1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "code_generator_arm_vixl.h"
18
19 #include "arch/arm/asm_support_arm.h"
20 #include "arch/arm/instruction_set_features_arm.h"
21 #include "arch/arm/jni_frame_arm.h"
22 #include "art_method-inl.h"
23 #include "base/bit_utils.h"
24 #include "base/bit_utils_iterator.h"
25 #include "class_root-inl.h"
26 #include "class_table.h"
27 #include "code_generator_utils.h"
28 #include "common_arm.h"
29 #include "compiled_method.h"
30 #include "entrypoints/quick/quick_entrypoints.h"
31 #include "gc/accounting/card_table.h"
32 #include "gc/space/image_space.h"
33 #include "heap_poisoning.h"
34 #include "interpreter/mterp/nterp.h"
35 #include "intrinsics.h"
36 #include "intrinsics_arm_vixl.h"
37 #include "linker/linker_patch.h"
38 #include "mirror/array-inl.h"
39 #include "mirror/class-inl.h"
40 #include "mirror/var_handle.h"
41 #include "scoped_thread_state_change-inl.h"
42 #include "thread.h"
43 #include "utils/arm/assembler_arm_vixl.h"
44 #include "utils/arm/managed_register_arm.h"
45 #include "utils/assembler.h"
46 #include "utils/stack_checks.h"
47
48 namespace art {
49 namespace arm {
50
51 namespace vixl32 = vixl::aarch32;
52 using namespace vixl32; // NOLINT(build/namespaces)
53
54 using helpers::DRegisterFrom;
55 using helpers::HighRegisterFrom;
56 using helpers::InputDRegisterAt;
57 using helpers::InputOperandAt;
58 using helpers::InputRegister;
59 using helpers::InputRegisterAt;
60 using helpers::InputSRegisterAt;
61 using helpers::InputVRegister;
62 using helpers::InputVRegisterAt;
63 using helpers::Int32ConstantFrom;
64 using helpers::Int64ConstantFrom;
65 using helpers::LocationFrom;
66 using helpers::LowRegisterFrom;
67 using helpers::LowSRegisterFrom;
68 using helpers::OperandFrom;
69 using helpers::OutputRegister;
70 using helpers::OutputSRegister;
71 using helpers::OutputVRegister;
72 using helpers::RegisterFrom;
73 using helpers::SRegisterFrom;
74 using helpers::Uint64ConstantFrom;
75
76 using vixl::EmissionCheckScope;
77 using vixl::ExactAssemblyScope;
78 using vixl::CodeBufferCheckScope;
79
80 using RegisterList = vixl32::RegisterList;
81
ExpectedPairLayout(Location location)82 static bool ExpectedPairLayout(Location location) {
83 // We expected this for both core and fpu register pairs.
84 return ((location.low() & 1) == 0) && (location.low() + 1 == location.high());
85 }
86 // Use a local definition to prevent copying mistakes.
87 static constexpr size_t kArmWordSize = static_cast<size_t>(kArmPointerSize);
88 static constexpr size_t kArmBitsPerWord = kArmWordSize * kBitsPerByte;
89 static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7;
90
91 // Reference load (except object array loads) is using LDR Rt, [Rn, #offset] which can handle
92 // offset < 4KiB. For offsets >= 4KiB, the load shall be emitted as two or more instructions.
93 // For the Baker read barrier implementation using link-time generated thunks we need to split
94 // the offset explicitly.
95 constexpr uint32_t kReferenceLoadMinFarOffset = 4 * KB;
96
97 // Using a base helps identify when we hit Marking Register check breakpoints.
98 constexpr int kMarkingRegisterCheckBreakCodeBaseCode = 0x10;
99
100 #ifdef __
101 #error "ARM Codegen VIXL macro-assembler macro already defined."
102 #endif
103
104 // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
105 #define __ down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler()-> // NOLINT
106 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArmPointerSize, x).Int32Value()
107
108 // Marker that code is yet to be, and must, be implemented.
109 #define TODO_VIXL32(level) LOG(level) << __PRETTY_FUNCTION__ << " unimplemented "
110
CanEmitNarrowLdr(vixl32::Register rt,vixl32::Register rn,uint32_t offset)111 static inline bool CanEmitNarrowLdr(vixl32::Register rt, vixl32::Register rn, uint32_t offset) {
112 return rt.IsLow() && rn.IsLow() && offset < 32u;
113 }
114
115 class EmitAdrCode {
116 public:
EmitAdrCode(ArmVIXLMacroAssembler * assembler,vixl32::Register rd,vixl32::Label * label)117 EmitAdrCode(ArmVIXLMacroAssembler* assembler, vixl32::Register rd, vixl32::Label* label)
118 : assembler_(assembler), rd_(rd), label_(label) {
119 DCHECK(!assembler->AllowMacroInstructions()); // In ExactAssemblyScope.
120 adr_location_ = assembler->GetCursorOffset();
121 assembler->adr(EncodingSize(Wide), rd, label);
122 }
123
~EmitAdrCode()124 ~EmitAdrCode() {
125 DCHECK(label_->IsBound());
126 // The ADR emitted by the assembler does not set the Thumb mode bit we need.
127 // TODO: Maybe extend VIXL to allow ADR for return address?
128 uint8_t* raw_adr = assembler_->GetBuffer()->GetOffsetAddress<uint8_t*>(adr_location_);
129 // Expecting ADR encoding T3 with `(offset & 1) == 0`.
130 DCHECK_EQ(raw_adr[1] & 0xfbu, 0xf2u); // Check bits 24-31, except 26.
131 DCHECK_EQ(raw_adr[0] & 0xffu, 0x0fu); // Check bits 16-23.
132 DCHECK_EQ(raw_adr[3] & 0x8fu, rd_.GetCode()); // Check bits 8-11 and 15.
133 DCHECK_EQ(raw_adr[2] & 0x01u, 0x00u); // Check bit 0, i.e. the `offset & 1`.
134 // Add the Thumb mode bit.
135 raw_adr[2] |= 0x01u;
136 }
137
138 private:
139 ArmVIXLMacroAssembler* const assembler_;
140 vixl32::Register rd_;
141 vixl32::Label* const label_;
142 int32_t adr_location_;
143 };
144
OneRegInReferenceOutSaveEverythingCallerSaves()145 static RegisterSet OneRegInReferenceOutSaveEverythingCallerSaves() {
146 InvokeRuntimeCallingConventionARMVIXL calling_convention;
147 RegisterSet caller_saves = RegisterSet::Empty();
148 caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(0)));
149 // TODO: Add GetReturnLocation() to the calling convention so that we can DCHECK()
150 // that the the kPrimNot result register is the same as the first argument register.
151 return caller_saves;
152 }
153
154 // SaveLiveRegisters and RestoreLiveRegisters from SlowPathCodeARM operate on sets of S registers,
155 // for each live D registers they treat two corresponding S registers as live ones.
156 //
157 // Two following functions (SaveContiguousSRegisterList, RestoreContiguousSRegisterList) build
158 // from a list of contiguous S registers a list of contiguous D registers (processing first/last
159 // S registers corner cases) and save/restore this new list treating them as D registers.
160 // - decreasing code size
161 // - avoiding hazards on Cortex-A57, when a pair of S registers for an actual live D register is
162 // restored and then used in regular non SlowPath code as D register.
163 //
164 // For the following example (v means the S register is live):
165 // D names: | D0 | D1 | D2 | D4 | ...
166 // S names: | S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | ...
167 // Live? | | v | v | v | v | v | v | | ...
168 //
169 // S1 and S6 will be saved/restored independently; D registers list (D1, D2) will be processed
170 // as D registers.
171 //
172 // TODO(VIXL): All this code should be unnecessary once the VIXL AArch32 backend provides helpers
173 // for lists of floating-point registers.
SaveContiguousSRegisterList(size_t first,size_t last,CodeGenerator * codegen,size_t stack_offset)174 static size_t SaveContiguousSRegisterList(size_t first,
175 size_t last,
176 CodeGenerator* codegen,
177 size_t stack_offset) {
178 static_assert(kSRegSizeInBytes == kArmWordSize, "Broken assumption on reg/word sizes.");
179 static_assert(kDRegSizeInBytes == 2 * kArmWordSize, "Broken assumption on reg/word sizes.");
180 DCHECK_LE(first, last);
181 if ((first == last) && (first == 0)) {
182 __ Vstr(vixl32::SRegister(first), MemOperand(sp, stack_offset));
183 return stack_offset + kSRegSizeInBytes;
184 }
185 if (first % 2 == 1) {
186 __ Vstr(vixl32::SRegister(first++), MemOperand(sp, stack_offset));
187 stack_offset += kSRegSizeInBytes;
188 }
189
190 bool save_last = false;
191 if (last % 2 == 0) {
192 save_last = true;
193 --last;
194 }
195
196 if (first < last) {
197 vixl32::DRegister d_reg = vixl32::DRegister(first / 2);
198 DCHECK_EQ((last - first + 1) % 2, 0u);
199 size_t number_of_d_regs = (last - first + 1) / 2;
200
201 if (number_of_d_regs == 1) {
202 __ Vstr(d_reg, MemOperand(sp, stack_offset));
203 } else if (number_of_d_regs > 1) {
204 UseScratchRegisterScope temps(down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler());
205 vixl32::Register base = sp;
206 if (stack_offset != 0) {
207 base = temps.Acquire();
208 __ Add(base, sp, Operand::From(stack_offset));
209 }
210 __ Vstm(F64, base, NO_WRITE_BACK, DRegisterList(d_reg, number_of_d_regs));
211 }
212 stack_offset += number_of_d_regs * kDRegSizeInBytes;
213 }
214
215 if (save_last) {
216 __ Vstr(vixl32::SRegister(last + 1), MemOperand(sp, stack_offset));
217 stack_offset += kSRegSizeInBytes;
218 }
219
220 return stack_offset;
221 }
222
RestoreContiguousSRegisterList(size_t first,size_t last,CodeGenerator * codegen,size_t stack_offset)223 static size_t RestoreContiguousSRegisterList(size_t first,
224 size_t last,
225 CodeGenerator* codegen,
226 size_t stack_offset) {
227 static_assert(kSRegSizeInBytes == kArmWordSize, "Broken assumption on reg/word sizes.");
228 static_assert(kDRegSizeInBytes == 2 * kArmWordSize, "Broken assumption on reg/word sizes.");
229 DCHECK_LE(first, last);
230 if ((first == last) && (first == 0)) {
231 __ Vldr(vixl32::SRegister(first), MemOperand(sp, stack_offset));
232 return stack_offset + kSRegSizeInBytes;
233 }
234 if (first % 2 == 1) {
235 __ Vldr(vixl32::SRegister(first++), MemOperand(sp, stack_offset));
236 stack_offset += kSRegSizeInBytes;
237 }
238
239 bool restore_last = false;
240 if (last % 2 == 0) {
241 restore_last = true;
242 --last;
243 }
244
245 if (first < last) {
246 vixl32::DRegister d_reg = vixl32::DRegister(first / 2);
247 DCHECK_EQ((last - first + 1) % 2, 0u);
248 size_t number_of_d_regs = (last - first + 1) / 2;
249 if (number_of_d_regs == 1) {
250 __ Vldr(d_reg, MemOperand(sp, stack_offset));
251 } else if (number_of_d_regs > 1) {
252 UseScratchRegisterScope temps(down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler());
253 vixl32::Register base = sp;
254 if (stack_offset != 0) {
255 base = temps.Acquire();
256 __ Add(base, sp, Operand::From(stack_offset));
257 }
258 __ Vldm(F64, base, NO_WRITE_BACK, DRegisterList(d_reg, number_of_d_regs));
259 }
260 stack_offset += number_of_d_regs * kDRegSizeInBytes;
261 }
262
263 if (restore_last) {
264 __ Vldr(vixl32::SRegister(last + 1), MemOperand(sp, stack_offset));
265 stack_offset += kSRegSizeInBytes;
266 }
267
268 return stack_offset;
269 }
270
GetLoadOperandType(DataType::Type type)271 static LoadOperandType GetLoadOperandType(DataType::Type type) {
272 switch (type) {
273 case DataType::Type::kReference:
274 return kLoadWord;
275 case DataType::Type::kBool:
276 case DataType::Type::kUint8:
277 return kLoadUnsignedByte;
278 case DataType::Type::kInt8:
279 return kLoadSignedByte;
280 case DataType::Type::kUint16:
281 return kLoadUnsignedHalfword;
282 case DataType::Type::kInt16:
283 return kLoadSignedHalfword;
284 case DataType::Type::kInt32:
285 return kLoadWord;
286 case DataType::Type::kInt64:
287 return kLoadWordPair;
288 case DataType::Type::kFloat32:
289 return kLoadSWord;
290 case DataType::Type::kFloat64:
291 return kLoadDWord;
292 default:
293 LOG(FATAL) << "Unreachable type " << type;
294 UNREACHABLE();
295 }
296 }
297
GetStoreOperandType(DataType::Type type)298 static StoreOperandType GetStoreOperandType(DataType::Type type) {
299 switch (type) {
300 case DataType::Type::kReference:
301 return kStoreWord;
302 case DataType::Type::kBool:
303 case DataType::Type::kUint8:
304 case DataType::Type::kInt8:
305 return kStoreByte;
306 case DataType::Type::kUint16:
307 case DataType::Type::kInt16:
308 return kStoreHalfword;
309 case DataType::Type::kInt32:
310 return kStoreWord;
311 case DataType::Type::kInt64:
312 return kStoreWordPair;
313 case DataType::Type::kFloat32:
314 return kStoreSWord;
315 case DataType::Type::kFloat64:
316 return kStoreDWord;
317 default:
318 LOG(FATAL) << "Unreachable type " << type;
319 UNREACHABLE();
320 }
321 }
322
SaveLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)323 void SlowPathCodeARMVIXL::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
324 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
325 size_t orig_offset = stack_offset;
326
327 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
328 for (uint32_t i : LowToHighBits(core_spills)) {
329 // If the register holds an object, update the stack mask.
330 if (locations->RegisterContainsObject(i)) {
331 locations->SetStackBit(stack_offset / kVRegSize);
332 }
333 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
334 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
335 saved_core_stack_offsets_[i] = stack_offset;
336 stack_offset += kArmWordSize;
337 }
338
339 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
340 arm_codegen->GetAssembler()->StoreRegisterList(core_spills, orig_offset);
341
342 uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
343 orig_offset = stack_offset;
344 for (uint32_t i : LowToHighBits(fp_spills)) {
345 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
346 saved_fpu_stack_offsets_[i] = stack_offset;
347 stack_offset += kArmWordSize;
348 }
349
350 stack_offset = orig_offset;
351 while (fp_spills != 0u) {
352 uint32_t begin = CTZ(fp_spills);
353 uint32_t tmp = fp_spills + (1u << begin);
354 fp_spills &= tmp; // Clear the contiguous range of 1s.
355 uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp); // CTZ(0) is undefined.
356 stack_offset = SaveContiguousSRegisterList(begin, end - 1, codegen, stack_offset);
357 }
358 DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
359 }
360
RestoreLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)361 void SlowPathCodeARMVIXL::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
362 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
363 size_t orig_offset = stack_offset;
364
365 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
366 for (uint32_t i : LowToHighBits(core_spills)) {
367 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
368 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
369 stack_offset += kArmWordSize;
370 }
371
372 // TODO(VIXL): Check the coherency of stack_offset after this with a test.
373 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
374 arm_codegen->GetAssembler()->LoadRegisterList(core_spills, orig_offset);
375
376 uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
377 while (fp_spills != 0u) {
378 uint32_t begin = CTZ(fp_spills);
379 uint32_t tmp = fp_spills + (1u << begin);
380 fp_spills &= tmp; // Clear the contiguous range of 1s.
381 uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp); // CTZ(0) is undefined.
382 stack_offset = RestoreContiguousSRegisterList(begin, end - 1, codegen, stack_offset);
383 }
384 DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
385 }
386
387 class NullCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
388 public:
NullCheckSlowPathARMVIXL(HNullCheck * instruction)389 explicit NullCheckSlowPathARMVIXL(HNullCheck* instruction) : SlowPathCodeARMVIXL(instruction) {}
390
EmitNativeCode(CodeGenerator * codegen)391 void EmitNativeCode(CodeGenerator* codegen) override {
392 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
393 __ Bind(GetEntryLabel());
394 if (instruction_->CanThrowIntoCatchBlock()) {
395 // Live registers will be restored in the catch block if caught.
396 SaveLiveRegisters(codegen, instruction_->GetLocations());
397 }
398 arm_codegen->InvokeRuntime(kQuickThrowNullPointer,
399 instruction_,
400 instruction_->GetDexPc(),
401 this);
402 CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
403 }
404
IsFatal() const405 bool IsFatal() const override { return true; }
406
GetDescription() const407 const char* GetDescription() const override { return "NullCheckSlowPathARMVIXL"; }
408
409 private:
410 DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARMVIXL);
411 };
412
413 class DivZeroCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
414 public:
DivZeroCheckSlowPathARMVIXL(HDivZeroCheck * instruction)415 explicit DivZeroCheckSlowPathARMVIXL(HDivZeroCheck* instruction)
416 : SlowPathCodeARMVIXL(instruction) {}
417
EmitNativeCode(CodeGenerator * codegen)418 void EmitNativeCode(CodeGenerator* codegen) override {
419 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
420 __ Bind(GetEntryLabel());
421 arm_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
422 CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
423 }
424
IsFatal() const425 bool IsFatal() const override { return true; }
426
GetDescription() const427 const char* GetDescription() const override { return "DivZeroCheckSlowPathARMVIXL"; }
428
429 private:
430 DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARMVIXL);
431 };
432
433 class SuspendCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
434 public:
SuspendCheckSlowPathARMVIXL(HSuspendCheck * instruction,HBasicBlock * successor)435 SuspendCheckSlowPathARMVIXL(HSuspendCheck* instruction, HBasicBlock* successor)
436 : SlowPathCodeARMVIXL(instruction), successor_(successor) {}
437
EmitNativeCode(CodeGenerator * codegen)438 void EmitNativeCode(CodeGenerator* codegen) override {
439 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
440 __ Bind(GetEntryLabel());
441 arm_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
442 CheckEntrypointTypes<kQuickTestSuspend, void, void>();
443 if (successor_ == nullptr) {
444 __ B(GetReturnLabel());
445 } else {
446 __ B(arm_codegen->GetLabelOf(successor_));
447 }
448 }
449
GetReturnLabel()450 vixl32::Label* GetReturnLabel() {
451 DCHECK(successor_ == nullptr);
452 return &return_label_;
453 }
454
GetSuccessor() const455 HBasicBlock* GetSuccessor() const {
456 return successor_;
457 }
458
GetDescription() const459 const char* GetDescription() const override { return "SuspendCheckSlowPathARMVIXL"; }
460
461 private:
462 // If not null, the block to branch to after the suspend check.
463 HBasicBlock* const successor_;
464
465 // If `successor_` is null, the label to branch to after the suspend check.
466 vixl32::Label return_label_;
467
468 DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARMVIXL);
469 };
470
471 class BoundsCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
472 public:
BoundsCheckSlowPathARMVIXL(HBoundsCheck * instruction)473 explicit BoundsCheckSlowPathARMVIXL(HBoundsCheck* instruction)
474 : SlowPathCodeARMVIXL(instruction) {}
475
EmitNativeCode(CodeGenerator * codegen)476 void EmitNativeCode(CodeGenerator* codegen) override {
477 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
478 LocationSummary* locations = instruction_->GetLocations();
479
480 __ Bind(GetEntryLabel());
481 if (instruction_->CanThrowIntoCatchBlock()) {
482 // Live registers will be restored in the catch block if caught.
483 SaveLiveRegisters(codegen, instruction_->GetLocations());
484 }
485 // We're moving two locations to locations that could overlap, so we need a parallel
486 // move resolver.
487 InvokeRuntimeCallingConventionARMVIXL calling_convention;
488 codegen->EmitParallelMoves(
489 locations->InAt(0),
490 LocationFrom(calling_convention.GetRegisterAt(0)),
491 DataType::Type::kInt32,
492 locations->InAt(1),
493 LocationFrom(calling_convention.GetRegisterAt(1)),
494 DataType::Type::kInt32);
495 QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
496 ? kQuickThrowStringBounds
497 : kQuickThrowArrayBounds;
498 arm_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
499 CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
500 CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
501 }
502
IsFatal() const503 bool IsFatal() const override { return true; }
504
GetDescription() const505 const char* GetDescription() const override { return "BoundsCheckSlowPathARMVIXL"; }
506
507 private:
508 DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARMVIXL);
509 };
510
511 class LoadClassSlowPathARMVIXL : public SlowPathCodeARMVIXL {
512 public:
LoadClassSlowPathARMVIXL(HLoadClass * cls,HInstruction * at)513 LoadClassSlowPathARMVIXL(HLoadClass* cls, HInstruction* at)
514 : SlowPathCodeARMVIXL(at), cls_(cls) {
515 DCHECK(at->IsLoadClass() || at->IsClinitCheck());
516 DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_);
517 }
518
EmitNativeCode(CodeGenerator * codegen)519 void EmitNativeCode(CodeGenerator* codegen) override {
520 LocationSummary* locations = instruction_->GetLocations();
521 Location out = locations->Out();
522 const uint32_t dex_pc = instruction_->GetDexPc();
523 bool must_resolve_type = instruction_->IsLoadClass() && cls_->MustResolveTypeOnSlowPath();
524 bool must_do_clinit = instruction_->IsClinitCheck() || cls_->MustGenerateClinitCheck();
525
526 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
527 __ Bind(GetEntryLabel());
528 SaveLiveRegisters(codegen, locations);
529
530 InvokeRuntimeCallingConventionARMVIXL calling_convention;
531 if (must_resolve_type) {
532 DCHECK(IsSameDexFile(cls_->GetDexFile(), arm_codegen->GetGraph()->GetDexFile()));
533 dex::TypeIndex type_index = cls_->GetTypeIndex();
534 __ Mov(calling_convention.GetRegisterAt(0), type_index.index_);
535 if (cls_->NeedsAccessCheck()) {
536 CheckEntrypointTypes<kQuickResolveTypeAndVerifyAccess, void*, uint32_t>();
537 arm_codegen->InvokeRuntime(kQuickResolveTypeAndVerifyAccess, instruction_, dex_pc, this);
538 } else {
539 CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>();
540 arm_codegen->InvokeRuntime(kQuickResolveType, instruction_, dex_pc, this);
541 }
542 // If we also must_do_clinit, the resolved type is now in the correct register.
543 } else {
544 DCHECK(must_do_clinit);
545 Location source = instruction_->IsLoadClass() ? out : locations->InAt(0);
546 arm_codegen->Move32(LocationFrom(calling_convention.GetRegisterAt(0)), source);
547 }
548 if (must_do_clinit) {
549 arm_codegen->InvokeRuntime(kQuickInitializeStaticStorage, instruction_, dex_pc, this);
550 CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, mirror::Class*>();
551 }
552
553 // Move the class to the desired location.
554 if (out.IsValid()) {
555 DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
556 arm_codegen->Move32(locations->Out(), LocationFrom(r0));
557 }
558 RestoreLiveRegisters(codegen, locations);
559 __ B(GetExitLabel());
560 }
561
GetDescription() const562 const char* GetDescription() const override { return "LoadClassSlowPathARMVIXL"; }
563
564 private:
565 // The class this slow path will load.
566 HLoadClass* const cls_;
567
568 DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARMVIXL);
569 };
570
571 class LoadStringSlowPathARMVIXL : public SlowPathCodeARMVIXL {
572 public:
LoadStringSlowPathARMVIXL(HLoadString * instruction)573 explicit LoadStringSlowPathARMVIXL(HLoadString* instruction)
574 : SlowPathCodeARMVIXL(instruction) {}
575
EmitNativeCode(CodeGenerator * codegen)576 void EmitNativeCode(CodeGenerator* codegen) override {
577 DCHECK(instruction_->IsLoadString());
578 DCHECK_EQ(instruction_->AsLoadString()->GetLoadKind(), HLoadString::LoadKind::kBssEntry);
579 LocationSummary* locations = instruction_->GetLocations();
580 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
581 const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex();
582
583 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
584 __ Bind(GetEntryLabel());
585 SaveLiveRegisters(codegen, locations);
586
587 InvokeRuntimeCallingConventionARMVIXL calling_convention;
588 __ Mov(calling_convention.GetRegisterAt(0), string_index.index_);
589 arm_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
590 CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
591
592 arm_codegen->Move32(locations->Out(), LocationFrom(r0));
593 RestoreLiveRegisters(codegen, locations);
594
595 __ B(GetExitLabel());
596 }
597
GetDescription() const598 const char* GetDescription() const override { return "LoadStringSlowPathARMVIXL"; }
599
600 private:
601 DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARMVIXL);
602 };
603
604 class TypeCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
605 public:
TypeCheckSlowPathARMVIXL(HInstruction * instruction,bool is_fatal)606 TypeCheckSlowPathARMVIXL(HInstruction* instruction, bool is_fatal)
607 : SlowPathCodeARMVIXL(instruction), is_fatal_(is_fatal) {}
608
EmitNativeCode(CodeGenerator * codegen)609 void EmitNativeCode(CodeGenerator* codegen) override {
610 LocationSummary* locations = instruction_->GetLocations();
611 DCHECK(instruction_->IsCheckCast()
612 || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
613
614 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
615 __ Bind(GetEntryLabel());
616
617 if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) {
618 SaveLiveRegisters(codegen, locations);
619 }
620
621 // We're moving two locations to locations that could overlap, so we need a parallel
622 // move resolver.
623 InvokeRuntimeCallingConventionARMVIXL calling_convention;
624
625 codegen->EmitParallelMoves(locations->InAt(0),
626 LocationFrom(calling_convention.GetRegisterAt(0)),
627 DataType::Type::kReference,
628 locations->InAt(1),
629 LocationFrom(calling_convention.GetRegisterAt(1)),
630 DataType::Type::kReference);
631 if (instruction_->IsInstanceOf()) {
632 arm_codegen->InvokeRuntime(kQuickInstanceofNonTrivial,
633 instruction_,
634 instruction_->GetDexPc(),
635 this);
636 CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>();
637 arm_codegen->Move32(locations->Out(), LocationFrom(r0));
638 } else {
639 DCHECK(instruction_->IsCheckCast());
640 arm_codegen->InvokeRuntime(kQuickCheckInstanceOf,
641 instruction_,
642 instruction_->GetDexPc(),
643 this);
644 CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>();
645 }
646
647 if (!is_fatal_) {
648 RestoreLiveRegisters(codegen, locations);
649 __ B(GetExitLabel());
650 }
651 }
652
GetDescription() const653 const char* GetDescription() const override { return "TypeCheckSlowPathARMVIXL"; }
654
IsFatal() const655 bool IsFatal() const override { return is_fatal_; }
656
657 private:
658 const bool is_fatal_;
659
660 DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARMVIXL);
661 };
662
663 class DeoptimizationSlowPathARMVIXL : public SlowPathCodeARMVIXL {
664 public:
DeoptimizationSlowPathARMVIXL(HDeoptimize * instruction)665 explicit DeoptimizationSlowPathARMVIXL(HDeoptimize* instruction)
666 : SlowPathCodeARMVIXL(instruction) {}
667
EmitNativeCode(CodeGenerator * codegen)668 void EmitNativeCode(CodeGenerator* codegen) override {
669 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
670 __ Bind(GetEntryLabel());
671 LocationSummary* locations = instruction_->GetLocations();
672 SaveLiveRegisters(codegen, locations);
673 InvokeRuntimeCallingConventionARMVIXL calling_convention;
674 __ Mov(calling_convention.GetRegisterAt(0),
675 static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind()));
676
677 arm_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
678 CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>();
679 }
680
GetDescription() const681 const char* GetDescription() const override { return "DeoptimizationSlowPathARMVIXL"; }
682
683 private:
684 DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARMVIXL);
685 };
686
687 class ArraySetSlowPathARMVIXL : public SlowPathCodeARMVIXL {
688 public:
ArraySetSlowPathARMVIXL(HInstruction * instruction)689 explicit ArraySetSlowPathARMVIXL(HInstruction* instruction) : SlowPathCodeARMVIXL(instruction) {}
690
EmitNativeCode(CodeGenerator * codegen)691 void EmitNativeCode(CodeGenerator* codegen) override {
692 LocationSummary* locations = instruction_->GetLocations();
693 __ Bind(GetEntryLabel());
694 SaveLiveRegisters(codegen, locations);
695
696 InvokeRuntimeCallingConventionARMVIXL calling_convention;
697 HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
698 parallel_move.AddMove(
699 locations->InAt(0),
700 LocationFrom(calling_convention.GetRegisterAt(0)),
701 DataType::Type::kReference,
702 nullptr);
703 parallel_move.AddMove(
704 locations->InAt(1),
705 LocationFrom(calling_convention.GetRegisterAt(1)),
706 DataType::Type::kInt32,
707 nullptr);
708 parallel_move.AddMove(
709 locations->InAt(2),
710 LocationFrom(calling_convention.GetRegisterAt(2)),
711 DataType::Type::kReference,
712 nullptr);
713 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
714
715 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
716 arm_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this);
717 CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
718 RestoreLiveRegisters(codegen, locations);
719 __ B(GetExitLabel());
720 }
721
GetDescription() const722 const char* GetDescription() const override { return "ArraySetSlowPathARMVIXL"; }
723
724 private:
725 DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARMVIXL);
726 };
727
728 // Slow path generating a read barrier for a heap reference.
729 class ReadBarrierForHeapReferenceSlowPathARMVIXL : public SlowPathCodeARMVIXL {
730 public:
ReadBarrierForHeapReferenceSlowPathARMVIXL(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)731 ReadBarrierForHeapReferenceSlowPathARMVIXL(HInstruction* instruction,
732 Location out,
733 Location ref,
734 Location obj,
735 uint32_t offset,
736 Location index)
737 : SlowPathCodeARMVIXL(instruction),
738 out_(out),
739 ref_(ref),
740 obj_(obj),
741 offset_(offset),
742 index_(index) {
743 DCHECK(kEmitCompilerReadBarrier);
744 // If `obj` is equal to `out` or `ref`, it means the initial object
745 // has been overwritten by (or after) the heap object reference load
746 // to be instrumented, e.g.:
747 //
748 // __ LoadFromOffset(kLoadWord, out, out, offset);
749 // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
750 //
751 // In that case, we have lost the information about the original
752 // object, and the emitted read barrier cannot work properly.
753 DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
754 DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
755 }
756
EmitNativeCode(CodeGenerator * codegen)757 void EmitNativeCode(CodeGenerator* codegen) override {
758 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
759 LocationSummary* locations = instruction_->GetLocations();
760 vixl32::Register reg_out = RegisterFrom(out_);
761 DCHECK(locations->CanCall());
762 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out.GetCode()));
763 DCHECK(instruction_->IsInstanceFieldGet() ||
764 instruction_->IsPredicatedInstanceFieldGet() ||
765 instruction_->IsStaticFieldGet() ||
766 instruction_->IsArrayGet() ||
767 instruction_->IsInstanceOf() ||
768 instruction_->IsCheckCast() ||
769 (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified()))
770 << "Unexpected instruction in read barrier for heap reference slow path: "
771 << instruction_->DebugName();
772 // The read barrier instrumentation of object ArrayGet
773 // instructions does not support the HIntermediateAddress
774 // instruction.
775 DCHECK(!(instruction_->IsArrayGet() &&
776 instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
777
778 __ Bind(GetEntryLabel());
779 SaveLiveRegisters(codegen, locations);
780
781 // We may have to change the index's value, but as `index_` is a
782 // constant member (like other "inputs" of this slow path),
783 // introduce a copy of it, `index`.
