime = Runtime::Current();
3143 BootImageLayout layout(runtime->GetImageLocation(),
3144 ArrayRef<const std::string>(runtime->GetBootClassPath()),
3145 ArrayRef<const std::string>(runtime->GetBootClassPathLocations()));
3146 const std::string image_location = layout.GetPrimaryImageLocation();
3147 std::unique_ptr<ImageHeader> image_header;
3148 std::string error_msg;
3149
3150 std::string system_filename;
3151 bool has_system = false;
3152
3153 if (FindImageFilename(image_location.c_str(),
3154 image_isa,
3155 &system_filename,
3156 &has_system)) {
3157 DCHECK(has_system);
3158 image_header = ReadSpecificImageHeader(system_filename.c_str(), &error_msg);
3159 }
3160
3161 return image_header != nullptr;
3162 }
3163
LoadBootImage(const std::vector<std::string> & boot_class_path,const std::vector<std::string> & boot_class_path_locations,const std::string & image_location,const InstructionSet image_isa,bool relocate,bool executable,size_t extra_reservation_size,std::vector<std::unique_ptr<ImageSpace>> * boot_image_spaces,MemMap * extra_reservation)3164 bool ImageSpace::LoadBootImage(
3165 const std::vector<std::string>& boot_class_path,
3166 const std::vector<std::string>& boot_class_path_locations,
3167 const std::string& image_location,
3168 const InstructionSet image_isa,
3169 bool relocate,
3170 bool executable,
3171 size_t extra_reservation_size,
3172 /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
3173 /*out*/MemMap* extra_reservation) {
3174 ScopedTrace trace(__FUNCTION__);
3175
3176 DCHECK(boot_image_spaces != nullptr);
3177 DCHECK(boot_image_spaces->empty());
3178 DCHECK_ALIGNED(extra_reservation_size, kPageSize);
3179 DCHECK(extra_reservation != nullptr);
3180 DCHECK_NE(image_isa, InstructionSet::kNone);
3181
3182 if (image_location.empty()) {
3183 return false;
3184 }
3185
3186 BootImageLoader loader(boot_class_path,
3187 boot_class_path_locations,
3188 image_location,
3189 image_isa,
3190 relocate,
3191 executable);
3192 loader.FindImageFiles();
3193
3194 // Collect all the errors.
3195 std::vector<std::string> error_msgs;
3196
3197 std::string error_msg;
3198 if (loader.HasSystem()) {
3199 if (loader.LoadFromSystem(extra_reservation_size,
3200 boot_image_spaces,
3201 extra_reservation,
3202 &error_msg)) {
3203 return true;
3204 }
3205 error_msgs.push_back(error_msg);
3206 }
3207
3208 std::ostringstream oss;
3209 bool first = true;
3210 for (const auto& msg : error_msgs) {
3211 if (first) {
3212 first = false;
3213 } else {
3214 oss << "\n ";
3215 }
3216 oss << msg;
3217 }
3218
3219 LOG(ERROR) << "Could not create image space with image file '" << image_location << "'. "
3220 << "Attempting to fall back to imageless running. Error was: " << oss.str();
3221
3222 return false;
3223 }
3224
~ImageSpace()3225 ImageSpace::~ImageSpace() {
3226 // Everything done by member destructors. Classes forward-declared in header are now defined.
3227 }
3228
CreateFromAppImage(const char * image,const OatFile * oat_file,std::string * error_msg)3229 std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(const char* image,
3230 const OatFile* oat_file,
3231 std::string* error_msg) {
3232 // Note: The oat file has already been validated.