784 Location index = index_;
785 if (index_.IsValid()) {
786 // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
787 if (instruction_->IsArrayGet()) {
788 // Compute the actual memory offset and store it in `index`.
789 vixl32::Register index_reg = RegisterFrom(index_);
790 DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg.GetCode()));
791 if (codegen->IsCoreCalleeSaveRegister(index_reg.GetCode())) {
792 // We are about to change the value of `index_reg` (see the
793 // calls to art::arm::ArmVIXLMacroAssembler::Lsl and
794 // art::arm::ArmVIXLMacroAssembler::Add below), but it has
795 // not been saved by the previous call to
796 // art::SlowPathCode::SaveLiveRegisters, as it is a
797 // callee-save register --
798 // art::SlowPathCode::SaveLiveRegisters does not consider
799 // callee-save registers, as it has been designed with the
800 // assumption that callee-save registers are supposed to be
801 // handled by the called function. So, as a callee-save
802 // register, `index_reg` _would_ eventually be saved onto
803 // the stack, but it would be too late: we would have
804 // changed its value earlier. Therefore, we manually save
805 // it here into another freely available register,
806 // `free_reg`, chosen of course among the caller-save
807 // registers (as a callee-save `free_reg` register would
808 // exhibit the same problem).
809 //
810 // Note we could have requested a temporary register from
811 // the register allocator instead; but we prefer not to, as
812 // this is a slow path, and we know we can find a
813 // caller-save register that is available.
814 vixl32::Register free_reg = FindAvailableCallerSaveRegister(codegen);
815 __ Mov(free_reg, index_reg);
816 index_reg = free_reg;
817 index = LocationFrom(index_reg);
818 } else {
819 // The initial register stored in `index_` has already been
820 // saved in the call to art::SlowPathCode::SaveLiveRegisters
821 // (as it is not a callee-save register), so we can freely
822 // use it.
823 }
824 // Shifting the index value contained in `index_reg` by the scale
825 // factor (2) cannot overflow in practice, as the runtime is
826 // unable to allocate object arrays with a size larger than
827 // 2^26 - 1 (that is, 2^28 - 4 bytes).
828 __ Lsl(index_reg, index_reg, TIMES_4);
829 static_assert(
830 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
831 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
832 __ Add(index_reg, index_reg, offset_);
833 } else {
834 // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile
835 // intrinsics, `index_` is not shifted by a scale factor of 2
836 // (as in the case of ArrayGet), as it is actually an offset
837 // to an object field within an object.
838 DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
839 DCHECK(instruction_->GetLocations()->Intrinsified());
840 Intrinsics intrinsic = instruction_->AsInvoke()->GetIntrinsic();
841 DCHECK(intrinsic == Intrinsics::kUnsafeGetObject ||
842 intrinsic == Intrinsics::kUnsafeGetObjectVolatile ||
843 mirror::VarHandle::GetAccessModeTemplateByIntrinsic(intrinsic) ==
844 mirror::VarHandle::AccessModeTemplate::kGet ||
845 mirror::VarHandle::GetAccessModeTemplateByIntrinsic(intrinsic) ==
846 mirror::VarHandle::AccessModeTemplate::kCompareAndSet ||
847 mirror::VarHandle::GetAccessModeTemplateByIntrinsic(intrinsic) ==
848 mirror::VarHandle::AccessModeTemplate::kCompareAndExchange ||
849 mirror::VarHandle::GetAccessModeTemplateByIntrinsic(intrinsic) ==
850 mirror::VarHandle::AccessModeTemplate::kGetAndUpdate)
851 << instruction_->AsInvoke()->GetIntrinsic();
852 DCHECK_EQ(offset_, 0U);
853 // Though UnsafeGet's offset location is a register pair, we only pass the low
854 // part (high part is irrelevant for 32-bit addresses) to the slow path.
855 // For VarHandle intrinsics, the index is always just a register.
856 DCHECK(index_.IsRegister());
857 index = index_;
858 }
859 }
860
861 // We're moving two or three locations to locations that could
862 // overlap, so we need a parallel move resolver.
863 InvokeRuntimeCallingConventionARMVIXL calling_convention;
864 HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
865 parallel_move.AddMove(ref_,
866 LocationFrom(calling_convention.GetRegisterAt(0)),
867 DataType::Type::kReference,
868 nullptr);
869 parallel_move.AddMove(obj_,
870 LocationFrom(calling_convention.GetRegisterAt(1)),
871 DataType::Type::kReference,
872 nullptr);
873 if (index.IsValid()) {
874 parallel_move.AddMove(index,
875 LocationFrom(calling_convention.GetRegisterAt(2)),
876 DataType::Type::kInt32,
877 nullptr);
878 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
879 } else {
880 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
881 __ Mov(calling_convention.GetRegisterAt(2), offset_);
882 }
883 arm_codegen->InvokeRuntime(kQuickReadBarrierSlow, instruction_, instruction_->GetDexPc(), this);
884 CheckEntrypointTypes<
885 kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
886 arm_codegen->Move32(out_, LocationFrom(r0));
887
888 RestoreLiveRegisters(codegen, locations);
889 __ B(GetExitLabel());
890 }
891
GetDescription() const892 const char* GetDescription() const override {
893 return "ReadBarrierForHeapReferenceSlowPathARMVIXL";
894 }
895
896 private:
FindAvailableCallerSaveRegister(CodeGenerator * codegen)897 vixl32::Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
898 uint32_t ref = RegisterFrom(ref_).GetCode();
899 uint32_t obj = RegisterFrom(obj_).GetCode();
900 for (uint32_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
901 if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
902 return vixl32::Register(i);
903 }
904 }
905 // We shall never fail to find a free caller-save register, as
906 // there are more than two core caller-save registers on ARM
907 // (meaning it is possible to find one which is different from
908 // `ref` and `obj`).
909 DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
910 LOG(FATAL) << "Could not find a free caller-save register";
911 UNREACHABLE();
912 }
913
914 const Location out_;
915 const Location ref_;
916 const Location obj_;
917 const uint32_t offset_;
918 // An additional location containing an index to an array.
919 // Only used for HArrayGet and the UnsafeGetObject &
920 // UnsafeGetObjectVolatile intrinsics.
921 const Location index_;
922
923 DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARMVIXL);
924 };
925
926 // Slow path generating a read barrier for a GC root.
927 class ReadBarrierForRootSlowPathARMVIXL : public SlowPathCodeARMVIXL {
928 public:
ReadBarrierForRootSlowPathARMVIXL(HInstruction * instruction,Location out,Location root)929 ReadBarrierForRootSlowPathARMVIXL(HInstruction* instruction, Location out, Location root)
930 : SlowPathCodeARMVIXL(instruction), out_(out), root_(root) {
931 DCHECK(kEmitCompilerReadBarrier);
932 }
933
EmitNativeCode(CodeGenerator * codegen)934 void EmitNativeCode(CodeGenerator* codegen) override {
935 LocationSummary* locations = instruction_->GetLocations();
936 vixl32::Register reg_out = RegisterFrom(out_);
937 DCHECK(locations->CanCall());
938 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out.GetCode()));
939 DCHECK(instruction_->IsLoadClass() ||
940 instruction_->IsLoadString() ||
941 (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified()))
942 << "Unexpected instruction in read barrier for GC root slow path: "
943 << instruction_->DebugName();
944
945 __ Bind(GetEntryLabel());
946 SaveLiveRegisters(codegen, locations);
947
948 InvokeRuntimeCallingConventionARMVIXL calling_convention;
949 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
950 arm_codegen->Move32(LocationFrom(calling_convention.GetRegisterAt(0)), root_);
951 arm_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow,
952 instruction_,
953 instruction_->GetDexPc(),
954 this);
955 CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
956 arm_codegen->Move32(out_, LocationFrom(r0));
957
958 RestoreLiveRegisters(codegen, locations);
959 __ B(GetExitLabel());
960 }
961
GetDescription() const962 const char* GetDescription() const override { return "ReadBarrierForRootSlowPathARMVIXL"; }
963
964 private:
965 const Location out_;
966 const Location root_;
967
968 DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARMVIXL);
969 };
970
ARMCondition(IfCondition cond)971 inline vixl32::Condition ARMCondition(IfCondition cond) {
972 switch (cond) {
973 case kCondEQ: return eq;
974 case kCondNE: return ne;
975 case kCondLT: return lt;
976 case kCondLE: return le;
977 case kCondGT: return gt;
978 case kCondGE: return ge;
979 case kCondB: return lo;
980 case kCondBE: return ls;
981 case kCondA: return hi;
982 case kCondAE: return hs;
983 }
984 LOG(FATAL) << "Unreachable";
985 UNREACHABLE();
986 }
987
988 // Maps signed condition to unsigned condition.
ARMUnsignedCondition(IfCondition cond)989 inline vixl32::Condition ARMUnsignedCondition(IfCondition cond) {
990 switch (cond) {
991 case kCondEQ: return eq;
992 case kCondNE: return ne;
993 // Signed to unsigned.
994 case kCondLT: return lo;
995 case kCondLE: return ls;
996 case kCondGT: return hi;
997 case kCondGE: return hs;
998 // Unsigned remain unchanged.
999 case kCondB: return lo;
1000 case kCondBE: return ls;
1001 case kCondA: return hi;
1002 case kCondAE: return hs;
1003 }
1004 LOG(FATAL) << "Unreachable";
1005 UNREACHABLE();
1006 }
1007
ARMFPCondition(IfCondition cond,bool gt_bias)1008 inline vixl32::Condition ARMFPCondition(IfCondition cond, bool gt_bias) {
1009 // The ARM condition codes can express all the necessary branches, see the
1010 // "Meaning (floating-point)" column in the table A8-1 of the ARMv7 reference manual.
1011 // There is no dex instruction or HIR that would need the missing conditions
1012 // "equal or unordered" or "not equal".
1013 switch (cond) {
1014 case kCondEQ: return eq;
1015 case kCondNE: return ne /* unordered */;
1016 case kCondLT: return gt_bias ? cc : lt /* unordered */;
1017 case kCondLE: return gt_bias ? ls : le /* unordered */;
1018 case kCondGT: return gt_bias ? hi /* unordered */ : gt;
1019 case kCondGE: return gt_bias ? cs /* unordered */ : ge;
1020 default:
1021 LOG(FATAL) << "UNREACHABLE";
1022 UNREACHABLE();
1023 }
1024 }
1025
ShiftFromOpKind(HDataProcWithShifterOp::OpKind op_kind)1026 inline ShiftType ShiftFromOpKind(HDataProcWithShifterOp::OpKind op_kind) {
1027 switch (op_kind) {
1028 case HDataProcWithShifterOp::kASR: return ShiftType::ASR;
1029 case HDataProcWithShifterOp::kLSL: return ShiftType::LSL;
1030 case HDataProcWithShifterOp::kLSR: return ShiftType::LSR;
1031 default:
1032 LOG(FATAL) << "Unexpected op kind " << op_kind;
1033 UNREACHABLE();
1034 }
1035 }
1036
DumpCoreRegister(std::ostream & stream,int reg) const1037 void CodeGeneratorARMVIXL::DumpCoreRegister(std::ostream& stream, int reg) const {
1038 stream << vixl32::Register(reg);
1039 }
1040
DumpFloatingPointRegister(std::ostream & stream,int reg) const1041 void CodeGeneratorARMVIXL::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
1042 stream << vixl32::SRegister(reg);
1043 }
1044
GetInstructionSetFeatures() const1045 const ArmInstructionSetFeatures& CodeGeneratorARMVIXL::GetInstructionSetFeatures() const {
1046 return *GetCompilerOptions().GetInstructionSetFeatures()->AsArmInstructionSetFeatures();
1047 }
1048
ComputeSRegisterListMask(const SRegisterList & regs)1049 static uint32_t ComputeSRegisterListMask(const SRegisterList& regs) {
1050 uint32_t mask = 0;
1051 for (uint32_t i = regs.GetFirstSRegister().GetCode();
1052 i <= regs.GetLastSRegister().GetCode();
1053 ++i) {
1054 mask |= (1 << i);
1055 }
1056 return mask;
1057 }
1058
1059 // Saves the register in the stack. Returns the size taken on stack.
SaveCoreRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1060 size_t CodeGeneratorARMVIXL::SaveCoreRegister(size_t stack_index ATTRIBUTE_UNUSED,
1061 uint32_t reg_id ATTRIBUTE_UNUSED) {
1062 TODO_VIXL32(FATAL);
1063 UNREACHABLE();
1064 }
1065
1066 // Restores the register from the stack. Returns the size taken on stack.
RestoreCoreRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1067 size_t CodeGeneratorARMVIXL::RestoreCoreRegister(size_t stack_index ATTRIBUTE_UNUSED,
1068 uint32_t reg_id ATTRIBUTE_UNUSED) {
1069 TODO_VIXL32(FATAL);
1070 UNREACHABLE();
1071 }
1072
SaveFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1073 size_t CodeGeneratorARMVIXL::SaveFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,
1074 uint32_t reg_id ATTRIBUTE_UNUSED) {
1075 TODO_VIXL32(FATAL);
1076 UNREACHABLE();
1077 }
1078
RestoreFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1079 size_t CodeGeneratorARMVIXL::RestoreFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,
1080 uint32_t reg_id ATTRIBUTE_UNUSED) {
1081 TODO_VIXL32(FATAL);
1082 UNREACHABLE();
1083 }
1084
GenerateDataProcInstruction(HInstruction::InstructionKind kind,vixl32::Register out,vixl32::Register first,const Operand & second,CodeGeneratorARMVIXL * codegen)1085 static void GenerateDataProcInstruction(HInstruction::InstructionKind kind,
1086 vixl32::Register out,
1087 vixl32::Register first,
1088 const Operand& second,
1089 CodeGeneratorARMVIXL* codegen) {
1090 if (second.IsImmediate() && second.GetImmediate() == 0) {
1091 const Operand in = kind == HInstruction::kAnd
1092 ? Operand(0)
1093 : Operand(first);
1094
1095 __ Mov(out, in);
1096 } else {
1097 switch (kind) {
1098 case HInstruction::kAdd:
1099 __ Add(out, first, second);
1100 break;
1101 case HInstruction::kAnd:
1102 __ And(out, first, second);
1103 break;
1104 case HInstruction::kOr:
1105 __ Orr(out, first, second);
1106 break;
1107 case HInstruction::kSub:
1108 __ Sub(out, first, second);
1109 break;
1110 case HInstruction::kXor:
1111 __ Eor(out, first, second);
1112 break;
1113 default:
1114 LOG(FATAL) << "Unexpected instruction kind: " << kind;
1115 UNREACHABLE();
1116 }
1117 }
1118 }
1119
GenerateDataProc(HInstruction::InstructionKind kind,const Location & out,const Location & first,const Operand & second_lo,const Operand & second_hi,CodeGeneratorARMVIXL * codegen)1120 static void GenerateDataProc(HInstruction::InstructionKind kind,
1121 const Location& out,
1122 const Location& first,
1123 const Operand& second_lo,
1124 const Operand& second_hi,
1125 CodeGeneratorARMVIXL* codegen) {
1126 const vixl32::Register first_hi = HighRegisterFrom(first);
1127 const vixl32::Register first_lo = LowRegisterFrom(first);
1128 const vixl32::Register out_hi = HighRegisterFrom(out);
1129 const vixl32::Register out_lo = LowRegisterFrom(out);
1130
1131 if (kind == HInstruction::kAdd) {
1132 __ Adds(out_lo, first_lo, second_lo);
1133 __ Adc(out_hi, first_hi, second_hi);
1134 } else if (kind == HInstruction::kSub) {
1135 __ Subs(out_lo, first_lo, second_lo);
1136 __ Sbc(out_hi, first_hi, second_hi);
1137 } else {
1138 GenerateDataProcInstruction(kind, out_lo, first_lo, second_lo, codegen);
1139 GenerateDataProcInstruction(kind, out_hi, first_hi, second_hi, codegen);
1140 }
1141 }
1142
GetShifterOperand(vixl32::Register rm,ShiftType shift,uint32_t shift_imm)1143 static Operand GetShifterOperand(vixl32::Register rm, ShiftType shift, uint32_t shift_imm) {
1144 return shift_imm == 0 ? Operand(rm) : Operand(rm, shift, shift_imm);
1145 }
1146
GenerateLongDataProc(HDataProcWithShifterOp * instruction,CodeGeneratorARMVIXL * codegen)1147 static void GenerateLongDataProc(HDataProcWithShifterOp* instruction,
1148 CodeGeneratorARMVIXL* codegen) {
1149 DCHECK_EQ(instruction->GetType(), DataType::Type::kInt64);
1150 DCHECK(HDataProcWithShifterOp::IsShiftOp(instruction->GetOpKind()));
1151
1152 const LocationSummary* const locations = instruction->GetLocations();
1153 const uint32_t shift_value = instruction->GetShiftAmount();
1154 const HInstruction::InstructionKind kind = instruction->GetInstrKind();
1155 const Location first = locations->InAt(0);
1156 const Location second = locations->InAt(1);
1157 const Location out = locations->Out();
1158 const vixl32::Register first_hi = HighRegisterFrom(first);
1159 const vixl32::Register first_lo = LowRegisterFrom(first);
1160 const vixl32::Register out_hi = HighRegisterFrom(out);
1161 const vixl32::Register out_lo = LowRegisterFrom(out);
1162 const vixl32::Register second_hi = HighRegisterFrom(second);
1163 const vixl32::Register second_lo = LowRegisterFrom(second);
1164 const ShiftType shift = ShiftFromOpKind(instruction->GetOpKind());
1165
1166 if (shift_value >= 32) {
1167 if (shift == ShiftType::LSL) {
1168 GenerateDataProcInstruction(kind,
1169 out_hi,
1170 first_hi,
1171 Operand(second_lo, ShiftType::LSL, shift_value - 32),
1172 codegen);
1173 GenerateDataProcInstruction(kind, out_lo, first_lo, 0, codegen);
1174 } else if (shift == ShiftType::ASR) {
1175 GenerateDataProc(kind,
1176 out,
1177 first,
1178 GetShifterOperand(second_hi, ShiftType::ASR, shift_value - 32),
1179 Operand(second_hi, ShiftType::ASR, 31),
1180 codegen);
1181 } else {
1182 DCHECK_EQ(shift, ShiftType::LSR);
1183 GenerateDataProc(kind,
1184 out,
1185 first,
1186 GetShifterOperand(second_hi, ShiftType::LSR, shift_value - 32),
1187 0,
1188 codegen);
1189 }
1190 } else {
1191 DCHECK_GT(shift_value, 1U);
1192 DCHECK_LT(shift_value, 32U);
1193
1194 UseScratchRegisterScope temps(codegen->GetVIXLAssembler());
1195
1196 if (shift == ShiftType::LSL) {
1197 // We are not doing this for HInstruction::kAdd because the output will require
1198 // Location::kOutputOverlap; not applicable to other cases.
1199 if (kind == HInstruction::kOr || kind == HInstruction::kXor) {
1200 GenerateDataProcInstruction(kind,
1201 out_hi,
1202 first_hi,
1203 Operand(second_hi, ShiftType::LSL, shift_value),
1204 codegen);
1205 GenerateDataProcInstruction(kind,
1206 out_hi,
1207 out_hi,
1208 Operand(second_lo, ShiftType::LSR, 32 - shift_value),
1209 codegen);
1210 GenerateDataProcInstruction(kind,
1211 out_lo,
1212 first_lo,
1213 Operand(second_lo, ShiftType::LSL, shift_value),
1214 codegen);
1215 } else {
1216 const vixl32::Register temp = temps.Acquire();
1217
1218 __ Lsl(temp, second_hi, shift_value);
1219 __ Orr(temp, temp, Operand(second_lo, ShiftType::LSR, 32 - shift_value));
1220 GenerateDataProc(kind,
1221 out,
1222 first,
1223 Operand(second_lo, ShiftType::LSL, shift_value),
1224 temp,
1225 codegen);
1226 }
1227 } else {
1228 DCHECK(shift == ShiftType::ASR || shift == ShiftType::LSR);
1229
1230 // We are not doing this for HInstruction::kAdd because the output will require
1231 // Location::kOutputOverlap; not applicable to other cases.
1232 if (kind == HInstruction::kOr || kind == HInstruction::kXor) {
1233 GenerateDataProcInstruction(kind,
1234 out_lo,
1235 first_lo,
1236 Operand(second_lo, ShiftType::LSR, shift_value),
1237 codegen);
1238 GenerateDataProcInstruction(kind,
1239 out_lo,
1240 out_lo,
1241 Operand(second_hi, ShiftType::LSL, 32 - shift_value),
1242 codegen);
1243 GenerateDataProcInstruction(kind,
1244 out_hi,
1245 first_hi,
1246 Operand(second_hi, shift, shift_value),
1247 codegen);
1248 } else {
1249 const vixl32::Register temp = temps.Acquire();
1250
1251 __ Lsr(temp, second_lo, shift_value);
1252 __ Orr(temp, temp, Operand(second_hi, ShiftType::LSL, 32 - shift_value));
1253 GenerateDataProc(kind,
1254 out,
1255 first,
1256 temp,
1257 Operand(second_hi, shift, shift_value),
1258 codegen);
1259 }
1260 }
1261 }
1262 }
1263
GenerateVcmp(HInstruction * instruction,CodeGeneratorARMVIXL * codegen)1264 static void GenerateVcmp(HInstruction* instruction, CodeGeneratorARMVIXL* codegen) {
1265 const Location rhs_loc = instruction->GetLocations()->InAt(1);
1266 if (rhs_loc.IsConstant()) {
1267 // 0.0 is the only immediate that can be encoded directly in
1268 // a VCMP instruction.
1269 //
1270 // Both the JLS (section 15.20.1) and the JVMS (section 6.5)
1271 // specify that in a floating-point comparison, positive zero
1272 // and negative zero are considered equal, so we can use the
1273 // literal 0.0 for both cases here.
1274 //
1275 // Note however that some methods (Float.equal, Float.compare,
1276 // Float.compareTo, Double.equal, Double.compare,
1277 // Double.compareTo, Math.max, Math.min, StrictMath.max,
1278 // StrictMath.min) consider 0.0 to be (strictly) greater than
1279 // -0.0. So if we ever translate calls to these methods into a
1280 // HCompare instruction, we must handle the -0.0 case with
1281 // care here.
1282 DCHECK(rhs_loc.GetConstant()->IsArithmeticZero());
1283
1284 const DataType::Type type = instruction->InputAt(0)->GetType();
1285
1286 if (type == DataType::Type::kFloat32) {
1287 __ Vcmp(F32, InputSRegisterAt(instruction, 0), 0.0);
1288 } else {
1289 DCHECK_EQ(type, DataType::Type::kFloat64);
1290 __ Vcmp(F64, InputDRegisterAt(instruction, 0), 0.0);
1291 }
1292 } else {
1293 __ Vcmp(InputVRegisterAt(instruction, 0), InputVRegisterAt(instruction, 1));
1294 }
1295 }
1296
AdjustConstantForCondition(int64_t value,IfCondition * condition,IfCondition * opposite)1297 static int64_t AdjustConstantForCondition(int64_t value,
1298 IfCondition* condition,
1299 IfCondition* opposite) {
1300 if (value == 1) {
1301 if (*condition == kCondB) {
1302 value = 0;
1303 *condition = kCondEQ;
1304 *opposite = kCondNE;
1305 } else if (*condition == kCondAE) {
1306 value = 0;
1307 *condition = kCondNE;
1308 *opposite = kCondEQ;
1309 }
1310 } else if (value == -1) {
1311 if (*condition == kCondGT) {
1312 value = 0;
1313 *condition = kCondGE;
1314 *opposite = kCondLT;
1315 } else if (*condition == kCondLE) {
1316 value = 0;
1317 *condition = kCondLT;
1318 *opposite = kCondGE;
1319 }
1320 }
1321
1322 return value;
1323 }
1324
GenerateLongTestConstant(HCondition * condition,bool invert,CodeGeneratorARMVIXL * codegen)1325 static std::pair<vixl32::Condition, vixl32::Condition> GenerateLongTestConstant(
1326 HCondition* condition,
1327 bool invert,
1328 CodeGeneratorARMVIXL* codegen) {
1329 DCHECK_EQ(condition->GetLeft()->GetType(), DataType::Type::kInt64);
1330
1331 const LocationSummary* const locations = condition->GetLocations();
1332 IfCondition cond = condition->GetCondition();
1333 IfCondition opposite = condition->GetOppositeCondition();
1334
1335 if (invert) {
1336 std::swap(cond, opposite);
1337 }
1338
1339 std::pair<vixl32::Condition, vixl32::Condition> ret(eq, ne);
1340 const Location left = locations->InAt(0);
1341 const Location right = locations->InAt(1);
1342
1343 DCHECK(right.IsConstant());
1344
1345 const vixl32::Register left_high = HighRegisterFrom(left);
1346 const vixl32::Register left_low = LowRegisterFrom(left);
1347 int64_t value = AdjustConstantForCondition(Int64ConstantFrom(right), &cond, &opposite);
1348 UseScratchRegisterScope temps(codegen->GetVIXLAssembler());
1349
1350 // Comparisons against 0 are common enough to deserve special attention.
1351 if (value == 0) {
1352 switch (cond) {
1353 case kCondNE:
1354 // x > 0 iff x != 0 when the comparison is unsigned.
1355 case kCondA:
1356 ret = std::make_pair(ne, eq);
1357 FALLTHROUGH_INTENDED;
1358 case kCondEQ:
1359 // x <= 0 iff x == 0 when the comparison is unsigned.
1360 case kCondBE:
1361 __ Orrs(temps.Acquire(), left_low, left_high);
1362 return ret;
1363 case kCondLT:
1364 case kCondGE:
1365 __ Cmp(left_high, 0);
1366 return std::make_pair(ARMCondition(cond), ARMCondition(opposite));
1367 // Trivially true or false.
1368 case kCondB:
1369 ret = std::make_pair(ne, eq);
1370 FALLTHROUGH_INTENDED;
1371 case kCondAE:
1372 __ Cmp(left_low, left_low);
1373 return ret;
1374 default:
1375 break;
1376 }
1377 }
1378
1379 switch (cond) {
1380 case kCondEQ:
1381 case kCondNE:
1382 case kCondB:
1383 case kCondBE:
1384 case kCondA:
1385 case kCondAE: {
1386 const uint32_t value_low = Low32Bits(value);
1387 Operand operand_low(value_low);
1388
1389 __ Cmp(left_high, High32Bits(value));
1390
1391 // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
1392 // we must ensure that the operands corresponding to the least significant
1393 // halves of the inputs fit into a 16-bit CMP encoding.
1394 if (!left_low.IsLow() || !IsUint<8>(value_low)) {
1395 operand_low = Operand(temps.Acquire());
1396 __ Mov(LeaveFlags, operand_low.GetBaseRegister(), value_low);
1397 }
1398
1399 // We use the scope because of the IT block that follows.
1400 ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1401 2 * vixl32::k16BitT32InstructionSizeInBytes,
1402 CodeBufferCheckScope::kExactSize);
1403
1404 __ it(eq);
1405 __ cmp(eq, left_low, operand_low);
1406 ret = std::make_pair(ARMUnsignedCondition(cond), ARMUnsignedCondition(opposite));
1407 break;
1408 }
1409 case kCondLE:
1410 case kCondGT:
1411 // Trivially true or false.
1412 if (value == std::numeric_limits<int64_t>::max()) {
1413 __ Cmp(left_low, left_low);
1414 ret = cond == kCondLE ? std::make_pair(eq, ne) : std::make_pair(ne, eq);
1415 break;
1416 }
1417
1418 if (cond == kCondLE) {
1419 DCHECK_EQ(opposite, kCondGT);
1420 cond = kCondLT;
1421 opposite = kCondGE;
1422 } else {
1423 DCHECK_EQ(cond, kCondGT);
1424 DCHECK_EQ(opposite, kCondLE);
1425 cond = kCondGE;
1426 opposite = kCondLT;
1427 }
1428
1429 value++;
1430 FALLTHROUGH_INTENDED;
1431 case kCondGE:
1432 case kCondLT: {
1433 __ Cmp(left_low, Low32Bits(value));
1434 __ Sbcs(temps.Acquire(), left_high, High32Bits(value));
1435 ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite));
1436 break;
1437 }
1438 default:
1439 LOG(FATAL) << "Unreachable";
1440 UNREACHABLE();
1441 }
1442
1443 return ret;
1444 }
1445
GenerateLongTest(HCondition * condition,bool invert,CodeGeneratorARMVIXL * codegen)1446 static std::pair<vixl32::Condition, vixl32::Condition> GenerateLongTest(
1447 HCondition* condition,
1448 bool invert,
1449 CodeGeneratorARMVIXL* codegen) {
1450 DCHECK_EQ(condition->GetLeft()->GetType(), DataType::Type::kInt64);
1451
1452 const LocationSummary* const locations = condition->GetLocations();
1453 IfCondition cond = condition->GetCondition();
1454 IfCondition opposite = condition->GetOppositeCondition();
1455
1456 if (invert) {
1457 std::swap(cond, opposite);
1458 }
1459
1460 std::pair<vixl32::Condition, vixl32::Condition> ret(eq, ne);
1461 Location left = locations->InAt(0);
1462 Location right = locations->InAt(1);
1463
1464 DCHECK(right.IsRegisterPair());
1465
1466 switch (cond) {
1467 case kCondEQ:
1468 case kCondNE:
1469 case kCondB:
1470 case kCondBE:
1471 case kCondA:
1472 case kCondAE: {
1473 __ Cmp(HighRegisterFrom(left), HighRegisterFrom(right));
1474
1475 // We use the scope because of the IT block that follows.
1476 ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1477 2 * vixl32::k16BitT32InstructionSizeInBytes,
1478 CodeBufferCheckScope::kExactSize);
1479
1480 __ it(eq);
1481 __ cmp(eq, LowRegisterFrom(left), LowRegisterFrom(right));
1482 ret = std::make_pair(ARMUnsignedCondition(cond), ARMUnsignedCondition(opposite));
1483 break;
1484 }
1485 case kCondLE:
1486 case kCondGT:
1487 if (cond == kCondLE) {
1488 DCHECK_EQ(opposite, kCondGT);
1489 cond = kCondGE;
1490 opposite = kCondLT;
1491 } else {
1492 DCHECK_EQ(cond, kCondGT);
1493 DCHECK_EQ(opposite, kCondLE);
1494 cond = kCondLT;
1495 opposite = kCondGE;
1496 }
1497
1498 std::swap(left, right);
1499 FALLTHROUGH_INTENDED;
1500 case kCondGE:
1501 case kCondLT: {
1502 UseScratchRegisterScope temps(codegen->GetVIXLAssembler());
1503
1504 __ Cmp(LowRegisterFrom(left), LowRegisterFrom(right));
1505 __ Sbcs(temps.Acquire(), HighRegisterFrom(left), HighRegisterFrom(right));
1506 ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite));
1507 break;
1508 }
1509 default:
1510 LOG(FATAL) << "Unreachable";
1511 UNREACHABLE();
1512 }
1513
1514 return ret;
1515 }
1516
GenerateTest(HCondition * condition,bool invert,CodeGeneratorARMVIXL * codegen)1517 static std::pair<vixl32::Condition, vixl32::Condition> GenerateTest(HCondition* condition,
1518 bool invert,
1519 CodeGeneratorARMVIXL* codegen) {
1520 const DataType::Type type = condition->GetLeft()->GetType();
1521 IfCondition cond = condition->GetCondition();
1522 IfCondition opposite = condition->GetOppositeCondition();
1523 std::pair<vixl32::Condition, vixl32::Condition> ret(eq, ne);
1524
1525 if (invert) {
1526 std::swap(cond, opposite);
1527 }
1528
1529 if (type == DataType::Type::kInt64) {
1530 ret = condition->GetLocations()->InAt(1).IsConstant()
1531 ? GenerateLongTestConstant(condition, invert, codegen)
1532 : GenerateLongTest(condition, invert, codegen);
1533 } else if (DataType::IsFloatingPointType(type)) {
1534 GenerateVcmp(condition, codegen);
1535 __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
1536 ret = std::make_pair(ARMFPCondition(cond, condition->IsGtBias()),
1537 ARMFPCondition(opposite, condition->IsGtBias()));
1538 } else {
1539 DCHECK(DataType::IsIntegralType(type) || type == DataType::Type::kReference) << type;
1540 __ Cmp(InputRegisterAt(condition, 0), InputOperandAt(condition, 1));
1541 ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite));
1542 }
1543
1544 return ret;
1545 }
1546
GenerateConditionGeneric(HCondition * cond,CodeGeneratorARMVIXL * codegen)1547 static void GenerateConditionGeneric(HCondition* cond, CodeGeneratorARMVIXL* codegen) {
1548 const vixl32::Register out = OutputRegister(cond);
1549 const auto condition = GenerateTest(cond, false, codegen);
1550
1551 __ Mov(LeaveFlags, out, 0);
1552
1553 if (out.IsLow()) {
1554 // We use the scope because of the IT block that follows.
1555 ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1556 2 * vixl32::k16BitT32InstructionSizeInBytes,
1557 CodeBufferCheckScope::kExactSize);
1558
1559 __ it(condition.first);
1560 __ mov(condition.first, out, 1);
1561 } else {
1562 vixl32::Label done_label;
1563 vixl32::Label* const final_label = codegen->GetFinalLabel(cond, &done_label);
1564
1565 __ B(condition.second, final_label, /* is_far_target= */ false);
1566 __ Mov(out, 1);
1567
1568 if (done_label.IsReferenced()) {
1569 __ Bind(&done_label);
1570 }
1571 }
1572 }
1573
GenerateEqualLong(HCondition * cond,CodeGeneratorARMVIXL * codegen)1574 static void GenerateEqualLong(HCondition* cond, CodeGeneratorARMVIXL* codegen) {
1575 DCHECK_EQ(cond->GetLeft()->GetType(), DataType::Type::kInt64);
1576
1577 const LocationSummary* const locations = cond->GetLocations();
1578 IfCondition condition = cond->GetCondition();
1579 const vixl32::Register out = OutputRegister(cond);
1580 const Location left = locations->InAt(0);
1581 const Location right = locations->InAt(1);
1582 vixl32::Register left_high = HighRegisterFrom(left);
1583 vixl32::Register left_low = LowRegisterFrom(left);
1584 vixl32::Register temp;
1585 UseScratchRegisterScope temps(codegen->GetVIXLAssembler());
1586
1587 if (right.IsConstant()) {
1588 IfCondition opposite = cond->GetOppositeCondition();
1589 const int64_t value = AdjustConstantForCondition(Int64ConstantFrom(right),
1590 &condition,
1591 &opposite);
1592 Operand right_high = High32Bits(value);
1593 Operand right_low = Low32Bits(value);
1594
1595 // The output uses Location::kNoOutputOverlap.
1596 if (out.Is(left_high)) {
1597 std::swap(left_low, left_high);
1598 std::swap(right_low, right_high);
1599 }
1600
1601 __ Sub(out, left_low, right_low);
1602 temp = temps.Acquire();
1603 __ Sub(temp, left_high, right_high);
1604 } else {
1605 DCHECK(right.IsRegisterPair());
1606 temp = temps.Acquire();
1607 __ Sub(temp, left_high, HighRegisterFrom(right));
1608 __ Sub(out, left_low, LowRegisterFrom(right));
1609 }
1610
1611 // Need to check after calling AdjustConstantForCondition().
1612 DCHECK(condition == kCondEQ || condition == kCondNE) << condition;
1613
1614 if (condition == kCondNE && out.IsLow()) {
1615 __ Orrs(out, out, temp);
1616
1617 // We use the scope because of the IT block that follows.
1618 ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1619 2 * vixl32::k16BitT32InstructionSizeInBytes,
1620 CodeBufferCheckScope::kExactSize);
1621
1622 __ it(ne);
1623 __ mov(ne, out, 1);
1624 } else {
1625 __ Orr(out, out, temp);
1626 codegen->GenerateConditionWithZero(condition, out, out, temp);
1627 }
1628 }
1629
GenerateConditionLong(HCondition * cond,CodeGeneratorARMVIXL * codegen)1630 static void GenerateConditionLong(HCondition* cond, CodeGeneratorARMVIXL* codegen) {
1631 DCHECK_EQ(cond->GetLeft()->GetType(), DataType::Type::kInt64);
1632
1633 const LocationSummary* const locations = cond->GetLocations();
1634 IfCondition condition = cond->GetCondition();
1635 const vixl32::Register out = OutputRegister(cond);
1636 const Location left = locations->InAt(0);
1637 const Location right = locations->InAt(1);
1638
1639 if (right.IsConstant()) {
1640 IfCondition opposite = cond->GetOppositeCondition();
1641
1642 // Comparisons against 0 are common enough to deserve special attention.
1643 if (AdjustConstantForCondition(Int64ConstantFrom(right), &condition, &opposite) == 0) {
1644 switch (condition) {
1645 case kCondNE:
1646 case kCondA:
1647 if (out.IsLow()) {
1648 // We only care if both input registers are 0 or not.
1649 __ Orrs(out, LowRegisterFrom(left), HighRegisterFrom(left));
1650
1651 // We use the scope because of the IT block that follows.
1652 ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1653 2 * vixl32::k16BitT32InstructionSizeInBytes,
1654 CodeBufferCheckScope::kExactSize);
1655
1656 __ it(ne);
1657 __ mov(ne, out, 1);
1658 return;
1659 }
1660
1661 FALLTHROUGH_INTENDED;
1662 case kCondEQ:
1663 case kCondBE:
1664 // We only care if both input registers are 0 or not.
1665 __ Orr(out, LowRegisterFrom(left), HighRegisterFrom(left));
1666 codegen->GenerateConditionWithZero(condition, out, out);
1667 return;
1668 case kCondLT:
1669 case kCondGE:
1670 // We only care about the sign bit.
1671 FALLTHROUGH_INTENDED;
1672 case kCondAE:
1673 case kCondB:
1674 codegen->GenerateConditionWithZero(condition, out, HighRegisterFrom(left));
1675 return;
1676 case kCondLE:
1677 case kCondGT:
1678 default:
1679 break;
1680 }
1681 }
1682 }
1683
1684 // If `out` is a low register, then the GenerateConditionGeneric()
1685 // function generates a shorter code sequence that is still branchless.
1686 if ((condition == kCondEQ || condition == kCondNE) && !out.IsLow()) {
1687 GenerateEqualLong(cond, codegen);
1688 return;
1689 }
1690
1691 GenerateConditionGeneric(cond, codegen);
1692 }
1693
GenerateConditionIntegralOrNonPrimitive(HCondition * cond,CodeGeneratorARMVIXL * codegen)1694 static void GenerateConditionIntegralOrNonPrimitive(HCondition* cond,
1695 CodeGeneratorARMVIXL* codegen) {
1696 const DataType::Type type = cond->GetLeft()->GetType();
1697
1698 DCHECK(DataType::IsIntegralType(type) || type == DataType::Type::kReference) << type;
1699
1700 if (type == DataType::Type::kInt64) {
1701 GenerateConditionLong(cond, codegen);
1702 return;
1703 }
1704
1705 IfCondition condition = cond->GetCondition();
1706 vixl32::Register in = InputRegisterAt(cond, 0);
1707 const vixl32::Register out = OutputRegister(cond);
1708 const Location right = cond->GetLocations()->InAt(1);
1709 int64_t value;
1710
1711 if (right.IsConstant()) {
1712 IfCondition opposite = cond->GetOppositeCondition();
1713
1714 value = AdjustConstantForCondition(Int64ConstantFrom(right), &condition, &opposite);
1715
1716 // Comparisons against 0 are common enough to deserve special attention.
1717 if (value == 0) {
1718 switch (condition) {
1719 case kCondNE:
1720 case kCondA:
1721 if (out.IsLow() && out.Is(in)) {
1722 __ Cmp(out, 0);
1723
1724 // We use the scope because of the IT block that follows.
1725 ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1726 2 * vixl32::k16BitT32InstructionSizeInBytes,
1727 CodeBufferCheckScope::kExactSize);
1728
1729 __ it(ne);
1730 __ mov(ne, out, 1);
1731 return;
1732 }
1733
1734 FALLTHROUGH_INTENDED;
1735 case kCondEQ:
1736 case kCondBE:
1737 case kCondLT:
1738 case kCondGE:
1739 case kCondAE:
1740 case kCondB:
1741 codegen->GenerateConditionWithZero(condition, out, in);
1742 return;
1743 case kCondLE:
1744 case kCondGT:
1745 default:
1746 break;
1747 }
1748 }
1749 }
1750
1751 if (condition == kCondEQ || condition == kCondNE) {
1752 Operand operand(0);
1753
1754 if (right.IsConstant()) {
1755 operand = Operand::From(value);
1756 } else if (out.Is(RegisterFrom(right))) {
1757 // Avoid 32-bit instructions if possible.
1758 operand = InputOperandAt(cond, 0);
1759 in = RegisterFrom(right);
1760 } else {
1761 operand = InputOperandAt(cond, 1);
1762 }
1763
1764 if (condition == kCondNE && out.IsLow()) {
1765 __ Subs(out, in, operand);
1766
1767 // We use the scope because of the IT block that follows.
1768 ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1769 2 * vixl32::k16BitT32InstructionSizeInBytes,
1770 CodeBufferCheckScope::kExactSize);
1771
1772 __ it(ne);
1773 __ mov(ne, out, 1);
1774 } else {
1775 __ Sub(out, in, operand);
1776 codegen->GenerateConditionWithZero(condition, out, out);
1777 }
1778
1779 return;
1780 }
1781
1782 GenerateConditionGeneric(cond, codegen);
1783 }
1784
CanEncodeConstantAs8BitImmediate(HConstant * constant)1785 static bool CanEncodeConstantAs8BitImmediate(HConstant* constant) {
1786 const DataType::Type type = constant->GetType();
1787 bool ret = false;
1788
1789 DCHECK(DataType::IsIntegralType(type) || type == DataType::Type::kReference) << type;
1790
1791 if (type == DataType::Type::kInt64) {
1792 const uint64_t value = Uint64ConstantFrom(constant);
1793
1794 ret = IsUint<8>(Low32Bits(value)) && IsUint<8>(High32Bits(value));
1795 } else {
1796 ret = IsUint<8>(Int32ConstantFrom(constant));
1797 }
1798
1799 return ret;
1800 }
1801
Arm8BitEncodableConstantOrRegister(HInstruction * constant)1802 static Location Arm8BitEncodableConstantOrRegister(HInstruction* constant) {
1803 DCHECK(!DataType::IsFloatingPointType(constant->GetType()));
1804
1805 if (constant->IsConstant() && CanEncodeConstantAs8BitImmediate(constant->AsConstant())) {
1806 return Location::ConstantLocation(constant->AsConstant());
1807 }
1808
1809 return Location::RequiresRegister();
1810 }
1811
CanGenerateConditionalMove(const Location & out,const Location & src)1812 static bool CanGenerateConditionalMove(const Location& out, const Location& src) {
1813 // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
1814 // we check that we are not dealing with floating-point output (there is no
1815 // 16-bit VMOV encoding).
1816 if (!out.IsRegister() && !out.IsRegisterPair()) {
1817 return false;
1818 }
1819
1820 // For constants, we also check that the output is in one or two low registers,
1821 // and that the constants fit in an 8-bit unsigned integer, so that a 16-bit
1822 // MOV encoding can be used.
1823 if (src.IsConstant()) {
1824 if (!CanEncodeConstantAs8BitImmediate(src.GetConstant())) {
1825 return false;
1826 }
1827
1828 if (out.IsRegister()) {
1829 if (!RegisterFrom(out).IsLow()) {
1830 return false;
1831 }
1832 } else {
1833 DCHECK(out.IsRegisterPair());
1834
1835 if (!HighRegisterFrom(out).IsLow()) {
1836 return false;
1837 }
1838 }
1839 }
1840
1841 return true;
1842 }
1843
1844 #undef __
1845
GetFinalLabel(HInstruction * instruction,vixl32::Label * final_label)1846 vixl32::Label* CodeGeneratorARMVIXL::GetFinalLabel(HInstruction* instruction,
1847 vixl32::Label* final_label) {
1848 DCHECK(!instruction->IsControlFlow() && !instruction->IsSuspendCheck());
1849 DCHECK(!instruction->IsInvoke() || !instruction->GetLocations()->CanCall());
1850
1851 const HBasicBlock* const block = instruction->GetBlock();
1852 const HLoopInformation* const info = block->GetLoopInformation();
1853 HInstruction* const next = instruction->GetNext();
1854
1855 // Avoid a branch to a branch.
1856 if (next->IsGoto() && (info == nullptr ||
1857 !info->IsBackEdge(*block) ||
1858 !info->HasSuspendCheck())) {
1859 final_label = GetLabelOf(next->AsGoto()->GetSuccessor());
1860 }
1861
1862 return final_label;
1863 }
1864
CodeGeneratorARMVIXL(HGraph * graph,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)1865 CodeGeneratorARMVIXL::CodeGeneratorARMVIXL(HGraph* graph,
1866 const CompilerOptions& compiler_options,
1867 OptimizingCompilerStats* stats)
1868 : CodeGenerator(graph,
1869 kNumberOfCoreRegisters,
1870 kNumberOfSRegisters,
1871 kNumberOfRegisterPairs,
1872 kCoreCalleeSaves.GetList(),
1873 ComputeSRegisterListMask(kFpuCalleeSaves),
1874 compiler_options,
1875 stats),
1876 block_labels_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1877 jump_tables_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1878 location_builder_(graph, this),
1879 instruction_visitor_(graph, this),
1880 move_resolver_(graph->GetAllocator(), this),
1881 assembler_(graph->GetAllocator()),
1882 boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1883 method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1884 boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1885 type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1886 public_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1887 package_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1888 boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1889 string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1890 boot_image_other_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1891 call_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1892 baker_read_barrier_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1893 uint32_literals_(std::less<uint32_t>(),
1894 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1895 jit_string_patches_(StringReferenceValueComparator(),
1896 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1897 jit_class_patches_(TypeReferenceValueComparator(),
1898 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1899 jit_baker_read_barrier_slow_paths_(std::less<uint32_t>(),
1900 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)) {
1901 // Always save the LR register to mimic Quick.
1902 AddAllocatedRegister(Location::RegisterLocation(LR));
1903 // Give D30 and D31 as scratch register to VIXL. The register allocator only works on
1904 // S0-S31, which alias to D0-D15.
1905 GetVIXLAssembler()->GetScratchVRegisterList()->Combine(d31);
1906 GetVIXLAssembler()->GetScratchVRegisterList()->Combine(d30);
1907 }
1908
EmitTable(CodeGeneratorARMVIXL * codegen)1909 void JumpTableARMVIXL::EmitTable(CodeGeneratorARMVIXL* codegen) {
1910 uint32_t num_entries = switch_instr_->GetNumEntries();
1911 DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
1912
1913 // We are about to use the assembler to place literals directly. Make sure we have enough
1914 // underlying code buffer and we have generated a jump table of the right size, using
1915 // codegen->GetVIXLAssembler()->GetBuffer().Align();
1916 ExactAssemblyScope aas(codegen->GetVIXLAssembler(),
1917 num_entries * sizeof(int32_t),
1918 CodeBufferCheckScope::kMaximumSize);
1919 // TODO(VIXL): Check that using lower case bind is fine here.
1920 codegen->GetVIXLAssembler()->bind(&table_start_);
1921 for (uint32_t i = 0; i < num_entries; i++) {
1922 codegen->GetVIXLAssembler()->place(bb_addresses_[i].get());
1923 }
1924 }
1925
FixTable(CodeGeneratorARMVIXL * codegen)1926 void JumpTableARMVIXL::FixTable(CodeGeneratorARMVIXL* codegen) {
1927 uint32_t num_entries = switch_instr_->GetNumEntries();
1928 DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
1929
1930 const ArenaVector<HBasicBlock*>& successors = switch_instr_->GetBlock()->GetSuccessors();
1931 for (uint32_t i = 0; i < num_entries; i++) {
1932 vixl32::Label* target_label = codegen->GetLabelOf(successors[i]);
1933 DCHECK(target_label->IsBound());
1934 int32_t jump_offset = target_label->GetLocation() - table_start_.GetLocation();
1935 // When doing BX to address we need to have lower bit set to 1 in T32.
1936 if (codegen->GetVIXLAssembler()->IsUsingT32()) {
1937 jump_offset++;
1938 }
1939 DCHECK_GT(jump_offset, std::numeric_limits<int32_t>::min());
1940 DCHECK_LE(jump_offset, std::numeric_limits<int32_t>::max());
1941
1942 bb_addresses_[i].get()->UpdateValue(jump_offset, codegen->GetVIXLAssembler()->GetBuffer());
1943 }
1944 }
1945
FixJumpTables()1946 void CodeGeneratorARMVIXL::FixJumpTables() {
1947 for (auto&& jump_table : jump_tables_) {
1948 jump_table->FixTable(this);
1949 }
1950 }
1951
1952 #define __ reinterpret_cast<ArmVIXLAssembler*>(GetAssembler())->GetVIXLAssembler()-> // NOLINT
1953
Finalize(CodeAllocator * allocator)1954 void CodeGeneratorARMVIXL::Finalize(CodeAllocator* allocator) {
1955 FixJumpTables();
1956
1957 // Emit JIT baker read barrier slow paths.
1958 DCHECK(GetCompilerOptions().IsJitCompiler() || jit_baker_read_barrier_slow_paths_.empty());
1959 for (auto& entry : jit_baker_read_barrier_slow_paths_) {
1960 uint32_t encoded_data = entry.first;
1961 vixl::aarch32::Label* slow_path_entry = &entry.second.label;
1962 __ Bind(slow_path_entry);
1963 CompileBakerReadBarrierThunk(*GetAssembler(), encoded_data, /* debug_name= */ nullptr);
1964 }
1965
1966 GetAssembler()->FinalizeCode();
1967 CodeGenerator::Finalize(allocator);
1968
1969 // Verify Baker read barrier linker patches.
1970 if (kIsDebugBuild) {
1971 ArrayRef<const uint8_t> code = allocator->GetMemory();
1972 for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) {
1973 DCHECK(info.label.IsBound());
1974 uint32_t literal_offset = info.label.GetLocation();
1975 DCHECK_ALIGNED(literal_offset, 2u);
1976
1977 auto GetInsn16 = [&code](uint32_t offset) {
1978 DCHECK_ALIGNED(offset, 2u);
1979 return (static_cast<uint32_t>(code[offset + 0]) << 0) +
1980 (static_cast<uint32_t>(code[offset + 1]) << 8);
1981 };
1982 auto GetInsn32 = [=](uint32_t offset) {
1983 return (GetInsn16(offset) << 16) + (GetInsn16(offset + 2u) << 0);
1984 };
1985
1986 uint32_t encoded_data = info.custom_data;
1987 BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
1988 // Check that the next instruction matches the expected LDR.
1989 switch (kind) {
1990 case BakerReadBarrierKind::kField: {
1991 BakerReadBarrierWidth width = BakerReadBarrierWidthField::Decode(encoded_data);
1992 if (width == BakerReadBarrierWidth::kWide) {
1993 DCHECK_GE(code.size() - literal_offset, 8u);
1994 uint32_t next_insn = GetInsn32(literal_offset + 4u);
1995 // LDR (immediate), encoding T3, with correct base_reg.
1996 CheckValidReg((next_insn >> 12) & 0xfu); // Check destination register.
1997 const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
1998 CHECK_EQ(next_insn & 0xffff0000u, 0xf8d00000u | (base_reg << 16));
1999 } else {
2000 DCHECK_GE(code.size() - literal_offset, 6u);
2001 uint32_t next_insn = GetInsn16(literal_offset + 4u);
2002 // LDR (immediate), encoding T1, with correct base_reg.
2003 CheckValidReg(next_insn & 0x7u); // Check destination register.
2004 const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
2005 CHECK_EQ(next_insn & 0xf838u, 0x6800u | (base_reg << 3));
2006 }
2007 break;
2008 }
2009 case BakerReadBarrierKind::kArray: {
2010 DCHECK_GE(code.size() - literal_offset, 8u);
2011 uint32_t next_insn = GetInsn32(literal_offset + 4u);
2012 // LDR (register) with correct base_reg, S=1 and option=011 (LDR Wt, [Xn, Xm, LSL #2]).
2013 CheckValidReg((next_insn >> 12) & 0xfu); // Check destination register.
2014 const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
2015 CHECK_EQ(next_insn & 0xffff0ff0u, 0xf8500020u | (base_reg << 16));
2016 CheckValidReg(next_insn & 0xf); // Check index register
2017 break;
2018 }
2019 case BakerReadBarrierKind::kGcRoot: {
2020 BakerReadBarrierWidth width = BakerReadBarrierWidthField::Decode(encoded_data);
2021 if (width == BakerReadBarrierWidth::kWide) {
2022 DCHECK_GE(literal_offset, 4u);
2023 uint32_t prev_insn = GetInsn32(literal_offset - 4u);
2024 // LDR (immediate), encoding T3, with correct root_reg.
2025 const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
2026 CHECK_EQ(prev_insn & 0xfff0f000u, 0xf8d00000u | (root_reg << 12));
2027 } else {
2028 DCHECK_GE(literal_offset, 2u);
2029 uint32_t prev_insn = GetInsn16(literal_offset - 2u);
2030 const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
2031 // Usually LDR (immediate), encoding T1, with correct root_reg but we may have
2032 // a `MOV marked, old_value` for intrinsic CAS where `marked` is a low register.
2033 if ((prev_insn & 0xff87u) != (0x4600 | root_reg)) {
2034 CHECK_EQ(prev_insn & 0xf807u, 0x6800u | root_reg);
2035 }
2036 }
2037 break;
2038 }
2039 case BakerReadBarrierKind::kIntrinsicCas: {
2040 DCHECK_GE(literal_offset, 4u);
2041 uint32_t prev_insn = GetInsn32(literal_offset - 4u);
2042 // MOV (register), encoding T3, with correct root_reg.
2043 const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
2044 DCHECK_GE(root_reg, 8u); // Used only for high registers.
2045 CHECK_EQ(prev_insn & 0xfffffff0u, 0xea4f0000u | (root_reg << 8));
2046 break;
2047 }
2048 default:
2049 LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
2050 UNREACHABLE();
2051 }
2052 }
2053 }
2054 }
2055
SetupBlockedRegisters() const2056 void CodeGeneratorARMVIXL::SetupBlockedRegisters() const {
2057 // Stack register, LR and PC are always reserved.
2058 blocked_core_registers_[SP] = true;
2059 blocked_core_registers_[LR] = true;
2060 blocked_core_registers_[PC] = true;
2061
2062 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
2063 // Reserve marking register.
2064 blocked_core_registers_[MR] = true;
2065 }
2066
2067 // Reserve thread register.
2068 blocked_core_registers_[TR] = true;
2069
2070 // Reserve temp register.
2071 blocked_core_registers_[IP] = true;
2072
2073 if (GetGraph()->IsDebuggable()) {
2074 // Stubs do not save callee-save floating point registers. If the graph
2075 // is debuggable, we need to deal with these registers differently. For
2076 // now, just block them.
2077 for (uint32_t i = kFpuCalleeSaves.GetFirstSRegister().GetCode();
2078 i <= kFpuCalleeSaves.GetLastSRegister().GetCode();
2079 ++i) {
2080 blocked_fpu_registers_[i] = true;
2081 }
2082 }
2083 }
2084
InstructionCodeGeneratorARMVIXL(HGraph * graph,CodeGeneratorARMVIXL * codegen)2085 InstructionCodeGeneratorARMVIXL::InstructionCodeGeneratorARMVIXL(HGraph* graph,
2086 CodeGeneratorARMVIXL* codegen)
2087 : InstructionCodeGenerator(graph, codegen),
2088 assembler_(codegen->GetAssembler()),
2089 codegen_(codegen) {}
2090
ComputeSpillMask()2091 void CodeGeneratorARMVIXL::ComputeSpillMask() {
2092 core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
2093 DCHECK_NE(core_spill_mask_ & (1u << kLrCode), 0u)
2094 << "At least the return address register must be saved";
2095 // 16-bit PUSH/POP (T1) can save/restore just the LR/PC.
2096 DCHECK(GetVIXLAssembler()->IsUsingT32());
2097 fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
2098 // We use vpush and vpop for saving and restoring floating point registers, which take
2099 // a SRegister and the number of registers to save/restore after that SRegister. We
2100 // therefore update the `fpu_spill_mask_` to also contain those registers not allocated,
2101 // but in the range.
2102 if (fpu_spill_mask_ != 0) {
2103 uint32_t least_significant_bit = LeastSignificantBit(fpu_spill_mask_);
2104 uint32_t most_significant_bit = MostSignificantBit(fpu_spill_mask_);
2105 for (uint32_t i = least_significant_bit + 1 ; i < most_significant_bit; ++i) {
2106 fpu_spill_mask_ |= (1 << i);
2107 }
2108 }
2109 }
2110
MaybeIncrementHotness(bool is_frame_entry)2111 void CodeGeneratorARMVIXL::MaybeIncrementHotness(bool is_frame_entry) {
2112 if (GetCompilerOptions().CountHotnessInCompiledCode()) {
2113 UseScratchRegisterScope temps(GetVIXLAssembler());
2114 vixl32::Register temp = temps.Acquire();
2115 static_assert(ArtMethod::MaxCounter() == 0xFFFF, "asm is probably wrong");
2116 if (!is_frame_entry) {
2117 __ Push(vixl32::Register(kMethodRegister));
2118 GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize);
2119 GetAssembler()->LoadFromOffset(kLoadWord, kMethodRegister, sp, kArmWordSize);
2120 }
2121 // Load with zero extend to clear the high bits for integer overflow check.
2122 __ Ldrh(temp, MemOperand(kMethodRegister, ArtMethod::HotnessCountOffset().Int32Value()));
2123 __ Add(temp, temp, 1);
2124 // Subtract one if the counter would overflow.
2125 __ Sub(temp, temp, Operand(temp, ShiftType::LSR, 16));
2126 __ Strh(temp, MemOperand(kMethodRegister, ArtMethod::HotnessCountOffset().Int32Value()));
2127 if (!is_frame_entry) {
2128 __ Pop(vixl32::Register(kMethodRegister));
2129 GetAssembler()->cfi().AdjustCFAOffset(-static_cast<int>(kArmWordSize));
2130 }
2131 }
2132
2133 if (GetGraph()->IsCompilingBaseline() && !Runtime::Current()->IsAotCompiler()) {
2134 ScopedProfilingInfoUse spiu(
2135 Runtime::Current()->GetJit(), GetGraph()->GetArtMethod(), Thread::Current());
2136 ProfilingInfo* info = spiu.GetProfilingInfo();
2137 if (info != nullptr) {
2138 uint32_t address = reinterpret_cast32<uint32_t>(info);
2139 vixl::aarch32::Label done;
2140 UseScratchRegisterScope temps(GetVIXLAssembler());
2141 temps.Exclude(ip);
2142 if (!is_frame_entry) {
2143 __ Push(r4); // Will be used as temporary. For frame entry, r4 is always available.
2144 GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize);
2145 }
2146 __ Mov(r4, address);
2147 __ Ldrh(ip, MemOperand(r4, ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
2148 __ Add(ip, ip, 1);
2149 instruction_visitor_.GenerateAndConst(ip, ip, interpreter::kTieredHotnessMask);
2150 __ Strh(ip, MemOperand(r4, ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
2151 if (!is_frame_entry) {
2152 __ Pop(r4);
2153 GetAssembler()->cfi().AdjustCFAOffset(-static_cast<int>(kArmWordSize));
2154 }
2155 __ Lsls(ip, ip, 16);
2156 __ B(ne, &done);
2157 uint32_t entry_point_offset =
2158 GetThreadOffset<kArmPointerSize>(kQuickCompileOptimized).Int32Value();
2159 if (HasEmptyFrame()) {
2160 CHECK(is_frame_entry);
2161 // For leaf methods, we need to spill lr and r0. Also spill r1 and r2 for
2162 // alignment.
2163 uint32_t core_spill_mask =
2164 (1 << lr.GetCode()) | (1 << r0.GetCode()) | (1 << r1.GetCode()) | (1 << r2.GetCode());
2165 __ Push(RegisterList(core_spill_mask));
2166 GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(core_spill_mask));
2167 __ Ldr(lr, MemOperand(tr, entry_point_offset));
2168 __ Blx(lr);
2169 __ Pop(RegisterList(core_spill_mask));
2170 GetAssembler()->cfi().AdjustCFAOffset(
2171 -static_cast<int>(kArmWordSize) * POPCOUNT(core_spill_mask));
2172 } else {
2173 if (!RequiresCurrentMethod()) {
2174 CHECK(is_frame_entry);
2175 GetAssembler()->StoreToOffset(kStoreWord, kMethodRegister, sp, 0);
2176 }
2177 __ Ldr(lr, MemOperand(tr, entry_point_offset));
2178 __ Blx(lr);
2179 }
2180 __ Bind(&done);
2181 }
2182 }
2183 }
2184
GenerateFrameEntry()2185 void CodeGeneratorARMVIXL::GenerateFrameEntry() {
2186 bool skip_overflow_check =
2187 IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm);
2188 DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
2189 __ Bind(&frame_entry_label_);
2190
2191 if (HasEmptyFrame()) {
2192 // Ensure that the CFI opcode list is not empty.
2193 GetAssembler()->cfi().Nop();
2194 MaybeIncrementHotness(/* is_frame_entry= */ true);
2195 return;
2196 }
2197
2198 if (!skip_overflow_check) {
2199 // Using r4 instead of IP saves 2 bytes.
2200 UseScratchRegisterScope temps(GetVIXLAssembler());
2201 vixl32::Register temp;
2202 // TODO: Remove this check when R4 is made a callee-save register
2203 // in ART compiled code (b/72801708). Currently we need to make
2204 // sure r4 is not blocked, e.g. in special purpose
2205 // TestCodeGeneratorARMVIXL; also asserting that r4 is available
2206 // here.
2207 if (!blocked_core_registers_[R4]) {
2208 for (vixl32::Register reg : kParameterCoreRegistersVIXL) {
2209 DCHECK(!reg.Is(r4));
2210 }
2211 DCHECK(!kCoreCalleeSaves.Includes(r4));
2212 temp = r4;
2213 } else {
2214 temp = temps.Acquire();
2215 }
2216 __ Sub(temp, sp, Operand::From(GetStackOverflowReservedBytes(InstructionSet::kArm)));
2217 // The load must immediately precede RecordPcInfo.
2218 ExactAssemblyScope aas(GetVIXLAssembler(),
2219 vixl32::kMaxInstructionSizeInBytes,
2220 CodeBufferCheckScope::kMaximumSize);
2221 __ ldr(temp, MemOperand(temp));
2222 RecordPcInfo(nullptr, 0);
2223 }
2224
2225 uint32_t frame_size = GetFrameSize();
2226 uint32_t core_spills_offset = frame_size - GetCoreSpillSize();
2227 uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize();
2228 if ((fpu_spill_mask_ == 0u || IsPowerOfTwo(fpu_spill_mask_)) &&
2229 core_spills_offset <= 3u * kArmWordSize) {
2230 // Do a single PUSH for core registers including the method and up to two
2231 // filler registers. Then store the single FP spill if any.