3233 const std::vector<ImageSpace*>& boot_image_spaces =
3234 Runtime::Current()->GetHeap()->GetBootImageSpaces();
3235 return CreateFromAppImage(image,
3236 oat_file,
3237 ArrayRef<ImageSpace* const>(boot_image_spaces),
3238 error_msg);
3239 }
3240
CreateFromAppImage(const char * image,const OatFile * oat_file,ArrayRef<ImageSpace * const> boot_image_spaces,std::string * error_msg)3241 std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(
3242 const char* image,
3243 const OatFile* oat_file,
3244 ArrayRef<ImageSpace* const> boot_image_spaces,
3245 std::string* error_msg) {
3246 return Loader::InitAppImage(image,
3247 image,
3248 oat_file,
3249 boot_image_spaces,
3250 error_msg);
3251 }
3252
GetOatFile() const3253 const OatFile* ImageSpace::GetOatFile() const {
3254 return oat_file_non_owned_;
3255 }
3256
ReleaseOatFile()3257 std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() {
3258 CHECK(oat_file_ != nullptr);
3259 return std::move(oat_file_);
3260 }
3261
Dump(std::ostream & os) const3262 void ImageSpace::Dump(std::ostream& os) const {
3263 os << GetType()
3264 << " begin=" << reinterpret_cast<void*>(Begin())
3265 << ",end=" << reinterpret_cast<void*>(End())
3266 << ",size=" << PrettySize(Size())
3267 << ",name=\"" << GetName() << "\"]";
3268 }
3269
ValidateOatFile(const OatFile & oat_file,std::string * error_msg)3270 bool ImageSpace::ValidateOatFile(const OatFile& oat_file, std::string* error_msg) {
3271 const ArtDexFileLoader dex_file_loader;
3272 for (const OatDexFile* oat_dex_file : oat_file.GetOatDexFiles()) {
3273 const std::string& dex_file_location = oat_dex_file->GetDexFileLocation();
3274
3275 // Skip multidex locations - These will be checked when we visit their
3276 // corresponding primary non-multidex location.
3277 if (DexFileLoader::IsMultiDexLocation(dex_file_location.c_str())) {
3278 continue;
3279 }
3280
3281 std::vector<uint32_t> checksums;
3282 std::vector<std::string> dex_locations_ignored;
3283 if (!dex_file_loader.GetMultiDexChecksums(
3284 dex_file_location.c_str(), &checksums, &dex_locations_ignored, error_msg)) {
3285 *error_msg = StringPrintf("ValidateOatFile failed to get checksums of dex file '%s' "
3286 "referenced by oat file %s: %s",
3287 dex_file_location.c_str(),
3288 oat_file.GetLocation().c_str(),
3289 error_msg->c_str());
3290 return false;
3291 }
3292 CHECK(!checksums.empty());
3293 if (checksums[0] != oat_dex_file->GetDexFileLocationChecksum()) {
3294 *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
3295 "'%s' and dex file '%s' (0x%x != 0x%x)",
3296 oat_file.GetLocation().c_str(),
3297 dex_file_location.c_str(),
3298 oat_dex_file->GetDexFileLocationChecksum(),
3299 checksums[0]);
3300 return false;
3301 }
3302
3303 // Verify checksums for any related multidex entries.
3304 for (size_t i = 1; i < checksums.size(); i++) {
3305 std::string multi_dex_location = DexFileLoader::GetMultiDexLocation(
3306 i,
3307 dex_file_location.c_str());
3308 const OatDexFile* multi_dex = oat_file.GetOatDexFile(multi_dex_location.c_str(),
3309 nullptr,
3310 error_msg);
3311 if (multi_dex == nullptr) {
3312 *error_msg = StringPrintf("ValidateOatFile oat file '%s' is missing entry '%s'",
3313 oat_file.GetLocation().c_str(),
3314 multi_dex_location.c_str());
3315 return false;
3316 }
3317
3318 if (checksums[i] != multi_dex->GetDexFileLocationChecksum()) {
3319 *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
3320 "'%s' and dex file '%s' (0x%x != 0x%x)",
3321 oat_file.GetLocation().c_str(),
3322 multi_dex_location.c_str(),
3323 multi_dex->GetDexFileLocationChecksum(),
3324 checksums[i]);
3325 return false;
3326 }
3327 }
3328 }
3329 return true;
3330 }
3331
GetBootClassPathChecksums(ArrayRef<ImageSpace * const> image_spaces,ArrayRef<const DexFile * const> boot_class_path)3332 std::string ImageSpace::GetBootClassPathChecksums(
3333 ArrayRef<ImageSpace* const> image_spaces,
3334 ArrayRef<const DexFile* const> boot_class_path) {
3335 DCHECK(!boot_class_path.empty());
3336 size_t bcp_pos = 0u;
3337 std::string boot_image_checksum;
3338
3339 for (size_t image_pos = 0u, size = image_spaces.size(); image_pos != size; ) {
3340 const ImageSpace* main_space = image_spaces[image_pos];
3341 // Caller must make sure that the image spaces correspond to the head of the BCP.