2232 // (The worst case is when the method is not required and we actually
2233 // store 3 extra registers but they are stored in the same properly
2234 // aligned 16-byte chunk where we're already writing anyway.)
2235 DCHECK_EQ(kMethodRegister.GetCode(), 0u);
2236 uint32_t extra_regs = MaxInt<uint32_t>(core_spills_offset / kArmWordSize);
2237 DCHECK_LT(MostSignificantBit(extra_regs), LeastSignificantBit(core_spill_mask_));
2238 __ Push(RegisterList(core_spill_mask_ | extra_regs));
2239 GetAssembler()->cfi().AdjustCFAOffset(frame_size);
2240 GetAssembler()->cfi().RelOffsetForMany(DWARFReg(kMethodRegister),
2241 core_spills_offset,
2242 core_spill_mask_,
2243 kArmWordSize);
2244 if (fpu_spill_mask_ != 0u) {
2245 DCHECK(IsPowerOfTwo(fpu_spill_mask_));
2246 vixl::aarch32::SRegister sreg(LeastSignificantBit(fpu_spill_mask_));
2247 GetAssembler()->StoreSToOffset(sreg, sp, fp_spills_offset);
2248 GetAssembler()->cfi().RelOffset(DWARFReg(sreg), /*offset=*/ fp_spills_offset);
2249 }
2250 } else {
2251 __ Push(RegisterList(core_spill_mask_));
2252 GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(core_spill_mask_));
2253 GetAssembler()->cfi().RelOffsetForMany(DWARFReg(kMethodRegister),
2254 /*offset=*/ 0,
2255 core_spill_mask_,
2256 kArmWordSize);
2257 if (fpu_spill_mask_ != 0) {
2258 uint32_t first = LeastSignificantBit(fpu_spill_mask_);
2259
2260 // Check that list is contiguous.
2261 DCHECK_EQ(fpu_spill_mask_ >> CTZ(fpu_spill_mask_), ~0u >> (32 - POPCOUNT(fpu_spill_mask_)));
2262
2263 __ Vpush(SRegisterList(vixl32::SRegister(first), POPCOUNT(fpu_spill_mask_)));
2264 GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(fpu_spill_mask_));
2265 GetAssembler()->cfi().RelOffsetForMany(DWARFReg(s0),
2266 /*offset=*/ 0,
2267 fpu_spill_mask_,
2268 kArmWordSize);
2269 }
2270
2271 // Adjust SP and save the current method if we need it. Note that we do
2272 // not save the method in HCurrentMethod, as the instruction might have
2273 // been removed in the SSA graph.
2274 if (RequiresCurrentMethod() && fp_spills_offset <= 3 * kArmWordSize) {
2275 DCHECK_EQ(kMethodRegister.GetCode(), 0u);
2276 __ Push(RegisterList(MaxInt<uint32_t>(fp_spills_offset / kArmWordSize)));
2277 GetAssembler()->cfi().AdjustCFAOffset(fp_spills_offset);
2278 } else {
2279 IncreaseFrame(fp_spills_offset);
2280 if (RequiresCurrentMethod()) {
2281 GetAssembler()->StoreToOffset(kStoreWord, kMethodRegister, sp, 0);
2282 }
2283 }
2284 }
2285
2286 if (GetGraph()->HasShouldDeoptimizeFlag()) {
2287 UseScratchRegisterScope temps(GetVIXLAssembler());
2288 vixl32::Register temp = temps.Acquire();
2289 // Initialize should_deoptimize flag to 0.
2290 __ Mov(temp, 0);
2291 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, GetStackOffsetOfShouldDeoptimizeFlag());
2292 }
2293
2294 MaybeIncrementHotness(/* is_frame_entry= */ true);
2295 MaybeGenerateMarkingRegisterCheck(/* code= */ 1);
2296 }
2297
GenerateFrameExit()2298 void CodeGeneratorARMVIXL::GenerateFrameExit() {
2299 if (HasEmptyFrame()) {
2300 __ Bx(lr);
2301 return;
2302 }
2303
2304 // Pop LR into PC to return.
2305 DCHECK_NE(core_spill_mask_ & (1 << kLrCode), 0U);
2306 uint32_t pop_mask = (core_spill_mask_ & (~(1 << kLrCode))) | 1 << kPcCode;
2307
2308 uint32_t frame_size = GetFrameSize();
2309 uint32_t core_spills_offset = frame_size - GetCoreSpillSize();
2310 uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize();
2311 if ((fpu_spill_mask_ == 0u || IsPowerOfTwo(fpu_spill_mask_)) &&
2312 // r4 is blocked by TestCodeGeneratorARMVIXL used by some tests.
2313 core_spills_offset <= (blocked_core_registers_[r4.GetCode()] ? 2u : 3u) * kArmWordSize) {
2314 // Load the FP spill if any and then do a single POP including the method
2315 // and up to two filler registers. If we have no FP spills, this also has
2316 // the advantage that we do not need to emit CFI directives.
2317 if (fpu_spill_mask_ != 0u) {
2318 DCHECK(IsPowerOfTwo(fpu_spill_mask_));
2319 vixl::aarch32::SRegister sreg(LeastSignificantBit(fpu_spill_mask_));
2320 GetAssembler()->cfi().RememberState();
2321 GetAssembler()->LoadSFromOffset(sreg, sp, fp_spills_offset);
2322 GetAssembler()->cfi().Restore(DWARFReg(sreg));
2323 }
2324 // Clobber registers r2-r4 as they are caller-save in ART managed ABI and
2325 // never hold the return value.
2326 uint32_t extra_regs = MaxInt<uint32_t>(core_spills_offset / kArmWordSize) << r2.GetCode();
2327 DCHECK_EQ(extra_regs & kCoreCalleeSaves.GetList(), 0u);
2328 DCHECK_LT(MostSignificantBit(extra_regs), LeastSignificantBit(pop_mask));
2329 __ Pop(RegisterList(pop_mask | extra_regs));
2330 if (fpu_spill_mask_ != 0u) {
2331 GetAssembler()->cfi().RestoreState();
2332 }
2333 } else {
2334 GetAssembler()->cfi().RememberState();
2335 DecreaseFrame(fp_spills_offset);
2336 if (fpu_spill_mask_ != 0) {
2337 uint32_t first = LeastSignificantBit(fpu_spill_mask_);
2338
2339 // Check that list is contiguous.
2340 DCHECK_EQ(fpu_spill_mask_ >> CTZ(fpu_spill_mask_), ~0u >> (32 - POPCOUNT(fpu_spill_mask_)));
2341
2342 __ Vpop(SRegisterList(vixl32::SRegister(first), POPCOUNT(fpu_spill_mask_)));
2343 GetAssembler()->cfi().AdjustCFAOffset(
2344 -static_cast<int>(kArmWordSize) * POPCOUNT(fpu_spill_mask_));
2345 GetAssembler()->cfi().RestoreMany(DWARFReg(vixl32::SRegister(0)), fpu_spill_mask_);
2346 }
2347 __ Pop(RegisterList(pop_mask));
2348 GetAssembler()->cfi().RestoreState();
2349 GetAssembler()->cfi().DefCFAOffset(GetFrameSize());
2350 }
2351 }
2352
Bind(HBasicBlock * block)2353 void CodeGeneratorARMVIXL::Bind(HBasicBlock* block) {
2354 __ Bind(GetLabelOf(block));
2355 }
2356
GetNextLocation(DataType::Type type)2357 Location InvokeDexCallingConventionVisitorARMVIXL::GetNextLocation(DataType::Type type) {
2358 switch (type) {
2359 case DataType::Type::kReference:
2360 case DataType::Type::kBool:
2361 case DataType::Type::kUint8:
2362 case DataType::Type::kInt8:
2363 case DataType::Type::kUint16:
2364 case DataType::Type::kInt16:
2365 case DataType::Type::kInt32: {
2366 uint32_t index = gp_index_++;
2367 uint32_t stack_index = stack_index_++;
2368 if (index < calling_convention.GetNumberOfRegisters()) {
2369 return LocationFrom(calling_convention.GetRegisterAt(index));
2370 } else {
2371 return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
2372 }
2373 }
2374
2375 case DataType::Type::kInt64: {
2376 uint32_t index = gp_index_;
2377 uint32_t stack_index = stack_index_;
2378 gp_index_ += 2;
2379 stack_index_ += 2;
2380 if (index + 1 < calling_convention.GetNumberOfRegisters()) {
2381 if (calling_convention.GetRegisterAt(index).Is(r1)) {
2382 // Skip R1, and use R2_R3 instead.
2383 gp_index_++;
2384 index++;
2385 }
2386 }
2387 if (index + 1 < calling_convention.GetNumberOfRegisters()) {
2388 DCHECK_EQ(calling_convention.GetRegisterAt(index).GetCode() + 1,
2389 calling_convention.GetRegisterAt(index + 1).GetCode());
2390
2391 return LocationFrom(calling_convention.GetRegisterAt(index),
2392 calling_convention.GetRegisterAt(index + 1));
2393 } else {
2394 return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
2395 }
2396 }
2397
2398 case DataType::Type::kFloat32: {
2399 uint32_t stack_index = stack_index_++;
2400 if (float_index_ % 2 == 0) {
2401 float_index_ = std::max(double_index_, float_index_);
2402 }
2403 if (float_index_ < calling_convention.GetNumberOfFpuRegisters()) {
2404 return LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++));
2405 } else {
2406 return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
2407 }
2408 }
2409
2410 case DataType::Type::kFloat64: {
2411 double_index_ = std::max(double_index_, RoundUp(float_index_, 2));
2412 uint32_t stack_index = stack_index_;
2413 stack_index_ += 2;
2414 if (double_index_ + 1 < calling_convention.GetNumberOfFpuRegisters()) {
2415 uint32_t index = double_index_;
2416 double_index_ += 2;
2417 Location result = LocationFrom(
2418 calling_convention.GetFpuRegisterAt(index),
2419 calling_convention.GetFpuRegisterAt(index + 1));
2420 DCHECK(ExpectedPairLayout(result));
2421 return result;
2422 } else {
2423 return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
2424 }
2425 }
2426
2427 case DataType::Type::kUint32:
2428 case DataType::Type::kUint64:
2429 case DataType::Type::kVoid:
2430 LOG(FATAL) << "Unexpected parameter type " << type;
2431 UNREACHABLE();
2432 }
2433 return Location::NoLocation();
2434 }
2435
GetReturnLocation(DataType::Type type) const2436 Location InvokeDexCallingConventionVisitorARMVIXL::GetReturnLocation(DataType::Type type) const {
2437 switch (type) {
2438 case DataType::Type::kReference:
2439 case DataType::Type::kBool:
2440 case DataType::Type::kUint8:
2441 case DataType::Type::kInt8:
2442 case DataType::Type::kUint16:
2443 case DataType::Type::kInt16:
2444 case DataType::Type::kUint32:
2445 case DataType::Type::kInt32: {
2446 return LocationFrom(r0);
2447 }
2448
2449 case DataType::Type::kFloat32: {
2450 return LocationFrom(s0);
2451 }
2452
2453 case DataType::Type::kUint64:
2454 case DataType::Type::kInt64: {
2455 return LocationFrom(r0, r1);
2456 }
2457
2458 case DataType::Type::kFloat64: {
2459 return LocationFrom(s0, s1);
2460 }
2461
2462 case DataType::Type::kVoid:
2463 return Location::NoLocation();
2464 }
2465
2466 UNREACHABLE();
2467 }
2468
GetMethodLocation() const2469 Location InvokeDexCallingConventionVisitorARMVIXL::GetMethodLocation() const {
2470 return LocationFrom(kMethodRegister);
2471 }
2472
GetNextLocation(DataType::Type type)2473 Location CriticalNativeCallingConventionVisitorARMVIXL::GetNextLocation(DataType::Type type) {
2474 DCHECK_NE(type, DataType::Type::kReference);
2475
2476 // Native ABI uses the same registers as managed, except that the method register r0
2477 // is a normal argument.
2478 Location location = Location::NoLocation();
2479 if (DataType::Is64BitType(type)) {
2480 gpr_index_ = RoundUp(gpr_index_, 2u);
2481 stack_offset_ = RoundUp(stack_offset_, 2 * kFramePointerSize);
2482 if (gpr_index_ < 1u + kParameterCoreRegistersLengthVIXL) {
2483 location = LocationFrom(gpr_index_ == 0u ? r0 : kParameterCoreRegistersVIXL[gpr_index_ - 1u],
2484 kParameterCoreRegistersVIXL[gpr_index_]);
2485 gpr_index_ += 2u;
2486 }
2487 } else {
2488 if (gpr_index_ < 1u + kParameterCoreRegistersLengthVIXL) {
2489 location = LocationFrom(gpr_index_ == 0u ? r0 : kParameterCoreRegistersVIXL[gpr_index_ - 1u]);
2490 ++gpr_index_;
2491 }
2492 }
2493 if (location.IsInvalid()) {
2494 if (DataType::Is64BitType(type)) {
2495 location = Location::DoubleStackSlot(stack_offset_);
2496 stack_offset_ += 2 * kFramePointerSize;
2497 } else {
2498 location = Location::StackSlot(stack_offset_);
2499 stack_offset_ += kFramePointerSize;
2500 }
2501
2502 if (for_register_allocation_) {
2503 location = Location::Any();
2504 }
2505 }
2506 return location;
2507 }
2508
GetReturnLocation(DataType::Type type) const2509 Location CriticalNativeCallingConventionVisitorARMVIXL::GetReturnLocation(DataType::Type type)
2510 const {
2511 // We perform conversion to the managed ABI return register after the call if needed.
2512 InvokeDexCallingConventionVisitorARMVIXL dex_calling_convention;
2513 return dex_calling_convention.GetReturnLocation(type);
2514 }
2515
GetMethodLocation() const2516 Location CriticalNativeCallingConventionVisitorARMVIXL::GetMethodLocation() const {
2517 // Pass the method in the hidden argument R4.
2518 return Location::RegisterLocation(R4);
2519 }
2520
Move32(Location destination,Location source)2521 void CodeGeneratorARMVIXL::Move32(Location destination, Location source) {
2522 if (source.Equals(destination)) {
2523 return;
2524 }
2525 if (destination.IsRegister()) {
2526 if (source.IsRegister()) {
2527 __ Mov(RegisterFrom(destination), RegisterFrom(source));
2528 } else if (source.IsFpuRegister()) {
2529 __ Vmov(RegisterFrom(destination), SRegisterFrom(source));
2530 } else {
2531 GetAssembler()->LoadFromOffset(kLoadWord,
2532 RegisterFrom(destination),
2533 sp,
2534 source.GetStackIndex());
2535 }
2536 } else if (destination.IsFpuRegister()) {
2537 if (source.IsRegister()) {
2538 __ Vmov(SRegisterFrom(destination), RegisterFrom(source));
2539 } else if (source.IsFpuRegister()) {
2540 __ Vmov(SRegisterFrom(destination), SRegisterFrom(source));
2541 } else {
2542 GetAssembler()->LoadSFromOffset(SRegisterFrom(destination), sp, source.GetStackIndex());
2543 }
2544 } else {
2545 DCHECK(destination.IsStackSlot()) << destination;
2546 if (source.IsRegister()) {
2547 GetAssembler()->StoreToOffset(kStoreWord,
2548 RegisterFrom(source),
2549 sp,
2550 destination.GetStackIndex());
2551 } else if (source.IsFpuRegister()) {
2552 GetAssembler()->StoreSToOffset(SRegisterFrom(source), sp, destination.GetStackIndex());
2553 } else {
2554 DCHECK(source.IsStackSlot()) << source;
2555 UseScratchRegisterScope temps(GetVIXLAssembler());
2556 vixl32::Register temp = temps.Acquire();
2557 GetAssembler()->LoadFromOffset(kLoadWord, temp, sp, source.GetStackIndex());
2558 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
2559 }
2560 }
2561 }
2562
MoveConstant(Location location,int32_t value)2563 void CodeGeneratorARMVIXL::MoveConstant(Location location, int32_t value) {
2564 DCHECK(location.IsRegister());
2565 __ Mov(RegisterFrom(location), value);
2566 }
2567
MoveLocation(Location dst,Location src,DataType::Type dst_type)2568 void CodeGeneratorARMVIXL::MoveLocation(Location dst, Location src, DataType::Type dst_type) {
2569 // TODO(VIXL): Maybe refactor to have the 'move' implementation here and use it in
2570 // `ParallelMoveResolverARMVIXL::EmitMove`, as is done in the `arm64` backend.
2571 HParallelMove move(GetGraph()->GetAllocator());
2572 move.AddMove(src, dst, dst_type, nullptr);
2573 GetMoveResolver()->EmitNativeCode(&move);
2574 }
2575
AddLocationAsTemp(Location location,LocationSummary * locations)2576 void CodeGeneratorARMVIXL::AddLocationAsTemp(Location location, LocationSummary* locations) {
2577 if (location.IsRegister()) {
2578 locations->AddTemp(location);
2579 } else if (location.IsRegisterPair()) {
2580 locations->AddTemp(LocationFrom(LowRegisterFrom(location)));
2581 locations->AddTemp(LocationFrom(HighRegisterFrom(location)));
2582 } else {
2583 UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
2584 }
2585 }
2586
InvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)2587 void CodeGeneratorARMVIXL::InvokeRuntime(QuickEntrypointEnum entrypoint,
2588 HInstruction* instruction,
2589 uint32_t dex_pc,
2590 SlowPathCode* slow_path) {
2591 ValidateInvokeRuntime(entrypoint, instruction, slow_path);
2592
2593 ThreadOffset32 entrypoint_offset = GetThreadOffset<kArmPointerSize>(entrypoint);
2594 // Reduce code size for AOT by using shared trampolines for slow path runtime calls across the
2595 // entire oat file. This adds an extra branch and we do not want to slow down the main path.
2596 // For JIT, thunk sharing is per-method, so the gains would be smaller or even negative.
2597 if (slow_path == nullptr || GetCompilerOptions().IsJitCompiler()) {
2598 __ Ldr(lr, MemOperand(tr, entrypoint_offset.Int32Value()));
2599 // Ensure the pc position is recorded immediately after the `blx` instruction.
2600 // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
2601 ExactAssemblyScope aas(GetVIXLAssembler(),
2602 vixl32::k16BitT32InstructionSizeInBytes,
2603 CodeBufferCheckScope::kExactSize);
2604 __ blx(lr);
2605 if (EntrypointRequiresStackMap(entrypoint)) {
2606 RecordPcInfo(instruction, dex_pc, slow_path);
2607 }
2608 } else {
2609 // Ensure the pc position is recorded immediately after the `bl` instruction.
2610 ExactAssemblyScope aas(GetVIXLAssembler(),
2611 vixl32::k32BitT32InstructionSizeInBytes,
2612 CodeBufferCheckScope::kExactSize);
2613 EmitEntrypointThunkCall(entrypoint_offset);
2614 if (EntrypointRequiresStackMap(entrypoint)) {
2615 RecordPcInfo(instruction, dex_pc, slow_path);
2616 }
2617 }
2618 }
2619
InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,HInstruction * instruction,SlowPathCode * slow_path)2620 void CodeGeneratorARMVIXL::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
2621 HInstruction* instruction,
2622 SlowPathCode* slow_path) {
2623 ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
2624 __ Ldr(lr, MemOperand(tr, entry_point_offset));
2625 __ Blx(lr);
2626 }
2627
HandleGoto(HInstruction * got,HBasicBlock * successor)2628 void InstructionCodeGeneratorARMVIXL::HandleGoto(HInstruction* got, HBasicBlock* successor) {
2629 if (successor->IsExitBlock()) {
2630 DCHECK(got->GetPrevious()->AlwaysThrows());
2631 return; // no code needed
2632 }
2633
2634 HBasicBlock* block = got->GetBlock();
2635 HInstruction* previous = got->GetPrevious();
2636 HLoopInformation* info = block->GetLoopInformation();
2637
2638 if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
2639 codegen_->MaybeIncrementHotness(/* is_frame_entry= */ false);
2640 GenerateSuspendCheck(info->GetSuspendCheck(), successor);
2641 return;
2642 }
2643 if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
2644 GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
2645 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 2);
2646 }
2647 if (!codegen_->GoesToNextBlock(block, successor)) {
2648 __ B(codegen_->GetLabelOf(successor));
2649 }
2650 }
2651
VisitGoto(HGoto * got)2652 void LocationsBuilderARMVIXL::VisitGoto(HGoto* got) {
2653 got->SetLocations(nullptr);
2654 }
2655
VisitGoto(HGoto * got)2656 void InstructionCodeGeneratorARMVIXL::VisitGoto(HGoto* got) {
2657 HandleGoto(got, got->GetSuccessor());
2658 }
2659
VisitTryBoundary(HTryBoundary * try_boundary)2660 void LocationsBuilderARMVIXL::VisitTryBoundary(HTryBoundary* try_boundary) {
2661 try_boundary->SetLocations(nullptr);
2662 }
2663
VisitTryBoundary(HTryBoundary * try_boundary)2664 void InstructionCodeGeneratorARMVIXL::VisitTryBoundary(HTryBoundary* try_boundary) {
2665 HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
2666 if (!successor->IsExitBlock()) {
2667 HandleGoto(try_boundary, successor);
2668 }
2669 }
2670
VisitExit(HExit * exit)2671 void LocationsBuilderARMVIXL::VisitExit(HExit* exit) {
2672 exit->SetLocations(nullptr);
2673 }
2674
VisitExit(HExit * exit ATTRIBUTE_UNUSED)2675 void InstructionCodeGeneratorARMVIXL::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
2676 }
2677
GenerateCompareTestAndBranch(HCondition * condition,vixl32::Label * true_target,vixl32::Label * false_target,bool is_far_target)2678 void InstructionCodeGeneratorARMVIXL::GenerateCompareTestAndBranch(HCondition* condition,
2679 vixl32::Label* true_target,
2680 vixl32::Label* false_target,
2681 bool is_far_target) {
2682 if (true_target == false_target) {
2683 DCHECK(true_target != nullptr);
2684 __ B(true_target);
2685 return;
2686 }
2687
2688 vixl32::Label* non_fallthrough_target;
2689 bool invert;
2690 bool emit_both_branches;
2691
2692 if (true_target == nullptr) {
2693 // The true target is fallthrough.
2694 DCHECK(false_target != nullptr);
2695 non_fallthrough_target = false_target;
2696 invert = true;
2697 emit_both_branches = false;
2698 } else {
2699 non_fallthrough_target = true_target;
2700 invert = false;
2701 // Either the false target is fallthrough, or there is no fallthrough
2702 // and both branches must be emitted.
2703 emit_both_branches = (false_target != nullptr);
2704 }
2705
2706 const auto cond = GenerateTest(condition, invert, codegen_);
2707
2708 __ B(cond.first, non_fallthrough_target, is_far_target);
2709
2710 if (emit_both_branches) {
2711 // No target falls through, we need to branch.
2712 __ B(false_target);
2713 }
2714 }
2715
GenerateTestAndBranch(HInstruction * instruction,size_t condition_input_index,vixl32::Label * true_target,vixl32::Label * false_target,bool far_target)2716 void InstructionCodeGeneratorARMVIXL::GenerateTestAndBranch(HInstruction* instruction,
2717 size_t condition_input_index,
2718 vixl32::Label* true_target,
2719 vixl32::Label* false_target,
2720 bool far_target) {
2721 HInstruction* cond = instruction->InputAt(condition_input_index);
2722
2723 if (true_target == nullptr && false_target == nullptr) {
2724 // Nothing to do. The code always falls through.
2725 return;
2726 } else if (cond->IsIntConstant()) {
2727 // Constant condition, statically compared against "true" (integer value 1).
2728 if (cond->AsIntConstant()->IsTrue()) {
2729 if (true_target != nullptr) {
2730 __ B(true_target);
2731 }
2732 } else {
2733 DCHECK(cond->AsIntConstant()->IsFalse()) << Int32ConstantFrom(cond);
2734 if (false_target != nullptr) {
2735 __ B(false_target);
2736 }
2737 }
2738 return;
2739 }
2740
2741 // The following code generates these patterns:
2742 // (1) true_target == nullptr && false_target != nullptr
2743 // - opposite condition true => branch to false_target
2744 // (2) true_target != nullptr && false_target == nullptr
2745 // - condition true => branch to true_target
2746 // (3) true_target != nullptr && false_target != nullptr
2747 // - condition true => branch to true_target
2748 // - branch to false_target
2749 if (IsBooleanValueOrMaterializedCondition(cond)) {
2750 // Condition has been materialized, compare the output to 0.
2751 if (kIsDebugBuild) {
2752 Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
2753 DCHECK(cond_val.IsRegister());
2754 }
2755 if (true_target == nullptr) {
2756 __ CompareAndBranchIfZero(InputRegisterAt(instruction, condition_input_index),
2757 false_target,
2758 far_target);
2759 } else {
2760 __ CompareAndBranchIfNonZero(InputRegisterAt(instruction, condition_input_index),
2761 true_target,
2762 far_target);
2763 }
2764 } else {
2765 // Condition has not been materialized. Use its inputs as the comparison and
2766 // its condition as the branch condition.
2767 HCondition* condition = cond->AsCondition();
2768
2769 // If this is a long or FP comparison that has been folded into
2770 // the HCondition, generate the comparison directly.
2771 DataType::Type type = condition->InputAt(0)->GetType();
2772 if (type == DataType::Type::kInt64 || DataType::IsFloatingPointType(type)) {
2773 GenerateCompareTestAndBranch(condition, true_target, false_target, far_target);
2774 return;
2775 }
2776
2777 vixl32::Label* non_fallthrough_target;
2778 vixl32::Condition arm_cond = vixl32::Condition::None();
2779 const vixl32::Register left = InputRegisterAt(cond, 0);
2780 const Operand right = InputOperandAt(cond, 1);
2781
2782 if (true_target == nullptr) {
2783 arm_cond = ARMCondition(condition->GetOppositeCondition());
2784 non_fallthrough_target = false_target;
2785 } else {
2786 arm_cond = ARMCondition(condition->GetCondition());
2787 non_fallthrough_target = true_target;
2788 }
2789
2790 if (right.IsImmediate() && right.GetImmediate() == 0 && (arm_cond.Is(ne) || arm_cond.Is(eq))) {
2791 if (arm_cond.Is(eq)) {
2792 __ CompareAndBranchIfZero(left, non_fallthrough_target, far_target);
2793 } else {
2794 DCHECK(arm_cond.Is(ne));
2795 __ CompareAndBranchIfNonZero(left, non_fallthrough_target, far_target);
2796 }
2797 } else {
2798 __ Cmp(left, right);
2799 __ B(arm_cond, non_fallthrough_target, far_target);
2800 }
2801 }
2802
2803 // If neither branch falls through (case 3), the conditional branch to `true_target`
2804 // was already emitted (case 2) and we need to emit a jump to `false_target`.
2805 if (true_target != nullptr && false_target != nullptr) {
2806 __ B(false_target);
2807 }
2808 }
2809
VisitIf(HIf * if_instr)2810 void LocationsBuilderARMVIXL::VisitIf(HIf* if_instr) {
2811 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(if_instr);
2812 if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
2813 locations->SetInAt(0, Location::RequiresRegister());
2814 }
2815 }
2816
VisitIf(HIf * if_instr)2817 void InstructionCodeGeneratorARMVIXL::VisitIf(HIf* if_instr) {
2818 HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
2819 HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
2820 vixl32::Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
2821 nullptr : codegen_->GetLabelOf(true_successor);
2822 vixl32::Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
2823 nullptr : codegen_->GetLabelOf(false_successor);
2824 GenerateTestAndBranch(if_instr, /* condition_input_index= */ 0, true_target, false_target);
2825 }
2826
VisitDeoptimize(HDeoptimize * deoptimize)2827 void LocationsBuilderARMVIXL::VisitDeoptimize(HDeoptimize* deoptimize) {
2828 LocationSummary* locations = new (GetGraph()->GetAllocator())
2829 LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
2830 InvokeRuntimeCallingConventionARMVIXL calling_convention;
2831 RegisterSet caller_saves = RegisterSet::Empty();
2832 caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(0)));
2833 locations->SetCustomSlowPathCallerSaves(caller_saves);
2834 if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
2835 locations->SetInAt(0, Location::RequiresRegister());
2836 }
2837 }
2838
VisitDeoptimize(HDeoptimize * deoptimize)2839 void InstructionCodeGeneratorARMVIXL::VisitDeoptimize(HDeoptimize* deoptimize) {
2840 SlowPathCodeARMVIXL* slow_path =
2841 deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARMVIXL>(deoptimize);
2842 GenerateTestAndBranch(deoptimize,
2843 /* condition_input_index= */ 0,
2844 slow_path->GetEntryLabel(),
2845 /* false_target= */ nullptr);
2846 }
2847
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)2848 void LocationsBuilderARMVIXL::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
2849 LocationSummary* locations = new (GetGraph()->GetAllocator())
2850 LocationSummary(flag, LocationSummary::kNoCall);
2851 locations->SetOut(Location::RequiresRegister());
2852 }
2853
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)2854 void InstructionCodeGeneratorARMVIXL::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
2855 GetAssembler()->LoadFromOffset(kLoadWord,
2856 OutputRegister(flag),
2857 sp,
2858 codegen_->GetStackOffsetOfShouldDeoptimizeFlag());
2859 }
2860
VisitSelect(HSelect * select)2861 void LocationsBuilderARMVIXL::VisitSelect(HSelect* select) {
2862 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(select);
2863 const bool is_floating_point = DataType::IsFloatingPointType(select->GetType());
2864
2865 if (is_floating_point) {
2866 locations->SetInAt(0, Location::RequiresFpuRegister());
2867 locations->SetInAt(1, Location::FpuRegisterOrConstant(select->GetTrueValue()));
2868 } else {
2869 locations->SetInAt(0, Location::RequiresRegister());
2870 locations->SetInAt(1, Arm8BitEncodableConstantOrRegister(select->GetTrueValue()));
2871 }
2872
2873 if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
2874 locations->SetInAt(2, Location::RegisterOrConstant(select->GetCondition()));
2875 // The code generator handles overlap with the values, but not with the condition.
2876 locations->SetOut(Location::SameAsFirstInput());
2877 } else if (is_floating_point) {
2878 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2879 } else {
2880 if (!locations->InAt(1).IsConstant()) {
2881 locations->SetInAt(0, Arm8BitEncodableConstantOrRegister(select->GetFalseValue()));
2882 }
2883
2884 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2885 }
2886 }
2887
VisitSelect(HSelect * select)2888 void InstructionCodeGeneratorARMVIXL::VisitSelect(HSelect* select) {
2889 HInstruction* const condition = select->GetCondition();
2890 const LocationSummary* const locations = select->GetLocations();
2891 const DataType::Type type = select->GetType();
2892 const Location first = locations->InAt(0);
2893 const Location out = locations->Out();
2894 const Location second = locations->InAt(1);
2895
2896 // In the unlucky case the output of this instruction overlaps
2897 // with an input of an "emitted-at-use-site" condition, and
2898 // the output of this instruction is not one of its inputs, we'll
2899 // need to fallback to branches instead of conditional ARM instructions.
2900 bool output_overlaps_with_condition_inputs =
2901 !IsBooleanValueOrMaterializedCondition(condition) &&
2902 !out.Equals(first) &&
2903 !out.Equals(second) &&
2904 (condition->GetLocations()->InAt(0).Equals(out) ||
2905 condition->GetLocations()->InAt(1).Equals(out));
2906 DCHECK(!output_overlaps_with_condition_inputs || condition->IsCondition());
2907 Location src;
2908
2909 if (condition->IsIntConstant()) {
2910 if (condition->AsIntConstant()->IsFalse()) {
2911 src = first;
2912 } else {
2913 src = second;
2914 }
2915
2916 codegen_->MoveLocation(out, src, type);
2917 return;
2918 }
2919
2920 if (!DataType::IsFloatingPointType(type) && !output_overlaps_with_condition_inputs) {
2921 bool invert = false;
2922
2923 if (out.Equals(second)) {
2924 src = first;
2925 invert = true;
2926 } else if (out.Equals(first)) {
2927 src = second;
2928 } else if (second.IsConstant()) {
2929 DCHECK(CanEncodeConstantAs8BitImmediate(second.GetConstant()));
2930 src = second;
2931 } else if (first.IsConstant()) {
2932 DCHECK(CanEncodeConstantAs8BitImmediate(first.GetConstant()));
2933 src = first;
2934 invert = true;
2935 } else {
2936 src = second;
2937 }
2938
2939 if (CanGenerateConditionalMove(out, src)) {
2940 if (!out.Equals(first) && !out.Equals(second)) {
2941 codegen_->MoveLocation(out, src.Equals(first) ? second : first, type);
2942 }
2943
2944 std::pair<vixl32::Condition, vixl32::Condition> cond(eq, ne);
2945
2946 if (IsBooleanValueOrMaterializedCondition(condition)) {
2947 __ Cmp(InputRegisterAt(select, 2), 0);
2948 cond = invert ? std::make_pair(eq, ne) : std::make_pair(ne, eq);
2949 } else {
2950 cond = GenerateTest(condition->AsCondition(), invert, codegen_);
2951 }
2952
2953 const size_t instr_count = out.IsRegisterPair() ? 4 : 2;
2954 // We use the scope because of the IT block that follows.
2955 ExactAssemblyScope guard(GetVIXLAssembler(),
2956 instr_count * vixl32::k16BitT32InstructionSizeInBytes,
2957 CodeBufferCheckScope::kExactSize);
2958
2959 if (out.IsRegister()) {
2960 __ it(cond.first);
2961 __ mov(cond.first, RegisterFrom(out), OperandFrom(src, type));
2962 } else {
2963 DCHECK(out.IsRegisterPair());
2964
2965 Operand operand_high(0);
2966 Operand operand_low(0);
2967
2968 if (src.IsConstant()) {
2969 const int64_t value = Int64ConstantFrom(src);
2970
2971 operand_high = High32Bits(value);
2972 operand_low = Low32Bits(value);
2973 } else {
2974 DCHECK(src.IsRegisterPair());
2975 operand_high = HighRegisterFrom(src);
2976 operand_low = LowRegisterFrom(src);
2977 }
2978
2979 __ it(cond.first);
2980 __ mov(cond.first, LowRegisterFrom(out), operand_low);
2981 __ it(cond.first);
2982 __ mov(cond.first, HighRegisterFrom(out), operand_high);
2983 }
2984
2985 return;
2986 }
2987 }
2988
2989 vixl32::Label* false_target = nullptr;
2990 vixl32::Label* true_target = nullptr;
2991 vixl32::Label select_end;
2992 vixl32::Label other_case;
2993 vixl32::Label* const target = codegen_->GetFinalLabel(select, &select_end);
2994
2995 if (out.Equals(second)) {
2996 true_target = target;
2997 src = first;
2998 } else {
2999 false_target = target;
3000 src = second;
3001
3002 if (!out.Equals(first)) {
3003 if (output_overlaps_with_condition_inputs) {
3004 false_target = &other_case;
3005 } else {
3006 codegen_->MoveLocation(out, first, type);
3007 }
3008 }
3009 }
3010
3011 GenerateTestAndBranch(select, 2, true_target, false_target, /* far_target= */ false);
3012 codegen_->MoveLocation(out, src, type);
3013 if (output_overlaps_with_condition_inputs) {
3014 __ B(target);
3015 __ Bind(&other_case);
3016 codegen_->MoveLocation(out, first, type);
3017 }
3018
3019 if (select_end.IsReferenced()) {
3020 __ Bind(&select_end);
3021 }
3022 }
3023
VisitNativeDebugInfo(HNativeDebugInfo * info)3024 void LocationsBuilderARMVIXL::VisitNativeDebugInfo(HNativeDebugInfo* info) {
3025 new (GetGraph()->GetAllocator()) LocationSummary(info);
3026 }
3027
VisitNativeDebugInfo(HNativeDebugInfo *)3028 void InstructionCodeGeneratorARMVIXL::VisitNativeDebugInfo(HNativeDebugInfo*) {
3029 // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
3030 }
3031
IncreaseFrame(size_t adjustment)3032 void CodeGeneratorARMVIXL::IncreaseFrame(size_t adjustment) {
3033 __ Claim(adjustment);
3034 GetAssembler()->cfi().AdjustCFAOffset(adjustment);
3035 }
3036
DecreaseFrame(size_t adjustment)3037 void CodeGeneratorARMVIXL::DecreaseFrame(size_t adjustment) {
3038 __ Drop(adjustment);
3039 GetAssembler()->cfi().AdjustCFAOffset(-adjustment);
3040 }
3041
GenerateNop()3042 void CodeGeneratorARMVIXL::GenerateNop() {
3043 __ Nop();
3044 }
3045
3046 // `temp` is an extra temporary register that is used for some conditions;
3047 // callers may not specify it, in which case the method will use a scratch
3048 // register instead.
GenerateConditionWithZero(IfCondition condition,vixl32::Register out,vixl32::Register in,vixl32::Register temp)3049 void CodeGeneratorARMVIXL::GenerateConditionWithZero(IfCondition condition,
3050 vixl32::Register out,
3051 vixl32::Register in,
3052 vixl32::Register temp) {
3053 switch (condition) {
3054 case kCondEQ:
3055 // x <= 0 iff x == 0 when the comparison is unsigned.
3056 case kCondBE:
3057 if (!temp.IsValid() || (out.IsLow() && !out.Is(in))) {
3058 temp = out;
3059 }
3060
3061 // Avoid 32-bit instructions if possible; note that `in` and `temp` must be
3062 // different as well.
3063 if (in.IsLow() && temp.IsLow() && !in.Is(temp)) {
3064 // temp = - in; only 0 sets the carry flag.
3065 __ Rsbs(temp, in, 0);
3066
3067 if (out.Is(in)) {
3068 std::swap(in, temp);
3069 }
3070
3071 // out = - in + in + carry = carry
3072 __ Adc(out, temp, in);
3073 } else {
3074 // If `in` is 0, then it has 32 leading zeros, and less than that otherwise.
3075 __ Clz(out, in);
3076 // Any number less than 32 logically shifted right by 5 bits results in 0;
3077 // the same operation on 32 yields 1.
3078 __ Lsr(out, out, 5);
3079 }
3080
3081 break;
3082 case kCondNE:
3083 // x > 0 iff x != 0 when the comparison is unsigned.
3084 case kCondA: {
3085 UseScratchRegisterScope temps(GetVIXLAssembler());
3086
3087 if (out.Is(in)) {
3088 if (!temp.IsValid() || in.Is(temp)) {
3089 temp = temps.Acquire();
3090 }
3091 } else if (!temp.IsValid() || !temp.IsLow()) {
3092 temp = out;
3093 }
3094
3095 // temp = in - 1; only 0 does not set the carry flag.
3096 __ Subs(temp, in, 1);
3097 // out = in + ~temp + carry = in + (-(in - 1) - 1) + carry = in - in + 1 - 1 + carry = carry
3098 __ Sbc(out, in, temp);
3099 break;
3100 }
3101 case kCondGE:
3102 __ Mvn(out, in);
3103 in = out;
3104 FALLTHROUGH_INTENDED;
3105 case kCondLT:
3106 // We only care about the sign bit.
3107 __ Lsr(out, in, 31);
3108 break;
3109 case kCondAE:
3110 // Trivially true.
3111 __ Mov(out, 1);
3112 break;
3113 case kCondB:
3114 // Trivially false.
3115 __ Mov(out, 0);
3116 break;
3117 default:
3118 LOG(FATAL) << "Unexpected condition " << condition;
3119 UNREACHABLE();
3120 }
3121 }
3122
HandleCondition(HCondition * cond)3123 void LocationsBuilderARMVIXL::HandleCondition(HCondition* cond) {
3124 LocationSummary* locations =
3125 new (GetGraph()->GetAllocator()) LocationSummary(cond, LocationSummary::kNoCall);
3126 const DataType::Type type = cond->InputAt(0)->GetType();
3127 if (DataType::IsFloatingPointType(type)) {
3128 locations->SetInAt(0, Location::RequiresFpuRegister());
3129 locations->SetInAt(1, ArithmeticZeroOrFpuRegister(cond->InputAt(1)));
3130 } else {
3131 locations->SetInAt(0, Location::RequiresRegister());
3132 locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1)));
3133 }
3134 if (!cond->IsEmittedAtUseSite()) {
3135 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3136 }
3137 }
3138
HandleCondition(HCondition * cond)3139 void InstructionCodeGeneratorARMVIXL::HandleCondition(HCondition* cond) {
3140 if (cond->IsEmittedAtUseSite()) {
3141 return;
3142 }
3143
3144 const DataType::Type type = cond->GetLeft()->GetType();
3145
3146 if (DataType::IsFloatingPointType(type)) {
3147 GenerateConditionGeneric(cond, codegen_);
3148 return;
3149 }
3150
3151 DCHECK(DataType::IsIntegralType(type) || type == DataType::Type::kReference) << type;
3152
3153 const IfCondition condition = cond->GetCondition();
3154
3155 // A condition with only one boolean input, or two boolean inputs without being equality or
3156 // inequality results from transformations done by the instruction simplifier, and is handled
3157 // as a regular condition with integral inputs.
3158 if (type == DataType::Type::kBool &&
3159 cond->GetRight()->GetType() == DataType::Type::kBool &&
3160 (condition == kCondEQ || condition == kCondNE)) {
3161 vixl32::Register left = InputRegisterAt(cond, 0);
3162 const vixl32::Register out = OutputRegister(cond);
3163 const Location right_loc = cond->GetLocations()->InAt(1);
3164
3165 // The constant case is handled by the instruction simplifier.
3166 DCHECK(!right_loc.IsConstant());
3167
3168 vixl32::Register right = RegisterFrom(right_loc);
3169
3170 // Avoid 32-bit instructions if possible.
3171 if (out.Is(right)) {
3172 std::swap(left, right);
3173 }
3174
3175 __ Eor(out, left, right);
3176
3177 if (condition == kCondEQ) {
3178 __ Eor(out, out, 1);
3179 }
3180
3181 return;
3182 }
3183
3184 GenerateConditionIntegralOrNonPrimitive(cond, codegen_);
3185 }
3186
VisitEqual(HEqual * comp)3187 void LocationsBuilderARMVIXL::VisitEqual(HEqual* comp) {
3188 HandleCondition(comp);
3189 }
3190
VisitEqual(HEqual * comp)3191 void InstructionCodeGeneratorARMVIXL::VisitEqual(HEqual* comp) {
3192 HandleCondition(comp);
3193 }
3194
VisitNotEqual(HNotEqual * comp)3195 void LocationsBuilderARMVIXL::VisitNotEqual(HNotEqual* comp) {
3196 HandleCondition(comp);
3197 }
3198
VisitNotEqual(HNotEqual * comp)3199 void InstructionCodeGeneratorARMVIXL::VisitNotEqual(HNotEqual* comp) {
3200 HandleCondition(comp);
3201 }
3202
VisitLessThan(HLessThan * comp)3203 void LocationsBuilderARMVIXL::VisitLessThan(HLessThan* comp) {
3204 HandleCondition(comp);
3205 }
3206
VisitLessThan(HLessThan * comp)3207 void InstructionCodeGeneratorARMVIXL::VisitLessThan(HLessThan* comp) {
3208 HandleCondition(comp);
3209 }
3210
VisitLessThanOrEqual(HLessThanOrEqual * comp)3211 void LocationsBuilderARMVIXL::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
3212 HandleCondition(comp);
3213 }
3214
VisitLessThanOrEqual(HLessThanOrEqual * comp)3215 void InstructionCodeGeneratorARMVIXL::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
3216 HandleCondition(comp);
3217 }
3218
VisitGreaterThan(HGreaterThan * comp)3219 void LocationsBuilderARMVIXL::VisitGreaterThan(HGreaterThan* comp) {
3220 HandleCondition(comp);
3221 }
3222
VisitGreaterThan(HGreaterThan * comp)3223 void InstructionCodeGeneratorARMVIXL::VisitGreaterThan(HGreaterThan* comp) {
3224 HandleCondition(comp);
3225 }
3226
VisitGreaterThanOrEqual(HGreaterThanOrEqual * comp)3227 void LocationsBuilderARMVIXL::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
3228 HandleCondition(comp);
3229 }
3230
VisitGreaterThanOrEqual(HGreaterThanOrEqual * comp)3231 void InstructionCodeGeneratorARMVIXL::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
3232 HandleCondition(comp);
3233 }
3234
VisitBelow(HBelow * comp)3235 void LocationsBuilderARMVIXL::VisitBelow(HBelow* comp) {
3236 HandleCondition(comp);
3237 }
3238
VisitBelow(HBelow * comp)3239 void InstructionCodeGeneratorARMVIXL::VisitBelow(HBelow* comp) {
3240 HandleCondition(comp);
3241 }
3242
VisitBelowOrEqual(HBelowOrEqual * comp)3243 void LocationsBuilderARMVIXL::VisitBelowOrEqual(HBelowOrEqual* comp) {
3244 HandleCondition(comp);
3245 }
3246
VisitBelowOrEqual(HBelowOrEqual * comp)3247 void InstructionCodeGeneratorARMVIXL::VisitBelowOrEqual(HBelowOrEqual* comp) {
3248 HandleCondition(comp);
3249 }
3250
VisitAbove(HAbove * comp)3251 void LocationsBuilderARMVIXL::VisitAbove(HAbove* comp) {
3252 HandleCondition(comp);
3253 }
3254
VisitAbove(HAbove * comp)3255 void InstructionCodeGeneratorARMVIXL::VisitAbove(HAbove* comp) {
3256 HandleCondition(comp);
3257 }
3258
VisitAboveOrEqual(HAboveOrEqual * comp)3259 void LocationsBuilderARMVIXL::VisitAboveOrEqual(HAboveOrEqual* comp) {
3260 HandleCondition(comp);
3261 }
3262
VisitAboveOrEqual(HAboveOrEqual * comp)3263 void InstructionCodeGeneratorARMVIXL::VisitAboveOrEqual(HAboveOrEqual* comp) {
3264 HandleCondition(comp);
3265 }
3266
VisitIntConstant(HIntConstant * constant)3267 void LocationsBuilderARMVIXL::VisitIntConstant(HIntConstant* constant) {
3268 LocationSummary* locations =
3269 new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3270 locations->SetOut(Location::ConstantLocation(constant));
3271 }
3272
VisitIntConstant(HIntConstant * constant ATTRIBUTE_UNUSED)3273 void InstructionCodeGeneratorARMVIXL::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
3274 // Will be generated at use site.
3275 }
3276
VisitNullConstant(HNullConstant * constant)3277 void LocationsBuilderARMVIXL::VisitNullConstant(HNullConstant* constant) {
3278 LocationSummary* locations =
3279 new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3280 locations->SetOut(Location::ConstantLocation(constant));
3281 }
3282
VisitNullConstant(HNullConstant * constant ATTRIBUTE_UNUSED)3283 void InstructionCodeGeneratorARMVIXL::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
3284 // Will be generated at use site.
3285 }
3286
VisitLongConstant(HLongConstant * constant)3287 void LocationsBuilderARMVIXL::VisitLongConstant(HLongConstant* constant) {
3288 LocationSummary* locations =
3289 new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3290 locations->SetOut(Location::ConstantLocation(constant));
3291 }
3292
VisitLongConstant(HLongConstant * constant ATTRIBUTE_UNUSED)3293 void InstructionCodeGeneratorARMVIXL::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
3294 // Will be generated at use site.
3295 }
3296
VisitFloatConstant(HFloatConstant * constant)3297 void LocationsBuilderARMVIXL::VisitFloatConstant(HFloatConstant* constant) {
3298 LocationSummary* locations =
3299 new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3300 locations->SetOut(Location::ConstantLocation(constant));
3301 }
3302
VisitFloatConstant(HFloatConstant * constant ATTRIBUTE_UNUSED)3303 void InstructionCodeGeneratorARMVIXL::VisitFloatConstant(
3304 HFloatConstant* constant ATTRIBUTE_UNUSED) {
3305 // Will be generated at use site.
3306 }
3307
VisitDoubleConstant(HDoubleConstant * constant)3308 void LocationsBuilderARMVIXL::VisitDoubleConstant(HDoubleConstant* constant) {
3309 LocationSummary* locations =
3310 new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3311 locations->SetOut(Location::ConstantLocation(constant));
3312 }
3313
VisitDoubleConstant(HDoubleConstant * constant ATTRIBUTE_UNUSED)3314 void InstructionCodeGeneratorARMVIXL::VisitDoubleConstant(
3315 HDoubleConstant* constant ATTRIBUTE_UNUSED) {
3316 // Will be generated at use site.
3317 }
3318
VisitConstructorFence(HConstructorFence * constructor_fence)3319 void LocationsBuilderARMVIXL::VisitConstructorFence(HConstructorFence* constructor_fence) {
3320 constructor_fence->SetLocations(nullptr);
3321 }
3322
VisitConstructorFence(HConstructorFence * constructor_fence ATTRIBUTE_UNUSED)3323 void InstructionCodeGeneratorARMVIXL::VisitConstructorFence(
3324 HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) {
3325 codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
3326 }
3327
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)3328 void LocationsBuilderARMVIXL::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
3329 memory_barrier->SetLocations(nullptr);
3330 }
3331
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)3332 void InstructionCodeGeneratorARMVIXL::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
3333 codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
3334 }
3335
VisitReturnVoid(HReturnVoid * ret)3336 void LocationsBuilderARMVIXL::VisitReturnVoid(HReturnVoid* ret) {
3337 ret->SetLocations(nullptr);
3338 }
3339
VisitReturnVoid(HReturnVoid * ret ATTRIBUTE_UNUSED)3340 void InstructionCodeGeneratorARMVIXL::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
3341 codegen_->GenerateFrameExit();
3342 }
3343
VisitReturn(HReturn * ret)3344 void LocationsBuilderARMVIXL::VisitReturn(HReturn* ret) {
3345 LocationSummary* locations =
3346 new (GetGraph()->GetAllocator()) LocationSummary(ret, LocationSummary::kNoCall);
3347 locations->SetInAt(0, parameter_visitor_.GetReturnLocation(ret->InputAt(0)->GetType()));
3348 }
3349
VisitReturn(HReturn * ret)3350 void InstructionCodeGeneratorARMVIXL::VisitReturn(HReturn* ret) {
3351 if (GetGraph()->IsCompilingOsr()) {
3352 // To simplify callers of an OSR method, we put the return value in both
3353 // floating point and core registers.
3354 switch (ret->InputAt(0)->GetType()) {
3355 case DataType::Type::kFloat32:
3356 __ Vmov(r0, s0);
3357 break;
3358 case DataType::Type::kFloat64:
3359 __ Vmov(r0, r1, d0);
3360 break;
3361 default:
3362 break;
3363 }
3364 }
3365 codegen_->GenerateFrameExit();
3366 }
3367
VisitInvokeUnresolved(HInvokeUnresolved * invoke)3368 void LocationsBuilderARMVIXL::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
3369 // The trampoline uses the same calling convention as dex calling conventions,
3370 // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
3371 // the method_idx.
3372 HandleInvoke(invoke);
3373 }
3374
VisitInvokeUnresolved(HInvokeUnresolved * invoke)3375 void InstructionCodeGeneratorARMVIXL::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
3376 codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
3377 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 3);
3378 }
3379
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)3380 void LocationsBuilderARMVIXL::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
3381 // Explicit clinit checks triggered by static invokes must have been pruned by
3382 // art::PrepareForRegisterAllocation.
3383 DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
3384
3385 IntrinsicLocationsBuilderARMVIXL intrinsic(codegen_);
3386 if (intrinsic.TryDispatch(invoke)) {
3387 return;
3388 }
3389
3390 if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) {
3391 CriticalNativeCallingConventionVisitorARMVIXL calling_convention_visitor(
3392 /*for_register_allocation=*/ true);
3393 CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
3394 } else {
3395 HandleInvoke(invoke);
3396 }
3397 }
3398
TryGenerateIntrinsicCode(HInvoke * invoke,CodeGeneratorARMVIXL * codegen)3399 static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARMVIXL* codegen) {
3400 if (invoke->GetLocations()->Intrinsified()) {
3401 IntrinsicCodeGeneratorARMVIXL intrinsic(codegen);
3402 intrinsic.Dispatch(invoke);
3403 return true;
3404 }
3405 return false;
3406 }
3407
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)3408 void InstructionCodeGeneratorARMVIXL::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
3409 // Explicit clinit checks triggered by static invokes must have been pruned by
3410 // art::PrepareForRegisterAllocation.
3411 DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
3412
3413 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
3414 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 4);
3415 return;
3416 }
3417
3418 LocationSummary* locations = invoke->GetLocations();
3419 codegen_->GenerateStaticOrDirectCall(
3420 invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
3421
3422 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 5);
3423 }
3424
HandleInvoke(HInvoke * invoke)3425 void LocationsBuilderARMVIXL::HandleInvoke(HInvoke* invoke) {
3426 InvokeDexCallingConventionVisitorARMVIXL calling_convention_visitor;
3427 CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
3428 }
3429
VisitInvokeVirtual(HInvokeVirtual * invoke)3430 void LocationsBuilderARMVIXL::VisitInvokeVirtual(HInvokeVirtual* invoke) {
3431 IntrinsicLocationsBuilderARMVIXL intrinsic(codegen_);
3432 if (intrinsic.TryDispatch(invoke)) {
3433 return;
3434 }
3435
3436 HandleInvoke(invoke);
3437 }
3438
VisitInvokeVirtual(HInvokeVirtual * invoke)3439 void InstructionCodeGeneratorARMVIXL::VisitInvokeVirtual(HInvokeVirtual* invoke) {
3440 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
3441 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 6);
3442 return;
3443 }
3444
3445 codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
3446 DCHECK(!codegen_->IsLeafMethod());
3447
3448 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 7);
3449 }
3450
VisitInvokeInterface(HInvokeInterface * invoke)3451 void LocationsBuilderARMVIXL::VisitInvokeInterface(HInvokeInterface* invoke) {
3452 HandleInvoke(invoke);
3453 // Add the hidden argument.
3454 if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) {
3455 // We cannot request r12 as it's blocked by the register allocator.
3456 invoke->GetLocations()->SetInAt(invoke->GetNumberOfArguments() - 1, Location::Any());
3457 }
3458 }
3459
MaybeGenerateInlineCacheCheck(HInstruction * instruction,vixl32::Register klass)3460 void CodeGeneratorARMVIXL::MaybeGenerateInlineCacheCheck(HInstruction* instruction,
3461 vixl32::Register klass) {
3462 DCHECK_EQ(r0.GetCode(), klass.GetCode());
3463 // We know the destination of an intrinsic, so no need to record inline
3464 // caches.
3465 if (!instruction->GetLocations()->Intrinsified() &&
3466 GetGraph()->IsCompilingBaseline() &&
3467 !Runtime::Current()->IsAotCompiler()) {
3468 DCHECK(!instruction->GetEnvironment()->IsFromInlinedInvoke());
3469 ScopedProfilingInfoUse spiu(
3470 Runtime::Current()->GetJit(), GetGraph()->GetArtMethod(), Thread::Current());
3471 ProfilingInfo* info = spiu.GetProfilingInfo();
3472 if (info != nullptr) {
3473 InlineCache* cache = info->GetInlineCache(instruction->GetDexPc());
3474 uint32_t address = reinterpret_cast32<uint32_t>(cache);
3475 vixl32::Label done;
3476 UseScratchRegisterScope temps(GetVIXLAssembler());
3477 temps.Exclude(ip);
3478 __ Mov(r4, address);
3479 __ Ldr(ip, MemOperand(r4, InlineCache::ClassesOffset().Int32Value()));
3480 // Fast path for a monomorphic cache.
3481 __ Cmp(klass, ip);
3482 __ B(eq, &done, /* is_far_target= */ false);
3483 InvokeRuntime(kQuickUpdateInlineCache, instruction, instruction->GetDexPc());
3484 __ Bind(&done);
3485 }
3486 }
3487 }
3488
VisitInvokeInterface(HInvokeInterface * invoke)3489 void InstructionCodeGeneratorARMVIXL::VisitInvokeInterface(HInvokeInterface* invoke) {
3490 // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
3491 LocationSummary* locations = invoke->GetLocations();
3492 vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
3493 Location receiver = locations->InAt(0);
3494 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
3495
3496 DCHECK(!receiver.IsStackSlot());
3497
3498 // Ensure the pc position is recorded immediately after the `ldr` instruction.
3499 {
3500 ExactAssemblyScope aas(GetVIXLAssembler(),
3501 vixl32::kMaxInstructionSizeInBytes,
3502 CodeBufferCheckScope::kMaximumSize);
3503 // /* HeapReference<Class> */ temp = receiver->klass_
3504 __ ldr(temp, MemOperand(RegisterFrom(receiver), class_offset));
3505 codegen_->MaybeRecordImplicitNullCheck(invoke);
3506 }
3507 // Instead of simply (possibly) unpoisoning `temp` here, we should
3508 // emit a read barrier for the previous class reference load.
3509 // However this is not required in practice, as this is an
3510 // intermediate/temporary reference and because the current
3511 // concurrent copying collector keeps the from-space memory
3512 // intact/accessible until the end of the marking phase (the
3513 // concurrent copying collector may not in the future).
3514 GetAssembler()->MaybeUnpoisonHeapReference(temp);
3515
3516 // If we're compiling baseline, update the inline cache.
3517 codegen_->MaybeGenerateInlineCacheCheck(invoke, temp);
3518
3519 GetAssembler()->LoadFromOffset(kLoadWord,
3520 temp,
3521 temp,
3522 mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value());
3523
3524 uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
3525 invoke->GetImtIndex(), kArmPointerSize));
3526 // temp = temp->GetImtEntryAt(method_offset);
3527 GetAssembler()->LoadFromOffset(kLoadWord, temp, temp, method_offset);
3528 uint32_t entry_point =
3529 ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value();
3530 // LR = temp->GetEntryPoint();
3531 GetAssembler()->LoadFromOffset(kLoadWord, lr, temp, entry_point);
3532
3533 {
3534 // Set the hidden (in r12) argument. It is done here, right before a BLX to prevent other
3535 // instruction from clobbering it as they might use r12 as a scratch register.
3536 Location hidden_reg = Location::RegisterLocation(r12.GetCode());
3537 // The VIXL macro assembler may clobber any of the scratch registers that are available to it,
3538 // so it checks if the application is using them (by passing them to the macro assembler
3539 // methods). The following application of UseScratchRegisterScope corrects VIXL's notion of
3540 // what is available, and is the opposite of the standard usage: Instead of requesting a
3541 // temporary location, it imposes an external constraint (i.e. a specific register is reserved
3542 // for the hidden argument). Note that this works even if VIXL needs a scratch register itself
3543 // (to materialize the constant), since the destination register becomes available for such use
3544 // internally for the duration of the macro instruction.
3545 UseScratchRegisterScope temps(GetVIXLAssembler());
3546 temps.Exclude(RegisterFrom(hidden_reg));
3547 if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) {
3548 Location current_method = locations->InAt(invoke->GetNumberOfArguments() - 1);
3549 if (current_method.IsStackSlot()) {
3550 GetAssembler()->LoadFromOffset(
3551 kLoadWord, RegisterFrom(hidden_reg), sp, current_method.GetStackIndex());
3552 } else {
3553 __ Mov(RegisterFrom(hidden_reg), RegisterFrom(current_method));
3554 }
3555 } else if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRuntimeCall) {
3556 // We pass the method from the IMT in case of a conflict. This will ensure
3557 // we go into the runtime to resolve the actual method.
3558 CHECK_NE(temp.GetCode(), lr.GetCode());
3559 __ Mov(RegisterFrom(hidden_reg), temp);
3560 } else {
3561 codegen_->LoadMethod(invoke->GetHiddenArgumentLoadKind(), hidden_reg, invoke);
3562 }
3563 }
3564 {
3565 // Ensure the pc position is recorded immediately after the `blx` instruction.
3566 // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
3567 ExactAssemblyScope aas(GetVIXLAssembler(),
3568 vixl32::k16BitT32InstructionSizeInBytes,
3569 CodeBufferCheckScope::kExactSize);
3570 // LR();
3571 __ blx(lr);
3572 codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
3573 DCHECK(!codegen_->IsLeafMethod());
3574 }
3575
3576 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 8);
3577 }
3578
VisitInvokePolymorphic(HInvokePolymorphic * invoke)3579 void LocationsBuilderARMVIXL::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
3580 IntrinsicLocationsBuilderARMVIXL intrinsic(codegen_);
3581 if (intrinsic.TryDispatch(invoke)) {
3582 return;
3583 }
3584 HandleInvoke(invoke);
3585 }
3586
VisitInvokePolymorphic(HInvokePolymorphic * invoke)3587 void InstructionCodeGeneratorARMVIXL::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
3588 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
3589 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 9);
3590 return;
3591 }
3592 codegen_->GenerateInvokePolymorphicCall(invoke);
3593 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 10);
3594 }
3595
VisitInvokeCustom(HInvokeCustom * invoke)3596 void LocationsBuilderARMVIXL::VisitInvokeCustom(HInvokeCustom* invoke) {
3597 HandleInvoke(invoke);
3598 }
3599
VisitInvokeCustom(HInvokeCustom * invoke)3600 void InstructionCodeGeneratorARMVIXL::VisitInvokeCustom(HInvokeCustom* invoke) {
3601 codegen_->GenerateInvokeCustomCall(invoke);
3602 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 11);
3603 }
3604
VisitNeg(HNeg * neg)3605 void LocationsBuilderARMVIXL::VisitNeg(HNeg* neg) {
3606 LocationSummary* locations =
3607 new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall);
3608 switch (neg->GetResultType()) {
3609 case DataType::Type::kInt32: {
3610 locations->SetInAt(0, Location::RequiresRegister());
3611 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3612 break;
3613 }
3614 case DataType::Type::kInt64: {
3615 locations->SetInAt(0, Location::RequiresRegister());
3616 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3617 break;
3618 }
3619
3620 case DataType::Type::kFloat32:
3621 case DataType::Type::kFloat64:
3622 locations->SetInAt(0, Location::RequiresFpuRegister());
3623 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3624 break;
3625
3626 default:
3627 LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
3628 }
3629 }
3630
VisitNeg(HNeg * neg)3631 void InstructionCodeGeneratorARMVIXL::VisitNeg(HNeg* neg) {
3632 LocationSummary* locations = neg->GetLocations();
3633 Location out = locations->Out();
3634 Location in = locations->InAt(0);
3635 switch (neg->GetResultType()) {
3636 case DataType::Type::kInt32:
3637 __ Rsb(OutputRegister(neg), InputRegisterAt(neg, 0), 0);
3638 break;
3639
3640 case DataType::Type::kInt64:
3641 // out.lo = 0 - in.lo (and update the carry/borrow (C) flag)
3642 __ Rsbs(LowRegisterFrom(out), LowRegisterFrom(in), 0);
3643 // We cannot emit an RSC (Reverse Subtract with Carry)
3644 // instruction here, as it does not exist in the Thumb-2
3645 // instruction set. We use the following approach
3646 // using SBC and SUB instead.