3342 DCHECK_NE(main_space->oat_file_non_owned_->GetOatDexFiles().size(), 0u);
3343 DCHECK_EQ(main_space->oat_file_non_owned_->GetOatDexFiles()[0]->GetDexFileLocation(),
3344 boot_class_path[bcp_pos]->GetLocation());
3345 const ImageHeader& current_header = main_space->GetImageHeader();
3346 uint32_t image_space_count = current_header.GetImageSpaceCount();
3347 DCHECK_NE(image_space_count, 0u);
3348 DCHECK_LE(image_space_count, image_spaces.size() - image_pos);
3349 if (image_pos != 0u) {
3350 boot_image_checksum += ':';
3351 }
3352 uint32_t component_count = current_header.GetComponentCount();
3353 AppendImageChecksum(component_count, current_header.GetImageChecksum(), &boot_image_checksum);
3354 for (size_t space_index = 0; space_index != image_space_count; ++space_index) {
3355 const ImageSpace* space = image_spaces[image_pos + space_index];
3356 const OatFile* oat_file = space->oat_file_non_owned_;
3357 size_t num_dex_files = oat_file->GetOatDexFiles().size();
3358 if (kIsDebugBuild) {
3359 CHECK_NE(num_dex_files, 0u);
3360 CHECK_LE(oat_file->GetOatDexFiles().size(), boot_class_path.size() - bcp_pos);
3361 for (size_t i = 0; i != num_dex_files; ++i) {
3362 CHECK_EQ(oat_file->GetOatDexFiles()[i]->GetDexFileLocation(),
3363 boot_class_path[bcp_pos + i]->GetLocation());
3364 }
3365 }
3366 bcp_pos += num_dex_files;
3367 }
3368 image_pos += image_space_count;
3369 }
3370
3371 ArrayRef<const DexFile* const> boot_class_path_tail =
3372 ArrayRef<const DexFile* const>(boot_class_path).SubArray(bcp_pos);
3373 DCHECK(boot_class_path_tail.empty() ||
3374 !DexFileLoader::IsMultiDexLocation(boot_class_path_tail.front()->GetLocation().c_str()));
3375 for (const DexFile* dex_file : boot_class_path_tail) {
3376 if (!DexFileLoader::IsMultiDexLocation(dex_file->GetLocation().c_str())) {
3377 if (!boot_image_checksum.empty()) {
3378 boot_image_checksum += ':';
3379 }
3380 boot_image_checksum += kDexFileChecksumPrefix;
3381 }
3382 StringAppendF(&boot_image_checksum, "/%08x", dex_file->GetLocationChecksum());
3383 }
3384 return boot_image_checksum;
3385 }
3386
GetNumberOfComponents(ArrayRef<ImageSpace * const> image_spaces)3387 size_t ImageSpace::GetNumberOfComponents(ArrayRef<ImageSpace* const> image_spaces) {
3388 size_t n = 0;
3389 for (auto&& is : image_spaces) {
3390 n += is->GetComponentCount();
3391 }
3392 return n;
3393 }
3394
CheckAndCountBCPComponents(std::string_view oat_boot_class_path,ArrayRef<const std::string> boot_class_path,std::string * error_msg)3395 static size_t CheckAndCountBCPComponents(std::string_view oat_boot_class_path,
3396 ArrayRef<const std::string> boot_class_path,
3397 /*out*/std::string* error_msg) {
3398 // Check that the oat BCP is a prefix of current BCP locations and count components.