3647 //
3648 // out.hi = -C
3649 __ Sbc(HighRegisterFrom(out), HighRegisterFrom(out), HighRegisterFrom(out));
3650 // out.hi = out.hi - in.hi
3651 __ Sub(HighRegisterFrom(out), HighRegisterFrom(out), HighRegisterFrom(in));
3652 break;
3653
3654 case DataType::Type::kFloat32:
3655 case DataType::Type::kFloat64:
3656 __ Vneg(OutputVRegister(neg), InputVRegister(neg));
3657 break;
3658
3659 default:
3660 LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
3661 }
3662 }
3663
VisitTypeConversion(HTypeConversion * conversion)3664 void LocationsBuilderARMVIXL::VisitTypeConversion(HTypeConversion* conversion) {
3665 DataType::Type result_type = conversion->GetResultType();
3666 DataType::Type input_type = conversion->GetInputType();
3667 DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
3668 << input_type << " -> " << result_type;
3669
3670 // The float-to-long, double-to-long and long-to-float type conversions
3671 // rely on a call to the runtime.
3672 LocationSummary::CallKind call_kind =
3673 (((input_type == DataType::Type::kFloat32 || input_type == DataType::Type::kFloat64)
3674 && result_type == DataType::Type::kInt64)
3675 || (input_type == DataType::Type::kInt64 && result_type == DataType::Type::kFloat32))
3676 ? LocationSummary::kCallOnMainOnly
3677 : LocationSummary::kNoCall;
3678 LocationSummary* locations =
3679 new (GetGraph()->GetAllocator()) LocationSummary(conversion, call_kind);
3680
3681 switch (result_type) {
3682 case DataType::Type::kUint8:
3683 case DataType::Type::kInt8:
3684 case DataType::Type::kUint16:
3685 case DataType::Type::kInt16:
3686 DCHECK(DataType::IsIntegralType(input_type)) << input_type;
3687 locations->SetInAt(0, Location::RequiresRegister());
3688 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3689 break;
3690
3691 case DataType::Type::kInt32:
3692 switch (input_type) {
3693 case DataType::Type::kInt64:
3694 locations->SetInAt(0, Location::Any());
3695 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3696 break;
3697
3698 case DataType::Type::kFloat32:
3699 locations->SetInAt(0, Location::RequiresFpuRegister());
3700 locations->SetOut(Location::RequiresRegister());
3701 locations->AddTemp(Location::RequiresFpuRegister());
3702 break;
3703
3704 case DataType::Type::kFloat64:
3705 locations->SetInAt(0, Location::RequiresFpuRegister());
3706 locations->SetOut(Location::RequiresRegister());
3707 locations->AddTemp(Location::RequiresFpuRegister());
3708 break;
3709
3710 default:
3711 LOG(FATAL) << "Unexpected type conversion from " << input_type
3712 << " to " << result_type;
3713 }
3714 break;
3715
3716 case DataType::Type::kInt64:
3717 switch (input_type) {
3718 case DataType::Type::kBool:
3719 case DataType::Type::kUint8:
3720 case DataType::Type::kInt8:
3721 case DataType::Type::kUint16:
3722 case DataType::Type::kInt16:
3723 case DataType::Type::kInt32:
3724 locations->SetInAt(0, Location::RequiresRegister());
3725 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3726 break;
3727
3728 case DataType::Type::kFloat32: {
3729 InvokeRuntimeCallingConventionARMVIXL calling_convention;
3730 locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
3731 locations->SetOut(LocationFrom(r0, r1));
3732 break;
3733 }
3734
3735 case DataType::Type::kFloat64: {
3736 InvokeRuntimeCallingConventionARMVIXL calling_convention;
3737 locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0),
3738 calling_convention.GetFpuRegisterAt(1)));
3739 locations->SetOut(LocationFrom(r0, r1));
3740 break;
3741 }
3742
3743 default:
3744 LOG(FATAL) << "Unexpected type conversion from " << input_type
3745 << " to " << result_type;
3746 }
3747 break;
3748
3749 case DataType::Type::kFloat32:
3750 switch (input_type) {
3751 case DataType::Type::kBool:
3752 case DataType::Type::kUint8:
3753 case DataType::Type::kInt8:
3754 case DataType::Type::kUint16:
3755 case DataType::Type::kInt16:
3756 case DataType::Type::kInt32:
3757 locations->SetInAt(0, Location::RequiresRegister());
3758 locations->SetOut(Location::RequiresFpuRegister());
3759 break;
3760
3761 case DataType::Type::kInt64: {
3762 InvokeRuntimeCallingConventionARMVIXL calling_convention;
3763 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0),
3764 calling_convention.GetRegisterAt(1)));
3765 locations->SetOut(LocationFrom(calling_convention.GetFpuRegisterAt(0)));
3766 break;
3767 }
3768
3769 case DataType::Type::kFloat64:
3770 locations->SetInAt(0, Location::RequiresFpuRegister());
3771 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3772 break;
3773
3774 default:
3775 LOG(FATAL) << "Unexpected type conversion from " << input_type
3776 << " to " << result_type;
3777 }
3778 break;
3779
3780 case DataType::Type::kFloat64:
3781 switch (input_type) {
3782 case DataType::Type::kBool:
3783 case DataType::Type::kUint8:
3784 case DataType::Type::kInt8:
3785 case DataType::Type::kUint16:
3786 case DataType::Type::kInt16:
3787 case DataType::Type::kInt32:
3788 locations->SetInAt(0, Location::RequiresRegister());
3789 locations->SetOut(Location::RequiresFpuRegister());
3790 break;
3791
3792 case DataType::Type::kInt64:
3793 locations->SetInAt(0, Location::RequiresRegister());
3794 locations->SetOut(Location::RequiresFpuRegister());
3795 locations->AddTemp(Location::RequiresFpuRegister());
3796 locations->AddTemp(Location::RequiresFpuRegister());
3797 break;
3798
3799 case DataType::Type::kFloat32:
3800 locations->SetInAt(0, Location::RequiresFpuRegister());
3801 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3802 break;
3803
3804 default:
3805 LOG(FATAL) << "Unexpected type conversion from " << input_type
3806 << " to " << result_type;
3807 }
3808 break;
3809
3810 default:
3811 LOG(FATAL) << "Unexpected type conversion from " << input_type
3812 << " to " << result_type;
3813 }
3814 }
3815
VisitTypeConversion(HTypeConversion * conversion)3816 void InstructionCodeGeneratorARMVIXL::VisitTypeConversion(HTypeConversion* conversion) {
3817 LocationSummary* locations = conversion->GetLocations();
3818 Location out = locations->Out();
3819 Location in = locations->InAt(0);
3820 DataType::Type result_type = conversion->GetResultType();
3821 DataType::Type input_type = conversion->GetInputType();
3822 DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
3823 << input_type << " -> " << result_type;
3824 switch (result_type) {
3825 case DataType::Type::kUint8:
3826 switch (input_type) {
3827 case DataType::Type::kInt8:
3828 case DataType::Type::kUint16:
3829 case DataType::Type::kInt16:
3830 case DataType::Type::kInt32:
3831 __ Ubfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 8);
3832 break;
3833 case DataType::Type::kInt64:
3834 __ Ubfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 8);
3835 break;
3836
3837 default:
3838 LOG(FATAL) << "Unexpected type conversion from " << input_type
3839 << " to " << result_type;
3840 }
3841 break;
3842
3843 case DataType::Type::kInt8:
3844 switch (input_type) {
3845 case DataType::Type::kUint8:
3846 case DataType::Type::kUint16:
3847 case DataType::Type::kInt16:
3848 case DataType::Type::kInt32:
3849 __ Sbfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 8);
3850 break;
3851 case DataType::Type::kInt64:
3852 __ Sbfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 8);
3853 break;
3854
3855 default:
3856 LOG(FATAL) << "Unexpected type conversion from " << input_type
3857 << " to " << result_type;
3858 }
3859 break;
3860
3861 case DataType::Type::kUint16:
3862 switch (input_type) {
3863 case DataType::Type::kInt8:
3864 case DataType::Type::kInt16:
3865 case DataType::Type::kInt32:
3866 __ Ubfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 16);
3867 break;
3868 case DataType::Type::kInt64:
3869 __ Ubfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 16);
3870 break;
3871
3872 default:
3873 LOG(FATAL) << "Unexpected type conversion from " << input_type
3874 << " to " << result_type;
3875 }
3876 break;
3877
3878 case DataType::Type::kInt16:
3879 switch (input_type) {
3880 case DataType::Type::kUint16:
3881 case DataType::Type::kInt32:
3882 __ Sbfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 16);
3883 break;
3884 case DataType::Type::kInt64:
3885 __ Sbfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 16);
3886 break;
3887
3888 default:
3889 LOG(FATAL) << "Unexpected type conversion from " << input_type
3890 << " to " << result_type;
3891 }
3892 break;
3893
3894 case DataType::Type::kInt32:
3895 switch (input_type) {
3896 case DataType::Type::kInt64:
3897 DCHECK(out.IsRegister());
3898 if (in.IsRegisterPair()) {
3899 __ Mov(OutputRegister(conversion), LowRegisterFrom(in));
3900 } else if (in.IsDoubleStackSlot()) {
3901 GetAssembler()->LoadFromOffset(kLoadWord,
3902 OutputRegister(conversion),
3903 sp,
3904 in.GetStackIndex());
3905 } else {
3906 DCHECK(in.IsConstant());
3907 DCHECK(in.GetConstant()->IsLongConstant());
3908 int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
3909 __ Mov(OutputRegister(conversion), static_cast<int32_t>(value));
3910 }
3911 break;
3912
3913 case DataType::Type::kFloat32: {
3914 vixl32::SRegister temp = LowSRegisterFrom(locations->GetTemp(0));
3915 __ Vcvt(S32, F32, temp, InputSRegisterAt(conversion, 0));
3916 __ Vmov(OutputRegister(conversion), temp);
3917 break;
3918 }
3919
3920 case DataType::Type::kFloat64: {
3921 vixl32::SRegister temp_s = LowSRegisterFrom(locations->GetTemp(0));
3922 __ Vcvt(S32, F64, temp_s, DRegisterFrom(in));
3923 __ Vmov(OutputRegister(conversion), temp_s);
3924 break;
3925 }
3926
3927 default:
3928 LOG(FATAL) << "Unexpected type conversion from " << input_type
3929 << " to " << result_type;
3930 }
3931 break;
3932
3933 case DataType::Type::kInt64:
3934 switch (input_type) {
3935 case DataType::Type::kBool:
3936 case DataType::Type::kUint8:
3937 case DataType::Type::kInt8:
3938 case DataType::Type::kUint16:
3939 case DataType::Type::kInt16:
3940 case DataType::Type::kInt32:
3941 DCHECK(out.IsRegisterPair());
3942 DCHECK(in.IsRegister());
3943 __ Mov(LowRegisterFrom(out), InputRegisterAt(conversion, 0));
3944 // Sign extension.
3945 __ Asr(HighRegisterFrom(out), LowRegisterFrom(out), 31);
3946 break;
3947
3948 case DataType::Type::kFloat32:
3949 codegen_->InvokeRuntime(kQuickF2l, conversion, conversion->GetDexPc());
3950 CheckEntrypointTypes<kQuickF2l, int64_t, float>();
3951 break;
3952
3953 case DataType::Type::kFloat64:
3954 codegen_->InvokeRuntime(kQuickD2l, conversion, conversion->GetDexPc());
3955 CheckEntrypointTypes<kQuickD2l, int64_t, double>();
3956 break;
3957
3958 default:
3959 LOG(FATAL) << "Unexpected type conversion from " << input_type
3960 << " to " << result_type;
3961 }
3962 break;
3963
3964 case DataType::Type::kFloat32:
3965 switch (input_type) {
3966 case DataType::Type::kBool:
3967 case DataType::Type::kUint8:
3968 case DataType::Type::kInt8:
3969 case DataType::Type::kUint16:
3970 case DataType::Type::kInt16:
3971 case DataType::Type::kInt32:
3972 __ Vmov(OutputSRegister(conversion), InputRegisterAt(conversion, 0));
3973 __ Vcvt(F32, S32, OutputSRegister(conversion), OutputSRegister(conversion));
3974 break;
3975
3976 case DataType::Type::kInt64:
3977 codegen_->InvokeRuntime(kQuickL2f, conversion, conversion->GetDexPc());
3978 CheckEntrypointTypes<kQuickL2f, float, int64_t>();
3979 break;
3980
3981 case DataType::Type::kFloat64:
3982 __ Vcvt(F32, F64, OutputSRegister(conversion), DRegisterFrom(in));
3983 break;
3984
3985 default:
3986 LOG(FATAL) << "Unexpected type conversion from " << input_type
3987 << " to " << result_type;
3988 }
3989 break;
3990
3991 case DataType::Type::kFloat64:
3992 switch (input_type) {
3993 case DataType::Type::kBool:
3994 case DataType::Type::kUint8:
3995 case DataType::Type::kInt8:
3996 case DataType::Type::kUint16:
3997 case DataType::Type::kInt16:
3998 case DataType::Type::kInt32:
3999 __ Vmov(LowSRegisterFrom(out), InputRegisterAt(conversion, 0));
4000 __ Vcvt(F64, S32, DRegisterFrom(out), LowSRegisterFrom(out));
4001 break;
4002
4003 case DataType::Type::kInt64: {
4004 vixl32::Register low = LowRegisterFrom(in);
4005 vixl32::Register high = HighRegisterFrom(in);
4006 vixl32::SRegister out_s = LowSRegisterFrom(out);
4007 vixl32::DRegister out_d = DRegisterFrom(out);
4008 vixl32::SRegister temp_s = LowSRegisterFrom(locations->GetTemp(0));
4009 vixl32::DRegister temp_d = DRegisterFrom(locations->GetTemp(0));
4010 vixl32::DRegister constant_d = DRegisterFrom(locations->GetTemp(1));
4011
4012 // temp_d = int-to-double(high)
4013 __ Vmov(temp_s, high);
4014 __ Vcvt(F64, S32, temp_d, temp_s);
4015 // constant_d = k2Pow32EncodingForDouble
4016 __ Vmov(constant_d, bit_cast<double, int64_t>(k2Pow32EncodingForDouble));
4017 // out_d = unsigned-to-double(low)
4018 __ Vmov(out_s, low);
4019 __ Vcvt(F64, U32, out_d, out_s);
4020 // out_d += temp_d * constant_d
4021 __ Vmla(F64, out_d, temp_d, constant_d);
4022 break;
4023 }
4024
4025 case DataType::Type::kFloat32:
4026 __ Vcvt(F64, F32, DRegisterFrom(out), InputSRegisterAt(conversion, 0));
4027 break;
4028
4029 default:
4030 LOG(FATAL) << "Unexpected type conversion from " << input_type
4031 << " to " << result_type;
4032 }
4033 break;
4034
4035 default:
4036 LOG(FATAL) << "Unexpected type conversion from " << input_type
4037 << " to " << result_type;
4038 }
4039 }
4040
VisitAdd(HAdd * add)4041 void LocationsBuilderARMVIXL::VisitAdd(HAdd* add) {
4042 LocationSummary* locations =
4043 new (GetGraph()->GetAllocator()) LocationSummary(add, LocationSummary::kNoCall);
4044 switch (add->GetResultType()) {
4045 case DataType::Type::kInt32: {
4046 locations->SetInAt(0, Location::RequiresRegister());
4047 locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1)));
4048 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4049 break;
4050 }
4051
4052 case DataType::Type::kInt64: {
4053 locations->SetInAt(0, Location::RequiresRegister());
4054 locations->SetInAt(1, ArmEncodableConstantOrRegister(add->InputAt(1), ADD));
4055 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4056 break;
4057 }
4058
4059 case DataType::Type::kFloat32:
4060 case DataType::Type::kFloat64: {
4061 locations->SetInAt(0, Location::RequiresFpuRegister());
4062 locations->SetInAt(1, Location::RequiresFpuRegister());
4063 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4064 break;
4065 }
4066
4067 default:
4068 LOG(FATAL) << "Unexpected add type " << add->GetResultType();
4069 }
4070 }
4071
VisitAdd(HAdd * add)4072 void InstructionCodeGeneratorARMVIXL::VisitAdd(HAdd* add) {
4073 LocationSummary* locations = add->GetLocations();
4074 Location out = locations->Out();
4075 Location first = locations->InAt(0);
4076 Location second = locations->InAt(1);
4077
4078 switch (add->GetResultType()) {
4079 case DataType::Type::kInt32: {
4080 __ Add(OutputRegister(add), InputRegisterAt(add, 0), InputOperandAt(add, 1));
4081 }
4082 break;
4083
4084 case DataType::Type::kInt64: {
4085 if (second.IsConstant()) {
4086 uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
4087 GenerateAddLongConst(out, first, value);
4088 } else {
4089 DCHECK(second.IsRegisterPair());
4090 __ Adds(LowRegisterFrom(out), LowRegisterFrom(first), LowRegisterFrom(second));
4091 __ Adc(HighRegisterFrom(out), HighRegisterFrom(first), HighRegisterFrom(second));
4092 }
4093 break;
4094 }
4095
4096 case DataType::Type::kFloat32:
4097 case DataType::Type::kFloat64:
4098 __ Vadd(OutputVRegister(add), InputVRegisterAt(add, 0), InputVRegisterAt(add, 1));
4099 break;
4100
4101 default:
4102 LOG(FATAL) << "Unexpected add type " << add->GetResultType();
4103 }
4104 }
4105
VisitSub(HSub * sub)4106 void LocationsBuilderARMVIXL::VisitSub(HSub* sub) {
4107 LocationSummary* locations =
4108 new (GetGraph()->GetAllocator()) LocationSummary(sub, LocationSummary::kNoCall);
4109 switch (sub->GetResultType()) {
4110 case DataType::Type::kInt32: {
4111 locations->SetInAt(0, Location::RequiresRegister());
4112 locations->SetInAt(1, Location::RegisterOrConstant(sub->InputAt(1)));
4113 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4114 break;
4115 }
4116
4117 case DataType::Type::kInt64: {
4118 locations->SetInAt(0, Location::RequiresRegister());
4119 locations->SetInAt(1, ArmEncodableConstantOrRegister(sub->InputAt(1), SUB));
4120 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4121 break;
4122 }
4123 case DataType::Type::kFloat32:
4124 case DataType::Type::kFloat64: {
4125 locations->SetInAt(0, Location::RequiresFpuRegister());
4126 locations->SetInAt(1, Location::RequiresFpuRegister());
4127 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4128 break;
4129 }
4130 default:
4131 LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
4132 }
4133 }
4134
VisitSub(HSub * sub)4135 void InstructionCodeGeneratorARMVIXL::VisitSub(HSub* sub) {
4136 LocationSummary* locations = sub->GetLocations();
4137 Location out = locations->Out();
4138 Location first = locations->InAt(0);
4139 Location second = locations->InAt(1);
4140 switch (sub->GetResultType()) {
4141 case DataType::Type::kInt32: {
4142 __ Sub(OutputRegister(sub), InputRegisterAt(sub, 0), InputOperandAt(sub, 1));
4143 break;
4144 }
4145
4146 case DataType::Type::kInt64: {
4147 if (second.IsConstant()) {
4148 uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
4149 GenerateAddLongConst(out, first, -value);
4150 } else {
4151 DCHECK(second.IsRegisterPair());
4152 __ Subs(LowRegisterFrom(out), LowRegisterFrom(first), LowRegisterFrom(second));
4153 __ Sbc(HighRegisterFrom(out), HighRegisterFrom(first), HighRegisterFrom(second));
4154 }
4155 break;
4156 }
4157
4158 case DataType::Type::kFloat32:
4159 case DataType::Type::kFloat64:
4160 __ Vsub(OutputVRegister(sub), InputVRegisterAt(sub, 0), InputVRegisterAt(sub, 1));
4161 break;
4162
4163 default:
4164 LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
4165 }
4166 }
4167
VisitMul(HMul * mul)4168 void LocationsBuilderARMVIXL::VisitMul(HMul* mul) {
4169 LocationSummary* locations =
4170 new (GetGraph()->GetAllocator()) LocationSummary(mul, LocationSummary::kNoCall);
4171 switch (mul->GetResultType()) {
4172 case DataType::Type::kInt32:
4173 case DataType::Type::kInt64: {
4174 locations->SetInAt(0, Location::RequiresRegister());
4175 locations->SetInAt(1, Location::RequiresRegister());
4176 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4177 break;
4178 }
4179
4180 case DataType::Type::kFloat32:
4181 case DataType::Type::kFloat64: {
4182 locations->SetInAt(0, Location::RequiresFpuRegister());
4183 locations->SetInAt(1, Location::RequiresFpuRegister());
4184 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4185 break;
4186 }
4187
4188 default:
4189 LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
4190 }
4191 }
4192
VisitMul(HMul * mul)4193 void InstructionCodeGeneratorARMVIXL::VisitMul(HMul* mul) {
4194 LocationSummary* locations = mul->GetLocations();
4195 Location out = locations->Out();
4196 Location first = locations->InAt(0);
4197 Location second = locations->InAt(1);
4198 switch (mul->GetResultType()) {
4199 case DataType::Type::kInt32: {
4200 __ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1));
4201 break;
4202 }
4203 case DataType::Type::kInt64: {
4204 vixl32::Register out_hi = HighRegisterFrom(out);
4205 vixl32::Register out_lo = LowRegisterFrom(out);
4206 vixl32::Register in1_hi = HighRegisterFrom(first);
4207 vixl32::Register in1_lo = LowRegisterFrom(first);
4208 vixl32::Register in2_hi = HighRegisterFrom(second);
4209 vixl32::Register in2_lo = LowRegisterFrom(second);
4210
4211 // Extra checks to protect caused by the existence of R1_R2.
4212 // The algorithm is wrong if out.hi is either in1.lo or in2.lo:
4213 // (e.g. in1=r0_r1, in2=r2_r3 and out=r1_r2);
4214 DCHECK(!out_hi.Is(in1_lo));
4215 DCHECK(!out_hi.Is(in2_lo));
4216
4217 // input: in1 - 64 bits, in2 - 64 bits
4218 // output: out
4219 // formula: out.hi : out.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo
4220 // parts: out.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32]
4221 // parts: out.lo = (in1.lo * in2.lo)[31:0]
4222
4223 UseScratchRegisterScope temps(GetVIXLAssembler());
4224 vixl32::Register temp = temps.Acquire();
4225 // temp <- in1.lo * in2.hi
4226 __ Mul(temp, in1_lo, in2_hi);
4227 // out.hi <- in1.lo * in2.hi + in1.hi * in2.lo
4228 __ Mla(out_hi, in1_hi, in2_lo, temp);
4229 // out.lo <- (in1.lo * in2.lo)[31:0];
4230 __ Umull(out_lo, temp, in1_lo, in2_lo);
4231 // out.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
4232 __ Add(out_hi, out_hi, temp);
4233 break;
4234 }
4235
4236 case DataType::Type::kFloat32:
4237 case DataType::Type::kFloat64:
4238 __ Vmul(OutputVRegister(mul), InputVRegisterAt(mul, 0), InputVRegisterAt(mul, 1));
4239 break;
4240
4241 default:
4242 LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
4243 }
4244 }
4245
DivRemOneOrMinusOne(HBinaryOperation * instruction)4246 void InstructionCodeGeneratorARMVIXL::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
4247 DCHECK(instruction->IsDiv() || instruction->IsRem());
4248 DCHECK(instruction->GetResultType() == DataType::Type::kInt32);
4249
4250 Location second = instruction->GetLocations()->InAt(1);
4251 DCHECK(second.IsConstant());
4252
4253 vixl32::Register out = OutputRegister(instruction);
4254 vixl32::Register dividend = InputRegisterAt(instruction, 0);
4255 int32_t imm = Int32ConstantFrom(second);
4256 DCHECK(imm == 1 || imm == -1);
4257
4258 if (instruction->IsRem()) {
4259 __ Mov(out, 0);
4260 } else {
4261 if (imm == 1) {
4262 __ Mov(out, dividend);
4263 } else {
4264 __ Rsb(out, dividend, 0);
4265 }
4266 }
4267 }
4268
DivRemByPowerOfTwo(HBinaryOperation * instruction)4269 void InstructionCodeGeneratorARMVIXL::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
4270 DCHECK(instruction->IsDiv() || instruction->IsRem());
4271 DCHECK(instruction->GetResultType() == DataType::Type::kInt32);
4272
4273 LocationSummary* locations = instruction->GetLocations();
4274 Location second = locations->InAt(1);
4275 DCHECK(second.IsConstant());
4276
4277 vixl32::Register out = OutputRegister(instruction);
4278 vixl32::Register dividend = InputRegisterAt(instruction, 0);
4279 int32_t imm = Int32ConstantFrom(second);
4280 uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
4281 int ctz_imm = CTZ(abs_imm);
4282
4283 auto generate_div_code = [this, imm, ctz_imm](vixl32::Register out, vixl32::Register in) {
4284 __ Asr(out, in, ctz_imm);
4285 if (imm < 0) {
4286 __ Rsb(out, out, 0);
4287 }
4288 };
4289
4290 if (HasNonNegativeOrMinIntInputAt(instruction, 0)) {
4291 // No need to adjust the result for non-negative dividends or the INT32_MIN dividend.
4292 // NOTE: The generated code for HDiv/HRem correctly works for the INT32_MIN dividend:
4293 // imm == 2
4294 // HDiv
4295 // add out, dividend(0x80000000), dividend(0x80000000), lsr #31 => out = 0x80000001
4296 // asr out, out(0x80000001), #1 => out = 0xc0000000
4297 // This is the same as 'asr out, dividend(0x80000000), #1'
4298 //
4299 // imm > 2
4300 // HDiv
4301 // asr out, dividend(0x80000000), #31 => out = -1
4302 // add out, dividend(0x80000000), out(-1), lsr #(32 - ctz_imm) => out = 0b10..01..1,
4303 // where the number of the rightmost 1s is ctz_imm.
4304 // asr out, out(0b10..01..1), #ctz_imm => out = 0b1..10..0, where the number of the
4305 // leftmost 1s is ctz_imm + 1.
4306 // This is the same as 'asr out, dividend(0x80000000), #ctz_imm'.
4307 //
4308 // imm == INT32_MIN
4309 // HDiv
4310 // asr out, dividend(0x80000000), #31 => out = -1
4311 // add out, dividend(0x80000000), out(-1), lsr #1 => out = 0xc0000000
4312 // asr out, out(0xc0000000), #31 => out = -1
4313 // rsb out, out(-1), #0 => out = 1
4314 // This is the same as
4315 // asr out, dividend(0x80000000), #31
4316 // rsb out, out, #0
4317 //
4318 //
4319 // INT_MIN % imm must be 0 for any imm of power 2. 'and' and 'ubfx' work only with bits
4320 // 0..30 of a dividend. For INT32_MIN those bits are zeros. So 'and' and 'ubfx' always
4321 // produce zero.
4322 if (instruction->IsDiv()) {
4323 generate_div_code(out, dividend);
4324 } else {
4325 if (GetVIXLAssembler()->IsModifiedImmediate(abs_imm - 1)) {
4326 __ And(out, dividend, abs_imm - 1);
4327 } else {
4328 __ Ubfx(out, dividend, 0, ctz_imm);
4329 }
4330 return;
4331 }
4332 } else {
4333 vixl32::Register add_right_input = dividend;
4334 if (ctz_imm > 1) {
4335 __ Asr(out, dividend, 31);
4336 add_right_input = out;
4337 }
4338 __ Add(out, dividend, Operand(add_right_input, vixl32::LSR, 32 - ctz_imm));
4339
4340 if (instruction->IsDiv()) {
4341 generate_div_code(out, out);
4342 } else {
4343 __ Bfc(out, 0, ctz_imm);
4344 __ Sub(out, dividend, out);
4345 }
4346 }
4347 }
4348
GenerateDivRemWithAnyConstant(HBinaryOperation * instruction)4349 void InstructionCodeGeneratorARMVIXL::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
4350 DCHECK(instruction->IsDiv() || instruction->IsRem());
4351 DCHECK(instruction->GetResultType() == DataType::Type::kInt32);
4352
4353 LocationSummary* locations = instruction->GetLocations();
4354 Location second = locations->InAt(1);
4355 DCHECK(second.IsConstant());
4356
4357 vixl32::Register out = OutputRegister(instruction);
4358 vixl32::Register dividend = InputRegisterAt(instruction, 0);
4359 vixl32::Register temp1 = RegisterFrom(locations->GetTemp(0));
4360 vixl32::Register temp2 = RegisterFrom(locations->GetTemp(1));
4361 int32_t imm = Int32ConstantFrom(second);
4362
4363 int64_t magic;
4364 int shift;
4365 CalculateMagicAndShiftForDivRem(imm, /* is_long= */ false, &magic, &shift);
4366
4367 auto generate_unsigned_div_code =[this, magic, shift](vixl32::Register out,
4368 vixl32::Register dividend,
4369 vixl32::Register temp1,
4370 vixl32::Register temp2) {
4371 // TODO(VIXL): Change the static cast to Operand::From() after VIXL is fixed.
4372 __ Mov(temp1, static_cast<int32_t>(magic));
4373 if (magic > 0 && shift == 0) {
4374 __ Smull(temp2, out, dividend, temp1);
4375 } else {
4376 __ Smull(temp2, temp1, dividend, temp1);
4377 if (magic < 0) {
4378 // The negative magic M = static_cast<int>(m) means that the multiplier m is greater
4379 // than INT32_MAX. In such a case shift is never 0.
4380 // Proof:
4381 // m = (2^p + d - 2^p % d) / d, where p = 32 + shift, d > 2
4382 //
4383 // If shift == 0, m = (2^32 + d - 2^32 % d) / d =
4384 // = (2^32 + d - (2^32 - (2^32 / d) * d)) / d =
4385 // = (d + (2^32 / d) * d) / d = 1 + (2^32 / d), here '/' is the integer division.
4386 //
4387 // 1 + (2^32 / d) is decreasing when d is increasing.
4388 // The maximum is 1 431 655 766, when d == 3. This value is less than INT32_MAX.
4389 // the minimum is 3, when d = 2^31 -1.
4390 // So for all values of d in [3, INT32_MAX] m with p == 32 is in [3, INT32_MAX) and
4391 // is never less than 0.
4392 __ Add(temp1, temp1, dividend);
4393 }
4394 DCHECK_NE(shift, 0);
4395 __ Lsr(out, temp1, shift);
4396 }
4397 };
4398
4399 if (imm > 0 && HasNonNegativeInputAt(instruction, 0)) {
4400 // No need to adjust the result for a non-negative dividend and a positive divisor.
4401 if (instruction->IsDiv()) {
4402 generate_unsigned_div_code(out, dividend, temp1, temp2);
4403 } else {
4404 generate_unsigned_div_code(temp1, dividend, temp1, temp2);
4405 __ Mov(temp2, imm);
4406 __ Mls(out, temp1, temp2, dividend);
4407 }
4408 } else {
4409 // TODO(VIXL): Change the static cast to Operand::From() after VIXL is fixed.