3399 size_t component_count = 0u;
3400 std::string_view remaining_bcp(oat_boot_class_path);
3401 bool bcp_ok = false;
3402 for (const std::string& location : boot_class_path) {
3403 if (!StartsWith(remaining_bcp, location)) {
3404 break;
3405 }
3406 remaining_bcp.remove_prefix(location.size());
3407 ++component_count;
3408 if (remaining_bcp.empty()) {
3409 bcp_ok = true;
3410 break;
3411 }
3412 if (!StartsWith(remaining_bcp, ":")) {
3413 break;
3414 }
3415 remaining_bcp.remove_prefix(1u);
3416 }
3417 if (!bcp_ok) {
3418 *error_msg = StringPrintf("Oat boot class path (%s) is not a prefix of"
3419 " runtime boot class path (%s)",
3420 std::string(oat_boot_class_path).c_str(),
3421 Join(boot_class_path, ':').c_str());
3422 return static_cast<size_t>(-1);
3423 }
3424 return component_count;
3425 }
3426
VerifyBootClassPathChecksums(std::string_view oat_checksums,std::string_view oat_boot_class_path,const std::string & image_location,ArrayRef<const std::string> boot_class_path_locations,ArrayRef<const std::string> boot_class_path,InstructionSet image_isa,std::string * error_msg)3427 bool ImageSpace::VerifyBootClassPathChecksums(std::string_view oat_checksums,
3428 std::string_view oat_boot_class_path,
3429 const std::string& image_location,
3430 ArrayRef<const std::string> boot_class_path_locations,
3431 ArrayRef<const std::string> boot_class_path,
3432 InstructionSet image_isa,
3433 /*out*/std::string* error_msg) {
3434 if (oat_checksums.empty() || oat_boot_class_path.empty()) {
3435 *error_msg = oat_checksums.empty() ? "Empty checksums." : "Empty boot class path.";
3436 return false;
3437 }
3438
3439 DCHECK_EQ(boot_class_path_locations.size(), boot_class_path.size());
3440 size_t bcp_size =
3441 CheckAndCountBCPComponents(oat_boot_class_path, boot_class_path_locations, error_msg);
3442 if (bcp_size == static_cast<size_t>(-1)) {
3443 DCHECK(!error_msg->empty());
3444 return false;
3445 }
3446
3447 size_t bcp_pos = 0u;
3448 if (StartsWith(oat_checksums, "i")) {
3449 // Use only the matching part of the BCP for validation.
3450 BootImageLayout layout(image_location,
3451 boot_class_path.SubArray(/*pos=*/ 0u, bcp_size),
3452 boot_class_path_locations.SubArray(/*pos=*/ 0u, bcp_size));
3453 std::string primary_image_location = layout.GetPrimaryImageLocation();
3454 std::string system_filename;
3455 bool has_system = false;
3456 if (!FindImageFilename(primary_image_location.c_str(),
3457 image_isa,
3458 &system_filename,
3459 &has_system)) {
3460 *error_msg = StringPrintf("Unable to find image file for %s and %s",
3461 image_location.c_str(),
3462 GetInstructionSetString(image_isa));
3463 return false;
3464 }
3465
3466 DCHECK(has_system);
3467 if (!layout.ValidateFromSystem(image_isa, &oat_checksums, error_msg)) {
3468 return false;
3469 }
3470 bcp_pos = layout.GetNextBcpIndex();
3471 }
3472
3473 for ( ; bcp_pos != bcp_size; ++bcp_pos) {
3474 static_assert(ImageSpace::kDexFileChecksumPrefix == 'd', "Format prefix check.");
3475 if (!StartsWith(oat_checksums, "d")) {
3476 *error_msg = StringPrintf("Missing dex checksums, expected %s to start with 'd'",
3477 std::string(oat_checksums).c_str());
3478 return false;
3479 }
3480 oat_checksums.remove_prefix(1u);
3481
3482 const std::string& bcp_filename = boot_class_path[bcp_pos];
3483 std::vector<uint32_t> checksums;
3484 std::vector<std::string> dex_locations;
3485 const ArtDexFileLoader dex_file_loader;
3486 if (!dex_file_loader.GetMultiDexChecksums(bcp_filename.c_str(),
3487 &checksums,
3488 &dex_locations,
3489 error_msg)) {
3490 return false;
3491 }
3492 DCHECK(!checksums.empty());
3493 for (uint32_t checksum : checksums) {
3494 std::string dex_file_checksum = StringPrintf("/%08x", checksum);
3495 if (!StartsWith(oat_checksums, dex_file_checksum)) {
3496 *error_msg = StringPrintf("Dex checksum mismatch, expected %s to start with %s",
3497 std::string(oat_checksums).c_str(),
3498 dex_file_checksum.c_str());
3499 return false;
3500 }
3501 oat_checksums.remove_prefix(dex_file_checksum.size());
3502 }
3503 if (bcp_pos + 1u != bcp_size) {
3504 if (!StartsWith(oat_checksums, ":")) {
3505 *error_msg = StringPrintf("Missing ':' separator at start of %s",
3506 std::string(oat_checksums).c_str());
3507 return false;
3508 }
3509 oat_checksums.remove_prefix(1u);
3510 }
3511 }
3512 if (!oat_checksums.empty()) {
3513 *error_msg = StringPrintf("Checksum too long, unexpected tail %s",
3514 std::string(oat_checksums).c_str());
3515 return false;
3516 }
3517 return true;
3518 }
3519
VerifyBootClassPathChecksums(std::string_view oat_checksums,std::string_view oat_boot_class_path,ArrayRef<const std::unique_ptr<ImageSpace>> image_spaces,ArrayRef<const std::string> boot_class_path_locations,ArrayRef<const std::string> boot_class_path,std::string * error_msg)3520 bool ImageSpace::VerifyBootClassPathChecksums(
3521 std::string_view oat_checksums,
3522 std::string_view oat_boot_class_path,
3523 ArrayRef<const std::unique_ptr<ImageSpace>> image_spaces,
3524 ArrayRef<const std::string> boot_class_path_locations,
3525 ArrayRef<const std::string> boot_class_path,
3526 /*out*/std::string* error_msg) {
3527 DCHECK_EQ(boot_class_path.size(), boot_class_path_locations.size());
3528 DCHECK_GE(boot_class_path_locations.size(), image_spaces.size());
3529 if (oat_checksums.empty() || oat_boot_class_path.empty()) {
3530 *error_msg = oat_checksums.empty() ? "Empty checksums." : "Empty boot class path.";
3531 return false;
3532 }
3533
3534 size_t oat_bcp_size =
3535 CheckAndCountBCPComponents(oat_boot_class_path, boot_class_path_locations, error_msg);
3536 if (oat_bcp_size == static_cast<size_t>(-1)) {
3537 DCHECK(!error_msg->empty());
3538 return false;
3539 }
3540 const size_t num_image_spaces = image_spaces.size();
3541 if (num_image_spaces != oat_bcp_size) {
3542 *error_msg = StringPrintf("Image header records more dependencies (%zu) than BCP (%zu)",
3543 num_image_spaces,
3544 oat_bcp_size);
3545 return false;
3546 }
3547
3548 // Verify image checksums.
3549 size_t bcp_pos = 0u;
3550 size_t image_pos = 0u;
3551 while (image_pos != num_image_spaces && StartsWith(oat_checksums, "i")) {
3552 // Verify the current image checksum.
3553 const ImageHeader& current_header = image_spaces[image_pos]->GetImageHeader();
3554 uint32_t image_space_count = current_header.GetImageSpaceCount();
3555 DCHECK_NE(image_space_count, 0u);
3556 DCHECK_LE(image_space_count, image_spaces.size() - image_pos);
3557 uint32_t component_count = current_header.GetComponentCount();
3558 uint32_t checksum = current_header.GetImageChecksum();
3559 if (!CheckAndRemoveImageChecksum(component_count, checksum, &oat_checksums, error_msg)) {
3560 DCHECK(!error_msg->empty());
3561 return false;
3562 }
3563
3564 if (kIsDebugBuild) {
3565 for (size_t space_index = 0; space_index != image_space_count; ++space_index) {
3566 const OatFile* oat_file = image_spaces[image_pos + space_index]->oat_file_non_owned_;
3567 size_t num_dex_files = oat_file->GetOatDexFiles().size();
3568 CHECK_NE(num_dex_files, 0u);
3569 const std::string main_location = oat_file->GetOatDexFiles()[0]->GetDexFileLocation();
3570 CHECK_EQ(main_location, boot_class_path_locations[bcp_pos + space_index]);
3571 CHECK(!DexFileLoader::IsMultiDexLocation(main_location.c_str()));
3572 size_t num_base_locations = 1u;
3573 for (size_t i = 1u; i != num_dex_files; ++i) {
3574 if (DexFileLoader::IsMultiDexLocation(
3575 oat_file->GetOatDexFiles()[i]->GetDexFileLocation().c_str())) {
3576 CHECK_EQ(image_space_count, 1u); // We can find base locations only for --single-image.
3577 ++num_base_locations;
3578 }
3579 }
3580 if (image_space_count == 1u) {
3581 CHECK_EQ(num_base_locations, component_count);
3582 }
3583 }
3584 }
3585
3586 image_pos += image_space_count;
3587 bcp_pos += component_count;
3588
3589 if (!StartsWith(oat_checksums, ":")) {
3590 // Check that we've reached the end of checksums and BCP.