4410 __ Mov(temp1, static_cast<int32_t>(magic));
4411 __ Smull(temp2, temp1, dividend, temp1);
4412
4413 if (imm > 0 && magic < 0) {
4414 __ Add(temp1, temp1, dividend);
4415 } else if (imm < 0 && magic > 0) {
4416 __ Sub(temp1, temp1, dividend);
4417 }
4418
4419 if (shift != 0) {
4420 __ Asr(temp1, temp1, shift);
4421 }
4422
4423 if (instruction->IsDiv()) {
4424 __ Sub(out, temp1, Operand(temp1, vixl32::Shift(ASR), 31));
4425 } else {
4426 __ Sub(temp1, temp1, Operand(temp1, vixl32::Shift(ASR), 31));
4427 // TODO: Strength reduction for mls.
4428 __ Mov(temp2, imm);
4429 __ Mls(out, temp1, temp2, dividend);
4430 }
4431 }
4432 }
4433
GenerateDivRemConstantIntegral(HBinaryOperation * instruction)4434 void InstructionCodeGeneratorARMVIXL::GenerateDivRemConstantIntegral(
4435 HBinaryOperation* instruction) {
4436 DCHECK(instruction->IsDiv() || instruction->IsRem());
4437 DCHECK(instruction->GetResultType() == DataType::Type::kInt32);
4438
4439 Location second = instruction->GetLocations()->InAt(1);
4440 DCHECK(second.IsConstant());
4441
4442 int32_t imm = Int32ConstantFrom(second);
4443 if (imm == 0) {
4444 // Do not generate anything. DivZeroCheck would prevent any code to be executed.
4445 } else if (imm == 1 || imm == -1) {
4446 DivRemOneOrMinusOne(instruction);
4447 } else if (IsPowerOfTwo(AbsOrMin(imm))) {
4448 DivRemByPowerOfTwo(instruction);
4449 } else {
4450 DCHECK(imm <= -2 || imm >= 2);
4451 GenerateDivRemWithAnyConstant(instruction);
4452 }
4453 }
4454
VisitDiv(HDiv * div)4455 void LocationsBuilderARMVIXL::VisitDiv(HDiv* div) {
4456 LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
4457 if (div->GetResultType() == DataType::Type::kInt64) {
4458 // pLdiv runtime call.
4459 call_kind = LocationSummary::kCallOnMainOnly;
4460 } else if (div->GetResultType() == DataType::Type::kInt32 && div->InputAt(1)->IsConstant()) {
4461 // sdiv will be replaced by other instruction sequence.
4462 } else if (div->GetResultType() == DataType::Type::kInt32 &&
4463 !codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4464 // pIdivmod runtime call.
4465 call_kind = LocationSummary::kCallOnMainOnly;
4466 }
4467
4468 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(div, call_kind);
4469
4470 switch (div->GetResultType()) {
4471 case DataType::Type::kInt32: {
4472 if (div->InputAt(1)->IsConstant()) {
4473 locations->SetInAt(0, Location::RequiresRegister());
4474 locations->SetInAt(1, Location::ConstantLocation(div->InputAt(1)->AsConstant()));
4475 int32_t value = Int32ConstantFrom(div->InputAt(1));
4476 Location::OutputOverlap out_overlaps = Location::kNoOutputOverlap;
4477 if (value == 1 || value == 0 || value == -1) {
4478 // No temp register required.
4479 } else if (IsPowerOfTwo(AbsOrMin(value)) &&
4480 value != 2 &&
4481 value != -2 &&
4482 !HasNonNegativeOrMinIntInputAt(div, 0)) {
4483 // The "out" register is used as a temporary, so it overlaps with the inputs.
4484 out_overlaps = Location::kOutputOverlap;
4485 } else {
4486 locations->AddRegisterTemps(2);
4487 }
4488 locations->SetOut(Location::RequiresRegister(), out_overlaps);
4489 } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4490 locations->SetInAt(0, Location::RequiresRegister());
4491 locations->SetInAt(1, Location::RequiresRegister());
4492 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4493 } else {
4494 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4495 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
4496 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
4497 // Note: divmod will compute both the quotient and the remainder as the pair R0 and R1, but
4498 // we only need the former.
4499 locations->SetOut(LocationFrom(r0));
4500 }
4501 break;
4502 }
4503 case DataType::Type::kInt64: {
4504 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4505 locations->SetInAt(0, LocationFrom(
4506 calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
4507 locations->SetInAt(1, LocationFrom(
4508 calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
4509 locations->SetOut(LocationFrom(r0, r1));
4510 break;
4511 }
4512 case DataType::Type::kFloat32:
4513 case DataType::Type::kFloat64: {
4514 locations->SetInAt(0, Location::RequiresFpuRegister());
4515 locations->SetInAt(1, Location::RequiresFpuRegister());
4516 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4517 break;
4518 }
4519
4520 default:
4521 LOG(FATAL) << "Unexpected div type " << div->GetResultType();
4522 }
4523 }
4524
VisitDiv(HDiv * div)4525 void InstructionCodeGeneratorARMVIXL::VisitDiv(HDiv* div) {
4526 Location lhs = div->GetLocations()->InAt(0);
4527 Location rhs = div->GetLocations()->InAt(1);
4528
4529 switch (div->GetResultType()) {
4530 case DataType::Type::kInt32: {
4531 if (rhs.IsConstant()) {
4532 GenerateDivRemConstantIntegral(div);
4533 } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4534 __ Sdiv(OutputRegister(div), InputRegisterAt(div, 0), InputRegisterAt(div, 1));
4535 } else {
4536 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4537 DCHECK(calling_convention.GetRegisterAt(0).Is(RegisterFrom(lhs)));
4538 DCHECK(calling_convention.GetRegisterAt(1).Is(RegisterFrom(rhs)));
4539 DCHECK(r0.Is(OutputRegister(div)));
4540
4541 codegen_->InvokeRuntime(kQuickIdivmod, div, div->GetDexPc());
4542 CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>();
4543 }
4544 break;
4545 }
4546
4547 case DataType::Type::kInt64: {
4548 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4549 DCHECK(calling_convention.GetRegisterAt(0).Is(LowRegisterFrom(lhs)));
4550 DCHECK(calling_convention.GetRegisterAt(1).Is(HighRegisterFrom(lhs)));
4551 DCHECK(calling_convention.GetRegisterAt(2).Is(LowRegisterFrom(rhs)));
4552 DCHECK(calling_convention.GetRegisterAt(3).Is(HighRegisterFrom(rhs)));
4553 DCHECK(LowRegisterFrom(div->GetLocations()->Out()).Is(r0));
4554 DCHECK(HighRegisterFrom(div->GetLocations()->Out()).Is(r1));
4555
4556 codegen_->InvokeRuntime(kQuickLdiv, div, div->GetDexPc());
4557 CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
4558 break;
4559 }
4560
4561 case DataType::Type::kFloat32:
4562 case DataType::Type::kFloat64:
4563 __ Vdiv(OutputVRegister(div), InputVRegisterAt(div, 0), InputVRegisterAt(div, 1));
4564 break;
4565
4566 default:
4567 LOG(FATAL) << "Unexpected div type " << div->GetResultType();
4568 }
4569 }
4570
VisitRem(HRem * rem)4571 void LocationsBuilderARMVIXL::VisitRem(HRem* rem) {
4572 DataType::Type type = rem->GetResultType();
4573
4574 // Most remainders are implemented in the runtime.
4575 LocationSummary::CallKind call_kind = LocationSummary::kCallOnMainOnly;
4576 if (rem->GetResultType() == DataType::Type::kInt32 && rem->InputAt(1)->IsConstant()) {
4577 // sdiv will be replaced by other instruction sequence.
4578 call_kind = LocationSummary::kNoCall;
4579 } else if ((rem->GetResultType() == DataType::Type::kInt32)
4580 && codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4581 // Have hardware divide instruction for int, do it with three instructions.
4582 call_kind = LocationSummary::kNoCall;
4583 }
4584
4585 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(rem, call_kind);
4586
4587 switch (type) {
4588 case DataType::Type::kInt32: {
4589 if (rem->InputAt(1)->IsConstant()) {
4590 locations->SetInAt(0, Location::RequiresRegister());
4591 locations->SetInAt(1, Location::ConstantLocation(rem->InputAt(1)->AsConstant()));
4592 int32_t value = Int32ConstantFrom(rem->InputAt(1));
4593 Location::OutputOverlap out_overlaps = Location::kNoOutputOverlap;
4594 if (value == 1 || value == 0 || value == -1) {
4595 // No temp register required.
4596 } else if (IsPowerOfTwo(AbsOrMin(value)) && !HasNonNegativeOrMinIntInputAt(rem, 0)) {
4597 // The "out" register is used as a temporary, so it overlaps with the inputs.
4598 out_overlaps = Location::kOutputOverlap;
4599 } else {
4600 locations->AddRegisterTemps(2);
4601 }
4602 locations->SetOut(Location::RequiresRegister(), out_overlaps);
4603 } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4604 locations->SetInAt(0, Location::RequiresRegister());
4605 locations->SetInAt(1, Location::RequiresRegister());
4606 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4607 locations->AddTemp(Location::RequiresRegister());
4608 } else {
4609 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4610 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
4611 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
4612 // Note: divmod will compute both the quotient and the remainder as the pair R0 and R1, but
4613 // we only need the latter.
4614 locations->SetOut(LocationFrom(r1));
4615 }
4616 break;
4617 }
4618 case DataType::Type::kInt64: {
4619 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4620 locations->SetInAt(0, LocationFrom(
4621 calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
4622 locations->SetInAt(1, LocationFrom(
4623 calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
4624 // The runtime helper puts the output in R2,R3.
4625 locations->SetOut(LocationFrom(r2, r3));
4626 break;
4627 }
4628 case DataType::Type::kFloat32: {
4629 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4630 locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
4631 locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1)));
4632 locations->SetOut(LocationFrom(s0));
4633 break;
4634 }
4635
4636 case DataType::Type::kFloat64: {
4637 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4638 locations->SetInAt(0, LocationFrom(
4639 calling_convention.GetFpuRegisterAt(0), calling_convention.GetFpuRegisterAt(1)));
4640 locations->SetInAt(1, LocationFrom(
4641 calling_convention.GetFpuRegisterAt(2), calling_convention.GetFpuRegisterAt(3)));
4642 locations->SetOut(LocationFrom(s0, s1));
4643 break;
4644 }
4645
4646 default:
4647 LOG(FATAL) << "Unexpected rem type " << type;
4648 }
4649 }
4650
VisitRem(HRem * rem)4651 void InstructionCodeGeneratorARMVIXL::VisitRem(HRem* rem) {
4652 LocationSummary* locations = rem->GetLocations();
4653 Location second = locations->InAt(1);
4654
4655 DataType::Type type = rem->GetResultType();
4656 switch (type) {
4657 case DataType::Type::kInt32: {
4658 vixl32::Register reg1 = InputRegisterAt(rem, 0);
4659 vixl32::Register out_reg = OutputRegister(rem);
4660 if (second.IsConstant()) {
4661 GenerateDivRemConstantIntegral(rem);
4662 } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4663 vixl32::Register reg2 = RegisterFrom(second);
4664 vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
4665
4666 // temp = reg1 / reg2 (integer division)
4667 // dest = reg1 - temp * reg2
4668 __ Sdiv(temp, reg1, reg2);
4669 __ Mls(out_reg, temp, reg2, reg1);
4670 } else {
4671 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4672 DCHECK(reg1.Is(calling_convention.GetRegisterAt(0)));
4673 DCHECK(RegisterFrom(second).Is(calling_convention.GetRegisterAt(1)));
4674 DCHECK(out_reg.Is(r1));
4675
4676 codegen_->InvokeRuntime(kQuickIdivmod, rem, rem->GetDexPc());
4677 CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>();
4678 }
4679 break;
4680 }
4681
4682 case DataType::Type::kInt64: {
4683 codegen_->InvokeRuntime(kQuickLmod, rem, rem->GetDexPc());
4684 CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
4685 break;
4686 }
4687
4688 case DataType::Type::kFloat32: {
4689 codegen_->InvokeRuntime(kQuickFmodf, rem, rem->GetDexPc());
4690 CheckEntrypointTypes<kQuickFmodf, float, float, float>();
4691 break;
4692 }
4693
4694 case DataType::Type::kFloat64: {
4695 codegen_->InvokeRuntime(kQuickFmod, rem, rem->GetDexPc());
4696 CheckEntrypointTypes<kQuickFmod, double, double, double>();
4697 break;
4698 }
4699
4700 default:
4701 LOG(FATAL) << "Unexpected rem type " << type;
4702 }
4703 }
4704
CreateMinMaxLocations(ArenaAllocator * allocator,HBinaryOperation * minmax)4705 static void CreateMinMaxLocations(ArenaAllocator* allocator, HBinaryOperation* minmax) {
4706 LocationSummary* locations = new (allocator) LocationSummary(minmax);
4707 switch (minmax->GetResultType()) {
4708 case DataType::Type::kInt32:
4709 locations->SetInAt(0, Location::RequiresRegister());
4710 locations->SetInAt(1, Location::RequiresRegister());
4711 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4712 break;
4713 case DataType::Type::kInt64:
4714 locations->SetInAt(0, Location::RequiresRegister());
4715 locations->SetInAt(1, Location::RequiresRegister());
4716 locations->SetOut(Location::SameAsFirstInput());
4717 break;
4718 case DataType::Type::kFloat32:
4719 locations->SetInAt(0, Location::RequiresFpuRegister());
4720 locations->SetInAt(1, Location::RequiresFpuRegister());
4721 locations->SetOut(Location::SameAsFirstInput());
4722 locations->AddTemp(Location::RequiresRegister());
4723 break;
4724 case DataType::Type::kFloat64:
4725 locations->SetInAt(0, Location::RequiresFpuRegister());
4726 locations->SetInAt(1, Location::RequiresFpuRegister());
4727 locations->SetOut(Location::SameAsFirstInput());
4728 break;
4729 default:
4730 LOG(FATAL) << "Unexpected type for HMinMax " << minmax->GetResultType();
4731 }
4732 }
4733
GenerateMinMaxInt(LocationSummary * locations,bool is_min)4734 void InstructionCodeGeneratorARMVIXL::GenerateMinMaxInt(LocationSummary* locations, bool is_min) {
4735 Location op1_loc = locations->InAt(0);
4736 Location op2_loc = locations->InAt(1);
4737 Location out_loc = locations->Out();
4738
4739 vixl32::Register op1 = RegisterFrom(op1_loc);
4740 vixl32::Register op2 = RegisterFrom(op2_loc);
4741 vixl32::Register out = RegisterFrom(out_loc);
4742
4743 __ Cmp(op1, op2);
4744
4745 {
4746 ExactAssemblyScope aas(GetVIXLAssembler(),
4747 3 * kMaxInstructionSizeInBytes,
4748 CodeBufferCheckScope::kMaximumSize);
4749
4750 __ ite(is_min ? lt : gt);
4751 __ mov(is_min ? lt : gt, out, op1);
4752 __ mov(is_min ? ge : le, out, op2);
4753 }
4754 }
4755
GenerateMinMaxLong(LocationSummary * locations,bool is_min)4756 void InstructionCodeGeneratorARMVIXL::GenerateMinMaxLong(LocationSummary* locations, bool is_min) {
4757 Location op1_loc = locations->InAt(0);
4758 Location op2_loc = locations->InAt(1);
4759 Location out_loc = locations->Out();
4760
4761 // Optimization: don't generate any code if inputs are the same.
4762 if (op1_loc.Equals(op2_loc)) {
4763 DCHECK(out_loc.Equals(op1_loc)); // out_loc is set as SameAsFirstInput() in location builder.
4764 return;
4765 }
4766
4767 vixl32::Register op1_lo = LowRegisterFrom(op1_loc);
4768 vixl32::Register op1_hi = HighRegisterFrom(op1_loc);
4769 vixl32::Register op2_lo = LowRegisterFrom(op2_loc);
4770 vixl32::Register op2_hi = HighRegisterFrom(op2_loc);
4771 vixl32::Register out_lo = LowRegisterFrom(out_loc);
4772 vixl32::Register out_hi = HighRegisterFrom(out_loc);
4773 UseScratchRegisterScope temps(GetVIXLAssembler());
4774 const vixl32::Register temp = temps.Acquire();
4775
4776 DCHECK(op1_lo.Is(out_lo));
4777 DCHECK(op1_hi.Is(out_hi));
4778
4779 // Compare op1 >= op2, or op1 < op2.
4780 __ Cmp(out_lo, op2_lo);
4781 __ Sbcs(temp, out_hi, op2_hi);
4782
4783 // Now GE/LT condition code is correct for the long comparison.
4784 {
4785 vixl32::ConditionType cond = is_min ? ge : lt;
4786 ExactAssemblyScope it_scope(GetVIXLAssembler(),
4787 3 * kMaxInstructionSizeInBytes,
4788 CodeBufferCheckScope::kMaximumSize);
4789 __ itt(cond);
4790 __ mov(cond, out_lo, op2_lo);
4791 __ mov(cond, out_hi, op2_hi);
4792 }
4793 }
4794
GenerateMinMaxFloat(HInstruction * minmax,bool is_min)4795 void InstructionCodeGeneratorARMVIXL::GenerateMinMaxFloat(HInstruction* minmax, bool is_min) {
4796 LocationSummary* locations = minmax->GetLocations();
4797 Location op1_loc = locations->InAt(0);
4798 Location op2_loc = locations->InAt(1);
4799 Location out_loc = locations->Out();
4800
4801 // Optimization: don't generate any code if inputs are the same.
4802 if (op1_loc.Equals(op2_loc)) {
4803 DCHECK(out_loc.Equals(op1_loc)); // out_loc is set as SameAsFirstInput() in location builder.
4804 return;
4805 }
4806
4807 vixl32::SRegister op1 = SRegisterFrom(op1_loc);
4808 vixl32::SRegister op2 = SRegisterFrom(op2_loc);
4809 vixl32::SRegister out = SRegisterFrom(out_loc);
4810
4811 UseScratchRegisterScope temps(GetVIXLAssembler());
4812 const vixl32::Register temp1 = temps.Acquire();
4813 vixl32::Register temp2 = RegisterFrom(locations->GetTemp(0));
4814 vixl32::Label nan, done;
4815 vixl32::Label* final_label = codegen_->GetFinalLabel(minmax, &done);
4816
4817 DCHECK(op1.Is(out));
4818
4819 __ Vcmp(op1, op2);
4820 __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
4821 __ B(vs, &nan, /* is_far_target= */ false); // if un-ordered, go to NaN handling.
4822
4823 // op1 <> op2
4824 vixl32::ConditionType cond = is_min ? gt : lt;
4825 {
4826 ExactAssemblyScope it_scope(GetVIXLAssembler(),
4827 2 * kMaxInstructionSizeInBytes,
4828 CodeBufferCheckScope::kMaximumSize);
4829 __ it(cond);
4830 __ vmov(cond, F32, out, op2);
4831 }
4832 // for <>(not equal), we've done min/max calculation.
4833 __ B(ne, final_label, /* is_far_target= */ false);
4834
4835 // handle op1 == op2, max(+0.0,-0.0), min(+0.0,-0.0).
4836 __ Vmov(temp1, op1);
4837 __ Vmov(temp2, op2);
4838 if (is_min) {
4839 __ Orr(temp1, temp1, temp2);
4840 } else {
4841 __ And(temp1, temp1, temp2);
4842 }
4843 __ Vmov(out, temp1);
4844 __ B(final_label);
4845
4846 // handle NaN input.
4847 __ Bind(&nan);
4848 __ Movt(temp1, High16Bits(kNanFloat)); // 0x7FC0xxxx is a NaN.
4849 __ Vmov(out, temp1);
4850
4851 if (done.IsReferenced()) {
4852 __ Bind(&done);
4853 }
4854 }
4855
GenerateMinMaxDouble(HInstruction * minmax,bool is_min)4856 void InstructionCodeGeneratorARMVIXL::GenerateMinMaxDouble(HInstruction* minmax, bool is_min) {
4857 LocationSummary* locations = minmax->GetLocations();
4858 Location op1_loc = locations->InAt(0);
4859 Location op2_loc = locations->InAt(1);
4860 Location out_loc = locations->Out();
4861
4862 // Optimization: don't generate any code if inputs are the same.
4863 if (op1_loc.Equals(op2_loc)) {
4864 DCHECK(out_loc.Equals(op1_loc)); // out_loc is set as SameAsFirstInput() in.
4865 return;
4866 }
4867
4868 vixl32::DRegister op1 = DRegisterFrom(op1_loc);
4869 vixl32::DRegister op2 = DRegisterFrom(op2_loc);
4870 vixl32::DRegister out = DRegisterFrom(out_loc);
4871 vixl32::Label handle_nan_eq, done;
4872 vixl32::Label* final_label = codegen_->GetFinalLabel(minmax, &done);
4873
4874 DCHECK(op1.Is(out));
4875
4876 __ Vcmp(op1, op2);
4877 __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
4878 __ B(vs, &handle_nan_eq, /* is_far_target= */ false); // if un-ordered, go to NaN handling.
4879
4880 // op1 <> op2
4881 vixl32::ConditionType cond = is_min ? gt : lt;
4882 {
4883 ExactAssemblyScope it_scope(GetVIXLAssembler(),
4884 2 * kMaxInstructionSizeInBytes,
4885 CodeBufferCheckScope::kMaximumSize);
4886 __ it(cond);
4887 __ vmov(cond, F64, out, op2);
4888 }
4889 // for <>(not equal), we've done min/max calculation.
4890 __ B(ne, final_label, /* is_far_target= */ false);
4891
4892 // handle op1 == op2, max(+0.0,-0.0).
4893 if (!is_min) {
4894 __ Vand(F64, out, op1, op2);
4895 __ B(final_label);
4896 }
4897
4898 // handle op1 == op2, min(+0.0,-0.0), NaN input.
4899 __ Bind(&handle_nan_eq);
4900 __ Vorr(F64, out, op1, op2); // assemble op1/-0.0/NaN.
4901
4902 if (done.IsReferenced()) {
4903 __ Bind(&done);
4904 }
4905 }
4906
GenerateMinMax(HBinaryOperation * minmax,bool is_min)4907 void InstructionCodeGeneratorARMVIXL::GenerateMinMax(HBinaryOperation* minmax, bool is_min) {
4908 DataType::Type type = minmax->GetResultType();
4909 switch (type) {
4910 case DataType::Type::kInt32:
4911 GenerateMinMaxInt(minmax->GetLocations(), is_min);
4912 break;
4913 case DataType::Type::kInt64:
4914 GenerateMinMaxLong(minmax->GetLocations(), is_min);
4915 break;
4916 case DataType::Type::kFloat32:
4917 GenerateMinMaxFloat(minmax, is_min);
4918 break;
4919 case DataType::Type::kFloat64:
4920 GenerateMinMaxDouble(minmax, is_min);
4921 break;
4922 default:
4923 LOG(FATAL) << "Unexpected type for HMinMax " << type;
4924 }
4925 }
4926
VisitMin(HMin * min)4927 void LocationsBuilderARMVIXL::VisitMin(HMin* min) {
4928 CreateMinMaxLocations(GetGraph()->GetAllocator(), min);
4929 }
4930
VisitMin(HMin * min)4931 void InstructionCodeGeneratorARMVIXL::VisitMin(HMin* min) {
4932 GenerateMinMax(min, /*is_min*/ true);
4933 }
4934
VisitMax(HMax * max)4935 void LocationsBuilderARMVIXL::VisitMax(HMax* max) {
4936 CreateMinMaxLocations(GetGraph()->GetAllocator(), max);
4937 }
4938
VisitMax(HMax * max)4939 void InstructionCodeGeneratorARMVIXL::VisitMax(HMax* max) {
4940 GenerateMinMax(max, /*is_min*/ false);
4941 }
4942
VisitAbs(HAbs * abs)4943 void LocationsBuilderARMVIXL::VisitAbs(HAbs* abs) {
4944 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs);
4945 switch (abs->GetResultType()) {
4946 case DataType::Type::kInt32:
4947 case DataType::Type::kInt64:
4948 locations->SetInAt(0, Location::RequiresRegister());
4949 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4950 locations->AddTemp(Location::RequiresRegister());
4951 break;
4952 case DataType::Type::kFloat32:
4953 case DataType::Type::kFloat64:
4954 locations->SetInAt(0, Location::RequiresFpuRegister());
4955 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4956 break;
4957 default:
4958 LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType();
4959 }
4960 }
4961
VisitAbs(HAbs * abs)4962 void InstructionCodeGeneratorARMVIXL::VisitAbs(HAbs* abs) {
4963 LocationSummary* locations = abs->GetLocations();
4964 switch (abs->GetResultType()) {
4965 case DataType::Type::kInt32: {
4966 vixl32::Register in_reg = RegisterFrom(locations->InAt(0));
4967 vixl32::Register out_reg = RegisterFrom(locations->Out());
4968 vixl32::Register mask = RegisterFrom(locations->GetTemp(0));
4969 __ Asr(mask, in_reg, 31);
4970 __ Add(out_reg, in_reg, mask);
4971 __ Eor(out_reg, out_reg, mask);
4972 break;
4973 }
4974 case DataType::Type::kInt64: {
4975 Location in = locations->InAt(0);
4976 vixl32::Register in_reg_lo = LowRegisterFrom(in);
4977 vixl32::Register in_reg_hi = HighRegisterFrom(in);
4978 Location output = locations->Out();
4979 vixl32::Register out_reg_lo = LowRegisterFrom(output);
4980 vixl32::Register out_reg_hi = HighRegisterFrom(output);
4981 DCHECK(!out_reg_lo.Is(in_reg_hi)) << "Diagonal overlap unexpected.";
4982 vixl32::Register mask = RegisterFrom(locations->GetTemp(0));
4983 __ Asr(mask, in_reg_hi, 31);
4984 __ Adds(out_reg_lo, in_reg_lo, mask);
4985 __ Adc(out_reg_hi, in_reg_hi, mask);
4986 __ Eor(out_reg_lo, out_reg_lo, mask);
4987 __ Eor(out_reg_hi, out_reg_hi, mask);
4988 break;
4989 }
4990 case DataType::Type::kFloat32:
4991 case DataType::Type::kFloat64:
4992 __ Vabs(OutputVRegister(abs), InputVRegisterAt(abs, 0));
4993 break;
4994 default:
4995 LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType();
4996 }
4997 }
4998
VisitDivZeroCheck(HDivZeroCheck * instruction)4999 void LocationsBuilderARMVIXL::VisitDivZeroCheck(HDivZeroCheck* instruction) {
5000 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
5001 locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
5002 }
5003
VisitDivZeroCheck(HDivZeroCheck * instruction)5004 void InstructionCodeGeneratorARMVIXL::VisitDivZeroCheck(HDivZeroCheck* instruction) {
5005 DivZeroCheckSlowPathARMVIXL* slow_path =
5006 new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathARMVIXL(instruction);
5007 codegen_->AddSlowPath(slow_path);
5008
5009 LocationSummary* locations = instruction->GetLocations();
5010 Location value = locations->InAt(0);
5011
5012 switch (instruction->GetType()) {
5013 case DataType::Type::kBool:
5014 case DataType::Type::kUint8:
5015 case DataType::Type::kInt8:
5016 case DataType::Type::kUint16:
5017 case DataType::Type::kInt16:
5018 case DataType::Type::kInt32: {
5019 if (value.IsRegister()) {
5020 __ CompareAndBranchIfZero(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
5021 } else {
5022 DCHECK(value.IsConstant()) << value;
5023 if (Int32ConstantFrom(value) == 0) {
5024 __ B(slow_path->GetEntryLabel());
5025 }
5026 }
5027 break;
5028 }
5029 case DataType::Type::kInt64: {
5030 if (value.IsRegisterPair()) {
5031 UseScratchRegisterScope temps(GetVIXLAssembler());
5032 vixl32::Register temp = temps.Acquire();
5033 __ Orrs(temp, LowRegisterFrom(value), HighRegisterFrom(value));
5034 __ B(eq, slow_path->GetEntryLabel());
5035 } else {
5036 DCHECK(value.IsConstant()) << value;
5037 if (Int64ConstantFrom(value) == 0) {
5038 __ B(slow_path->GetEntryLabel());
5039 }
5040 }
5041 break;
5042 }
5043 default:
5044 LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType();
5045 }
5046 }
5047
HandleIntegerRotate(HRor * ror)5048 void InstructionCodeGeneratorARMVIXL::HandleIntegerRotate(HRor* ror) {
5049 LocationSummary* locations = ror->GetLocations();
5050 vixl32::Register in = InputRegisterAt(ror, 0);
5051 Location rhs = locations->InAt(1);
5052 vixl32::Register out = OutputRegister(ror);
5053
5054 if (rhs.IsConstant()) {
5055 // Arm32 and Thumb2 assemblers require a rotation on the interval [1,31],
5056 // so map all rotations to a +ve. equivalent in that range.
5057 // (e.g. left *or* right by -2 bits == 30 bits in the same direction.)
5058 uint32_t rot = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()) & 0x1F;
5059 if (rot) {
5060 // Rotate, mapping left rotations to right equivalents if necessary.
5061 // (e.g. left by 2 bits == right by 30.)
5062 __ Ror(out, in, rot);
5063 } else if (!out.Is(in)) {
5064 __ Mov(out, in);
5065 }
5066 } else {
5067 __ Ror(out, in, RegisterFrom(rhs));
5068 }
5069 }
5070
5071 // Gain some speed by mapping all Long rotates onto equivalent pairs of Integer
5072 // rotates by swapping input regs (effectively rotating by the first 32-bits of
5073 // a larger rotation) or flipping direction (thus treating larger right/left
5074 // rotations as sub-word sized rotations in the other direction) as appropriate.
HandleLongRotate(HRor * ror)5075 void InstructionCodeGeneratorARMVIXL::HandleLongRotate(HRor* ror) {
5076 LocationSummary* locations = ror->GetLocations();
5077 vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0));
5078 vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0));
5079 Location rhs = locations->InAt(1);
5080 vixl32::Register out_reg_lo = LowRegisterFrom(locations->Out());
5081 vixl32::Register out_reg_hi = HighRegisterFrom(locations->Out());
5082
5083 if (rhs.IsConstant()) {
5084 uint64_t rot = CodeGenerator::GetInt64ValueOf(rhs.GetConstant());
5085 // Map all rotations to +ve. equivalents on the interval [0,63].
5086 rot &= kMaxLongShiftDistance;
5087 // For rotates over a word in size, 'pre-rotate' by 32-bits to keep rotate
5088 // logic below to a simple pair of binary orr.
5089 // (e.g. 34 bits == in_reg swap + 2 bits right.)
5090 if (rot >= kArmBitsPerWord) {
5091 rot -= kArmBitsPerWord;
5092 std::swap(in_reg_hi, in_reg_lo);
5093 }
5094 // Rotate, or mov to out for zero or word size rotations.
5095 if (rot != 0u) {
5096 __ Lsr(out_reg_hi, in_reg_hi, Operand::From(rot));
5097 __ Orr(out_reg_hi, out_reg_hi, Operand(in_reg_lo, ShiftType::LSL, kArmBitsPerWord - rot));
5098 __ Lsr(out_reg_lo, in_reg_lo, Operand::From(rot));
5099 __ Orr(out_reg_lo, out_reg_lo, Operand(in_reg_hi, ShiftType::LSL, kArmBitsPerWord - rot));
5100 } else {
5101 __ Mov(out_reg_lo, in_reg_lo);
5102 __ Mov(out_reg_hi, in_reg_hi);
5103 }
5104 } else {
5105 vixl32::Register shift_right = RegisterFrom(locations->GetTemp(0));
5106 vixl32::Register shift_left = RegisterFrom(locations->GetTemp(1));
5107 vixl32::Label end;
5108 vixl32::Label shift_by_32_plus_shift_right;
5109 vixl32::Label* final_label = codegen_->GetFinalLabel(ror, &end);
5110
5111 __ And(shift_right, RegisterFrom(rhs), 0x1F);
5112 __ Lsrs(shift_left, RegisterFrom(rhs), 6);
5113 __ Rsb(LeaveFlags, shift_left, shift_right, Operand::From(kArmBitsPerWord));
5114 __ B(cc, &shift_by_32_plus_shift_right, /* is_far_target= */ false);
5115
5116 // out_reg_hi = (reg_hi << shift_left) | (reg_lo >> shift_right).