3591 if (!oat_checksums.empty()) {
3592 *error_msg = StringPrintf("Expected ':' separator or end of checksums, remaining %s.",
3593 std::string(oat_checksums).c_str());
3594 return false;
3595 }
3596 if (image_pos != oat_bcp_size) {
3597 *error_msg = StringPrintf("Component count mismatch between checksums (%zu) and BCP (%zu)",
3598 image_pos,
3599 oat_bcp_size);
3600 return false;
3601 }
3602 return true;
3603 }
3604 oat_checksums.remove_prefix(1u);
3605 }
3606
3607 // We do not allow dependencies of extensions on dex files. That would require
3608 // interleaving the loading of the images with opening the other BCP dex files.
3609 return false;
3610 }
3611
ExpandMultiImageLocations(ArrayRef<const std::string> dex_locations,const std::string & image_location,bool boot_image_extension)3612 std::vector<std::string> ImageSpace::ExpandMultiImageLocations(
3613 ArrayRef<const std::string> dex_locations,
3614 const std::string& image_location,
3615 bool boot_image_extension) {
3616 DCHECK(!dex_locations.empty());
3617
3618 // Find the path.
3619 size_t last_slash = image_location.rfind('/');
3620 CHECK_NE(last_slash, std::string::npos);
3621
3622 // We also need to honor path components that were encoded through '@'. Otherwise the loading
3623 // code won't be able to find the images.
3624 if (image_location.find('@', last_slash) != std::string::npos) {
3625 last_slash = image_location.rfind('@');
3626 }
3627
3628 // Find the dot separating the primary image name from the extension.
3629 size_t last_dot = image_location.rfind('.');
3630 // Extract the extension and base (the path and primary image name).
3631 std::string extension;
3632 std::string base = image_location;
3633 if (last_dot != std::string::npos && last_dot > last_slash) {
3634 extension = image_location.substr(last_dot); // Including the dot.
3635 base.resize(last_dot);
3636 }
3637 // For non-empty primary image name, add '-' to the `base`.
3638 if (last_slash + 1u != base.size()) {
3639 base += '-';
3640 }
3641
3642 std::vector<std::string> locations;
3643 locations.reserve(dex_locations.size());
3644 size_t start_index = 0u;
3645 if (!boot_image_extension) {
3646 start_index = 1u;
3647 locations.push_back(image_location);
3648 }
3649
3650 // Now create the other names. Use a counted loop to skip the first one if needed.
3651 for (size_t i = start_index; i < dex_locations.size(); ++i) {
3652 // Replace path with `base` (i.e. image path and prefix) and replace the original
3653 // extension (if any) with `extension`.
3654 std::string name = dex_locations[i];
3655 size_t last_dex_slash = name.rfind('/');
3656 if (last_dex_slash != std::string::npos) {
3657 name = name.substr(last_dex_slash + 1);
3658 }
3659 size_t last_dex_dot = name.rfind('.');
3660 if (last_dex_dot != std::string::npos) {
3661 name.resize(last_dex_dot);
3662 }
3663 locations.push_back(base + name + extension);
3664 }
3665 return locations;
3666 }
3667
DumpSections(std::ostream & os) const3668 void ImageSpace::DumpSections(std::ostream& os) const {
3669 const uint8_t* base = Begin();
3670 const ImageHeader& header = GetImageHeader();
3671 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
3672 auto section_type = static_cast<ImageHeader::ImageSections>(i);
3673 const ImageSection& section = header.GetImageSection(section_type);
3674 os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset())
3675 << "-" << reinterpret_cast<const void*>(base + section.End()) << "\n";
3676 }
3677 }
3678
ReleaseMetadata()3679 void ImageSpace::ReleaseMetadata() {
3680 const ImageSection& metadata = GetImageHeader().GetMetadataSection();
3681 VLOG(image) << "Releasing " << metadata.Size() << " image metadata bytes";
3682 // Avoid using ZeroAndReleasePages since the zero fill might not be word atomic.
3683 uint8_t* const page_begin = AlignUp(Begin() + metadata.Offset(), kPageSize);
3684 uint8_t* const page_end = AlignDown(Begin() + metadata.End(), kPageSize);
3685 if (page_begin < page_end) {
3686 CHECK_NE(madvise(page_begin, page_end - page_begin, MADV_DONTNEED), -1) << "madvise failed";
3687 }
3688 }
3689
3690 } // namespace space
3691 } // namespace gc
3692 } // namespace art
3693