5117 // out_reg_lo = (reg_lo << shift_left) | (reg_hi >> shift_right).
5118 __ Lsl(out_reg_hi, in_reg_hi, shift_left);
5119 __ Lsr(out_reg_lo, in_reg_lo, shift_right);
5120 __ Add(out_reg_hi, out_reg_hi, out_reg_lo);
5121 __ Lsl(out_reg_lo, in_reg_lo, shift_left);
5122 __ Lsr(shift_left, in_reg_hi, shift_right);
5123 __ Add(out_reg_lo, out_reg_lo, shift_left);
5124 __ B(final_label);
5125
5126 __ Bind(&shift_by_32_plus_shift_right); // Shift by 32+shift_right.
5127 // out_reg_hi = (reg_hi >> shift_right) | (reg_lo << shift_left).
5128 // out_reg_lo = (reg_lo >> shift_right) | (reg_hi << shift_left).
5129 __ Lsr(out_reg_hi, in_reg_hi, shift_right);
5130 __ Lsl(out_reg_lo, in_reg_lo, shift_left);
5131 __ Add(out_reg_hi, out_reg_hi, out_reg_lo);
5132 __ Lsr(out_reg_lo, in_reg_lo, shift_right);
5133 __ Lsl(shift_right, in_reg_hi, shift_left);
5134 __ Add(out_reg_lo, out_reg_lo, shift_right);
5135
5136 if (end.IsReferenced()) {
5137 __ Bind(&end);
5138 }
5139 }
5140 }
5141
VisitRor(HRor * ror)5142 void LocationsBuilderARMVIXL::VisitRor(HRor* ror) {
5143 LocationSummary* locations =
5144 new (GetGraph()->GetAllocator()) LocationSummary(ror, LocationSummary::kNoCall);
5145 switch (ror->GetResultType()) {
5146 case DataType::Type::kInt32: {
5147 locations->SetInAt(0, Location::RequiresRegister());
5148 locations->SetInAt(1, Location::RegisterOrConstant(ror->InputAt(1)));
5149 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5150 break;
5151 }
5152 case DataType::Type::kInt64: {
5153 locations->SetInAt(0, Location::RequiresRegister());
5154 if (ror->InputAt(1)->IsConstant()) {
5155 locations->SetInAt(1, Location::ConstantLocation(ror->InputAt(1)->AsConstant()));
5156 } else {
5157 locations->SetInAt(1, Location::RequiresRegister());
5158 locations->AddTemp(Location::RequiresRegister());
5159 locations->AddTemp(Location::RequiresRegister());
5160 }
5161 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
5162 break;
5163 }
5164 default:
5165 LOG(FATAL) << "Unexpected operation type " << ror->GetResultType();
5166 }
5167 }
5168
VisitRor(HRor * ror)5169 void InstructionCodeGeneratorARMVIXL::VisitRor(HRor* ror) {
5170 DataType::Type type = ror->GetResultType();
5171 switch (type) {
5172 case DataType::Type::kInt32: {
5173 HandleIntegerRotate(ror);
5174 break;
5175 }
5176 case DataType::Type::kInt64: {
5177 HandleLongRotate(ror);
5178 break;
5179 }
5180 default:
5181 LOG(FATAL) << "Unexpected operation type " << type;
5182 UNREACHABLE();
5183 }
5184 }
5185
HandleShift(HBinaryOperation * op)5186 void LocationsBuilderARMVIXL::HandleShift(HBinaryOperation* op) {
5187 DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
5188
5189 LocationSummary* locations =
5190 new (GetGraph()->GetAllocator()) LocationSummary(op, LocationSummary::kNoCall);
5191
5192 switch (op->GetResultType()) {
5193 case DataType::Type::kInt32: {
5194 locations->SetInAt(0, Location::RequiresRegister());
5195 if (op->InputAt(1)->IsConstant()) {
5196 locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant()));
5197 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5198 } else {
5199 locations->SetInAt(1, Location::RequiresRegister());
5200 // Make the output overlap, as it will be used to hold the masked
5201 // second input.
5202 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
5203 }
5204 break;
5205 }
5206 case DataType::Type::kInt64: {
5207 locations->SetInAt(0, Location::RequiresRegister());
5208 if (op->InputAt(1)->IsConstant()) {
5209 locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant()));
5210 // For simplicity, use kOutputOverlap even though we only require that low registers
5211 // don't clash with high registers which the register allocator currently guarantees.
5212 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
5213 } else {
5214 locations->SetInAt(1, Location::RequiresRegister());
5215 locations->AddTemp(Location::RequiresRegister());
5216 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
5217 }
5218 break;
5219 }
5220 default:
5221 LOG(FATAL) << "Unexpected operation type " << op->GetResultType();
5222 }
5223 }
5224
HandleShift(HBinaryOperation * op)5225 void InstructionCodeGeneratorARMVIXL::HandleShift(HBinaryOperation* op) {
5226 DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
5227
5228 LocationSummary* locations = op->GetLocations();
5229 Location out = locations->Out();
5230 Location first = locations->InAt(0);
5231 Location second = locations->InAt(1);
5232
5233 DataType::Type type = op->GetResultType();
5234 switch (type) {
5235 case DataType::Type::kInt32: {
5236 vixl32::Register out_reg = OutputRegister(op);
5237 vixl32::Register first_reg = InputRegisterAt(op, 0);
5238 if (second.IsRegister()) {
5239 vixl32::Register second_reg = RegisterFrom(second);
5240 // ARM doesn't mask the shift count so we need to do it ourselves.
5241 __ And(out_reg, second_reg, kMaxIntShiftDistance);
5242 if (op->IsShl()) {
5243 __ Lsl(out_reg, first_reg, out_reg);
5244 } else if (op->IsShr()) {
5245 __ Asr(out_reg, first_reg, out_reg);
5246 } else {
5247 __ Lsr(out_reg, first_reg, out_reg);
5248 }
5249 } else {
5250 int32_t cst = Int32ConstantFrom(second);
5251 uint32_t shift_value = cst & kMaxIntShiftDistance;
5252 if (shift_value == 0) { // ARM does not support shifting with 0 immediate.
5253 __ Mov(out_reg, first_reg);
5254 } else if (op->IsShl()) {
5255 __ Lsl(out_reg, first_reg, shift_value);
5256 } else if (op->IsShr()) {
5257 __ Asr(out_reg, first_reg, shift_value);
5258 } else {
5259 __ Lsr(out_reg, first_reg, shift_value);
5260 }
5261 }
5262 break;
5263 }
5264 case DataType::Type::kInt64: {
5265 vixl32::Register o_h = HighRegisterFrom(out);
5266 vixl32::Register o_l = LowRegisterFrom(out);
5267
5268 vixl32::Register high = HighRegisterFrom(first);
5269 vixl32::Register low = LowRegisterFrom(first);
5270
5271 if (second.IsRegister()) {
5272 vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
5273
5274 vixl32::Register second_reg = RegisterFrom(second);
5275
5276 if (op->IsShl()) {
5277 __ And(o_l, second_reg, kMaxLongShiftDistance);
5278 // Shift the high part
5279 __ Lsl(o_h, high, o_l);
5280 // Shift the low part and `or` what overflew on the high part
5281 __ Rsb(temp, o_l, Operand::From(kArmBitsPerWord));
5282 __ Lsr(temp, low, temp);
5283 __ Orr(o_h, o_h, temp);
5284 // If the shift is > 32 bits, override the high part
5285 __ Subs(temp, o_l, Operand::From(kArmBitsPerWord));
5286 {
5287 ExactAssemblyScope guard(GetVIXLAssembler(),
5288 2 * vixl32::kMaxInstructionSizeInBytes,
5289 CodeBufferCheckScope::kMaximumSize);
5290 __ it(pl);
5291 __ lsl(pl, o_h, low, temp);
5292 }
5293 // Shift the low part
5294 __ Lsl(o_l, low, o_l);
5295 } else if (op->IsShr()) {
5296 __ And(o_h, second_reg, kMaxLongShiftDistance);
5297 // Shift the low part
5298 __ Lsr(o_l, low, o_h);
5299 // Shift the high part and `or` what underflew on the low part
5300 __ Rsb(temp, o_h, Operand::From(kArmBitsPerWord));
5301 __ Lsl(temp, high, temp);
5302 __ Orr(o_l, o_l, temp);
5303 // If the shift is > 32 bits, override the low part
5304 __ Subs(temp, o_h, Operand::From(kArmBitsPerWord));
5305 {
5306 ExactAssemblyScope guard(GetVIXLAssembler(),
5307 2 * vixl32::kMaxInstructionSizeInBytes,
5308 CodeBufferCheckScope::kMaximumSize);
5309 __ it(pl);
5310 __ asr(pl, o_l, high, temp);
5311 }
5312 // Shift the high part
5313 __ Asr(o_h, high, o_h);
5314 } else {
5315 __ And(o_h, second_reg, kMaxLongShiftDistance);
5316 // same as Shr except we use `Lsr`s and not `Asr`s
5317 __ Lsr(o_l, low, o_h);
5318 __ Rsb(temp, o_h, Operand::From(kArmBitsPerWord));
5319 __ Lsl(temp, high, temp);
5320 __ Orr(o_l, o_l, temp);
5321 __ Subs(temp, o_h, Operand::From(kArmBitsPerWord));
5322 {
5323 ExactAssemblyScope guard(GetVIXLAssembler(),
5324 2 * vixl32::kMaxInstructionSizeInBytes,
5325 CodeBufferCheckScope::kMaximumSize);
5326 __ it(pl);
5327 __ lsr(pl, o_l, high, temp);
5328 }
5329 __ Lsr(o_h, high, o_h);
5330 }
5331 } else {
5332 // Register allocator doesn't create partial overlap.
5333 DCHECK(!o_l.Is(high));
5334 DCHECK(!o_h.Is(low));
5335 int32_t cst = Int32ConstantFrom(second);
5336 uint32_t shift_value = cst & kMaxLongShiftDistance;
5337 if (shift_value > 32) {
5338 if (op->IsShl()) {
5339 __ Lsl(o_h, low, shift_value - 32);
5340 __ Mov(o_l, 0);
5341 } else if (op->IsShr()) {
5342 __ Asr(o_l, high, shift_value - 32);
5343 __ Asr(o_h, high, 31);
5344 } else {
5345 __ Lsr(o_l, high, shift_value - 32);
5346 __ Mov(o_h, 0);
5347 }
5348 } else if (shift_value == 32) {
5349 if (op->IsShl()) {
5350 __ Mov(o_h, low);
5351 __ Mov(o_l, 0);
5352 } else if (op->IsShr()) {
5353 __ Mov(o_l, high);
5354 __ Asr(o_h, high, 31);
5355 } else {
5356 __ Mov(o_l, high);
5357 __ Mov(o_h, 0);
5358 }
5359 } else if (shift_value == 1) {
5360 if (op->IsShl()) {
5361 __ Lsls(o_l, low, 1);
5362 __ Adc(o_h, high, high);
5363 } else if (op->IsShr()) {
5364 __ Asrs(o_h, high, 1);
5365 __ Rrx(o_l, low);
5366 } else {
5367 __ Lsrs(o_h, high, 1);
5368 __ Rrx(o_l, low);
5369 }
5370 } else if (shift_value == 0) {
5371 __ Mov(o_l, low);
5372 __ Mov(o_h, high);
5373 } else {
5374 DCHECK(0 < shift_value && shift_value < 32) << shift_value;
5375 if (op->IsShl()) {
5376 __ Lsl(o_h, high, shift_value);
5377 __ Orr(o_h, o_h, Operand(low, ShiftType::LSR, 32 - shift_value));
5378 __ Lsl(o_l, low, shift_value);
5379 } else if (op->IsShr()) {
5380 __ Lsr(o_l, low, shift_value);
5381 __ Orr(o_l, o_l, Operand(high, ShiftType::LSL, 32 - shift_value));
5382 __ Asr(o_h, high, shift_value);
5383 } else {
5384 __ Lsr(o_l, low, shift_value);
5385 __ Orr(o_l, o_l, Operand(high, ShiftType::LSL, 32 - shift_value));
5386 __ Lsr(o_h, high, shift_value);
5387 }
5388 }
5389 }
5390 break;
5391 }
5392 default:
5393 LOG(FATAL) << "Unexpected operation type " << type;
5394 UNREACHABLE();
5395 }
5396 }
5397
VisitShl(HShl * shl)5398 void LocationsBuilderARMVIXL::VisitShl(HShl* shl) {
5399 HandleShift(shl);
5400 }
5401
VisitShl(HShl * shl)5402 void InstructionCodeGeneratorARMVIXL::VisitShl(HShl* shl) {
5403 HandleShift(shl);
5404 }
5405
VisitShr(HShr * shr)5406 void LocationsBuilderARMVIXL::VisitShr(HShr* shr) {
5407 HandleShift(shr);
5408 }
5409
VisitShr(HShr * shr)5410 void InstructionCodeGeneratorARMVIXL::VisitShr(HShr* shr) {
5411 HandleShift(shr);
5412 }
5413
VisitUShr(HUShr * ushr)5414 void LocationsBuilderARMVIXL::VisitUShr(HUShr* ushr) {
5415 HandleShift(ushr);
5416 }
5417
VisitUShr(HUShr * ushr)5418 void InstructionCodeGeneratorARMVIXL::VisitUShr(HUShr* ushr) {
5419 HandleShift(ushr);
5420 }
5421
VisitNewInstance(HNewInstance * instruction)5422 void LocationsBuilderARMVIXL::VisitNewInstance(HNewInstance* instruction) {
5423 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
5424 instruction, LocationSummary::kCallOnMainOnly);
5425 InvokeRuntimeCallingConventionARMVIXL calling_convention;
5426 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
5427 locations->SetOut(LocationFrom(r0));
5428 }
5429
VisitNewInstance(HNewInstance * instruction)5430 void InstructionCodeGeneratorARMVIXL::VisitNewInstance(HNewInstance* instruction) {
5431 codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
5432 CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
5433 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 12);
5434 }
5435
VisitNewArray(HNewArray * instruction)5436 void LocationsBuilderARMVIXL::VisitNewArray(HNewArray* instruction) {
5437 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
5438 instruction, LocationSummary::kCallOnMainOnly);
5439 InvokeRuntimeCallingConventionARMVIXL calling_convention;
5440 locations->SetOut(LocationFrom(r0));
5441 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
5442 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
5443 }
5444
VisitNewArray(HNewArray * instruction)5445 void InstructionCodeGeneratorARMVIXL::VisitNewArray(HNewArray* instruction) {
5446 // Note: if heap poisoning is enabled, the entry point takes care of poisoning the reference.
5447 QuickEntrypointEnum entrypoint = CodeGenerator::GetArrayAllocationEntrypoint(instruction);
5448 codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc());
5449 CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>();
5450 DCHECK(!codegen_->IsLeafMethod());
5451 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 13);
5452 }
5453
VisitParameterValue(HParameterValue * instruction)5454 void LocationsBuilderARMVIXL::VisitParameterValue(HParameterValue* instruction) {
5455 LocationSummary* locations =
5456 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
5457 Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
5458 if (location.IsStackSlot()) {
5459 location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
5460 } else if (location.IsDoubleStackSlot()) {
5461 location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
5462 }
5463 locations->SetOut(location);
5464 }
5465
VisitParameterValue(HParameterValue * instruction ATTRIBUTE_UNUSED)5466 void InstructionCodeGeneratorARMVIXL::VisitParameterValue(
5467 HParameterValue* instruction ATTRIBUTE_UNUSED) {
5468 // Nothing to do, the parameter is already at its location.
5469 }
5470
VisitCurrentMethod(HCurrentMethod * instruction)5471 void LocationsBuilderARMVIXL::VisitCurrentMethod(HCurrentMethod* instruction) {
5472 LocationSummary* locations =
5473 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
5474 locations->SetOut(LocationFrom(kMethodRegister));
5475 }
5476
VisitCurrentMethod(HCurrentMethod * instruction ATTRIBUTE_UNUSED)5477 void InstructionCodeGeneratorARMVIXL::VisitCurrentMethod(
5478 HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
5479 // Nothing to do, the method is already at its location.
5480 }
5481
VisitNot(HNot * not_)5482 void LocationsBuilderARMVIXL::VisitNot(HNot* not_) {
5483 LocationSummary* locations =
5484 new (GetGraph()->GetAllocator()) LocationSummary(not_, LocationSummary::kNoCall);
5485 locations->SetInAt(0, Location::RequiresRegister());
5486 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5487 }
5488
VisitNot(HNot * not_)5489 void InstructionCodeGeneratorARMVIXL::VisitNot(HNot* not_) {
5490 LocationSummary* locations = not_->GetLocations();
5491 Location out = locations->Out();
5492 Location in = locations->InAt(0);
5493 switch (not_->GetResultType()) {
5494 case DataType::Type::kInt32:
5495 __ Mvn(OutputRegister(not_), InputRegisterAt(not_, 0));
5496 break;
5497
5498 case DataType::Type::kInt64:
5499 __ Mvn(LowRegisterFrom(out), LowRegisterFrom(in));
5500 __ Mvn(HighRegisterFrom(out), HighRegisterFrom(in));
5501 break;
5502
5503 default:
5504 LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType();
5505 }
5506 }
5507
VisitBooleanNot(HBooleanNot * bool_not)5508 void LocationsBuilderARMVIXL::VisitBooleanNot(HBooleanNot* bool_not) {
5509 LocationSummary* locations =
5510 new (GetGraph()->GetAllocator()) LocationSummary(bool_not, LocationSummary::kNoCall);
5511 locations->SetInAt(0, Location::RequiresRegister());
5512 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5513 }
5514
VisitBooleanNot(HBooleanNot * bool_not)5515 void InstructionCodeGeneratorARMVIXL::VisitBooleanNot(HBooleanNot* bool_not) {
5516 __ Eor(OutputRegister(bool_not), InputRegister(bool_not), 1);
5517 }
5518
VisitCompare(HCompare * compare)5519 void LocationsBuilderARMVIXL::VisitCompare(HCompare* compare) {
5520 LocationSummary* locations =
5521 new (GetGraph()->GetAllocator()) LocationSummary(compare, LocationSummary::kNoCall);
5522 switch (compare->InputAt(0)->GetType()) {
5523 case DataType::Type::kBool:
5524 case DataType::Type::kUint8:
5525 case DataType::Type::kInt8:
5526 case DataType::Type::kUint16:
5527 case DataType::Type::kInt16:
5528 case DataType::Type::kInt32:
5529 case DataType::Type::kInt64: {
5530 locations->SetInAt(0, Location::RequiresRegister());
5531 locations->SetInAt(1, Location::RequiresRegister());
5532 // Output overlaps because it is written before doing the low comparison.
5533 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
5534 break;
5535 }
5536 case DataType::Type::kFloat32:
5537 case DataType::Type::kFloat64: {
5538 locations->SetInAt(0, Location::RequiresFpuRegister());
5539 locations->SetInAt(1, ArithmeticZeroOrFpuRegister(compare->InputAt(1)));
5540 locations->SetOut(Location::RequiresRegister());
5541 break;
5542 }
5543 default:
5544 LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
5545 }
5546 }
5547
VisitCompare(HCompare * compare)5548 void InstructionCodeGeneratorARMVIXL::VisitCompare(HCompare* compare) {
5549 LocationSummary* locations = compare->GetLocations();
5550 vixl32::Register out = OutputRegister(compare);
5551 Location left = locations->InAt(0);
5552 Location right = locations->InAt(1);
5553
5554 vixl32::Label less, greater, done;
5555 vixl32::Label* final_label = codegen_->GetFinalLabel(compare, &done);
5556 DataType::Type type = compare->InputAt(0)->GetType();
5557 vixl32::Condition less_cond = vixl32::Condition::None();
5558 switch (type) {
5559 case DataType::Type::kBool:
5560 case DataType::Type::kUint8:
5561 case DataType::Type::kInt8:
5562 case DataType::Type::kUint16:
5563 case DataType::Type::kInt16:
5564 case DataType::Type::kInt32: {
5565 // Emit move to `out` before the `Cmp`, as `Mov` might affect the status flags.
5566 __ Mov(out, 0);
5567 __ Cmp(RegisterFrom(left), RegisterFrom(right)); // Signed compare.
5568 less_cond = lt;
5569 break;
5570 }
5571 case DataType::Type::kInt64: {
5572 __ Cmp(HighRegisterFrom(left), HighRegisterFrom(right)); // Signed compare.
5573 __ B(lt, &less, /* is_far_target= */ false);
5574 __ B(gt, &greater, /* is_far_target= */ false);
5575 // Emit move to `out` before the last `Cmp`, as `Mov` might affect the status flags.
5576 __ Mov(out, 0);
5577 __ Cmp(LowRegisterFrom(left), LowRegisterFrom(right)); // Unsigned compare.
5578 less_cond = lo;
5579 break;
5580 }
5581 case DataType::Type::kFloat32:
5582 case DataType::Type::kFloat64: {
5583 __ Mov(out, 0);
5584 GenerateVcmp(compare, codegen_);
5585 // To branch on the FP compare result we transfer FPSCR to APSR (encoded as PC in VMRS).
5586 __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
5587 less_cond = ARMFPCondition(kCondLT, compare->IsGtBias());
5588 break;
5589 }
5590 default:
5591 LOG(FATAL) << "Unexpected compare type " << type;
5592 UNREACHABLE();
5593 }
5594
5595 __ B(eq, final_label, /* is_far_target= */ false);
5596 __ B(less_cond, &less, /* is_far_target= */ false);
5597
5598 __ Bind(&greater);
5599 __ Mov(out, 1);
5600 __ B(final_label);
5601
5602 __ Bind(&less);
5603 __ Mov(out, -1);
5604
5605 if (done.IsReferenced()) {
5606 __ Bind(&done);
5607 }
5608 }
5609
VisitPhi(HPhi * instruction)5610 void LocationsBuilderARMVIXL::VisitPhi(HPhi* instruction) {
5611 LocationSummary* locations =
5612 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
5613 for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
5614 locations->SetInAt(i, Location::Any());
5615 }
5616 locations->SetOut(Location::Any());
5617 }
5618
VisitPhi(HPhi * instruction ATTRIBUTE_UNUSED)5619 void InstructionCodeGeneratorARMVIXL::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
5620 LOG(FATAL) << "Unreachable";
5621 }
5622
GenerateMemoryBarrier(MemBarrierKind kind)5623 void CodeGeneratorARMVIXL::GenerateMemoryBarrier(MemBarrierKind kind) {
5624 // TODO (ported from quick): revisit ARM barrier kinds.
5625 DmbOptions flavor = DmbOptions::ISH; // Quiet C++ warnings.
5626 switch (kind) {
5627 case MemBarrierKind::kAnyStore:
5628 case MemBarrierKind::kLoadAny:
5629 case MemBarrierKind::kAnyAny: {
5630 flavor = DmbOptions::ISH;
5631 break;
5632 }
5633 case MemBarrierKind::kStoreStore: {
5634 flavor = DmbOptions::ISHST;
5635 break;
5636 }
5637 default:
5638 LOG(FATAL) << "Unexpected memory barrier " << kind;
5639 }
5640 __ Dmb(flavor);
5641 }
5642
GenerateWideAtomicLoad(vixl32::Register addr,uint32_t offset,vixl32::Register out_lo,vixl32::Register out_hi)5643 void InstructionCodeGeneratorARMVIXL::GenerateWideAtomicLoad(vixl32::Register addr,
5644 uint32_t offset,
5645 vixl32::Register out_lo,
5646 vixl32::Register out_hi) {
5647 UseScratchRegisterScope temps(GetVIXLAssembler());
5648 if (offset != 0) {
5649 vixl32::Register temp = temps.Acquire();
5650 __ Add(temp, addr, offset);
5651 addr = temp;
5652 }
5653 __ Ldrexd(out_lo, out_hi, MemOperand(addr));
5654 }
5655
GenerateWideAtomicStore(vixl32::Register addr,uint32_t offset,vixl32::Register value_lo,vixl32::Register value_hi,vixl32::Register temp1,vixl32::Register temp2,HInstruction * instruction)5656 void InstructionCodeGeneratorARMVIXL::GenerateWideAtomicStore(vixl32::Register addr,
5657 uint32_t offset,
5658 vixl32::Register value_lo,
5659 vixl32::Register value_hi,
5660 vixl32::Register temp1,
5661 vixl32::Register temp2,
5662 HInstruction* instruction) {
5663 UseScratchRegisterScope temps(GetVIXLAssembler());
5664 vixl32::Label fail;
5665 if (offset != 0) {
5666 vixl32::Register temp = temps.Acquire();
5667 __ Add(temp, addr, offset);
5668 addr = temp;
5669 }
5670 __ Bind(&fail);
5671 {
5672 // Ensure the pc position is recorded immediately after the `ldrexd` instruction.
5673 ExactAssemblyScope aas(GetVIXLAssembler(),
5674 vixl32::kMaxInstructionSizeInBytes,
5675 CodeBufferCheckScope::kMaximumSize);
5676 // We need a load followed by store. (The address used in a STREX instruction must
5677 // be the same as the address in the most recently executed LDREX instruction.)
5678 __ ldrexd(temp1, temp2, MemOperand(addr));
5679 codegen_->MaybeRecordImplicitNullCheck(instruction);
5680 }
5681 __ Strexd(temp1, value_lo, value_hi, MemOperand(addr));
5682 __ CompareAndBranchIfNonZero(temp1, &fail);
5683 }
5684
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info)5685 void LocationsBuilderARMVIXL::HandleFieldSet(
5686 HInstruction* instruction, const FieldInfo& field_info) {
5687 DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
5688
5689 LocationSummary* locations =
5690 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
5691 locations->SetInAt(0, Location::RequiresRegister());
5692
5693 DataType::Type field_type = field_info.GetFieldType();
5694 if (DataType::IsFloatingPointType(field_type)) {
5695 locations->SetInAt(1, Location::RequiresFpuRegister());
5696 } else {
5697 locations->SetInAt(1, Location::RequiresRegister());
5698 }
5699
5700 bool is_wide = field_type == DataType::Type::kInt64 || field_type == DataType::Type::kFloat64;
5701 bool generate_volatile = field_info.IsVolatile()
5702 && is_wide
5703 && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
5704 bool needs_write_barrier =
5705 CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
5706 // Temporary registers for the write barrier.
5707 // TODO: consider renaming StoreNeedsWriteBarrier to StoreNeedsGCMark.
5708 if (needs_write_barrier) {
5709 locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too.
5710 locations->AddTemp(Location::RequiresRegister());
5711 } else if (generate_volatile) {
5712 // ARM encoding have some additional constraints for ldrexd/strexd:
5713 // - registers need to be consecutive
5714 // - the first register should be even but not R14.
5715 // We don't test for ARM yet, and the assertion makes sure that we
5716 // revisit this if we ever enable ARM encoding.
5717 DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());
5718
5719 locations->AddTemp(Location::RequiresRegister());
5720 locations->AddTemp(Location::RequiresRegister());
5721 if (field_type == DataType::Type::kFloat64) {
5722 // For doubles we need two more registers to copy the value.
5723 locations->AddTemp(LocationFrom(r2));
5724 locations->AddTemp(LocationFrom(r3));
5725 }
5726 }
5727 }
5728
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info,bool value_can_be_null)5729 void InstructionCodeGeneratorARMVIXL::HandleFieldSet(HInstruction* instruction,
5730 const FieldInfo& field_info,
5731 bool value_can_be_null) {
5732 DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
5733
5734 LocationSummary* locations = instruction->GetLocations();
5735 vixl32::Register base = InputRegisterAt(instruction, 0);
5736 Location value = locations->InAt(1);
5737 std::optional<vixl::aarch32::Label> pred_is_null;
5738
5739 bool is_predicated =
5740 instruction->IsInstanceFieldSet() && instruction->AsInstanceFieldSet()->GetIsPredicatedSet();
5741 bool is_volatile = field_info.IsVolatile();
5742 bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
5743 DataType::Type field_type = field_info.GetFieldType();
5744 uint32_t offset = field_info.GetFieldOffset().Uint32Value();
5745 bool needs_write_barrier =
5746 CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
5747
5748 if (is_predicated) {
5749 pred_is_null.emplace();
5750 __ CompareAndBranchIfZero(base, &*pred_is_null, /* is_far_target= */ false);
5751 }
5752
5753 if (is_volatile) {
5754 codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
5755 }
5756
5757 switch (field_type) {
5758 case DataType::Type::kBool:
5759 case DataType::Type::kUint8:
5760 case DataType::Type::kInt8:
5761 case DataType::Type::kUint16:
5762 case DataType::Type::kInt16:
5763 case DataType::Type::kInt32: {
5764 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
5765 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5766 StoreOperandType operand_type = GetStoreOperandType(field_type);
5767 GetAssembler()->StoreToOffset(operand_type, RegisterFrom(value), base, offset);
5768 codegen_->MaybeRecordImplicitNullCheck(instruction);
5769 break;
5770 }
5771
5772 case DataType::Type::kReference: {
5773 vixl32::Register value_reg = RegisterFrom(value);
5774 if (kPoisonHeapReferences && needs_write_barrier) {
5775 // Note that in the case where `value` is a null reference,
5776 // we do not enter this block, as a null reference does not
5777 // need poisoning.
5778 DCHECK_EQ(field_type, DataType::Type::kReference);
5779 value_reg = RegisterFrom(locations->GetTemp(0));
5780 __ Mov(value_reg, RegisterFrom(value));
5781 GetAssembler()->PoisonHeapReference(value_reg);
5782 }
5783 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
5784 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5785 GetAssembler()->StoreToOffset(kStoreWord, value_reg, base, offset);
5786 codegen_->MaybeRecordImplicitNullCheck(instruction);
5787 break;
5788 }
5789
5790 case DataType::Type::kInt64: {
5791 if (is_volatile && !atomic_ldrd_strd) {
5792 GenerateWideAtomicStore(base,
5793 offset,
5794 LowRegisterFrom(value),
5795 HighRegisterFrom(value),
5796 RegisterFrom(locations->GetTemp(0)),
5797 RegisterFrom(locations->GetTemp(1)),
5798 instruction);
5799 } else {
5800 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
5801 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5802 GetAssembler()->StoreToOffset(kStoreWordPair, LowRegisterFrom(value), base, offset);
5803 codegen_->MaybeRecordImplicitNullCheck(instruction);
5804 }
5805 break;
5806 }
5807
5808 case DataType::Type::kFloat32: {
5809 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
5810 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5811 GetAssembler()->StoreSToOffset(SRegisterFrom(value), base, offset);
5812 codegen_->MaybeRecordImplicitNullCheck(instruction);
5813 break;
5814 }
5815
5816 case DataType::Type::kFloat64: {
5817 vixl32::DRegister value_reg = DRegisterFrom(value);
5818 if (is_volatile && !atomic_ldrd_strd) {
5819 vixl32::Register value_reg_lo = RegisterFrom(locations->GetTemp(0));
5820 vixl32::Register value_reg_hi = RegisterFrom(locations->GetTemp(1));
5821
5822 __ Vmov(value_reg_lo, value_reg_hi, value_reg);
5823
5824 GenerateWideAtomicStore(base,
5825 offset,
5826 value_reg_lo,
5827 value_reg_hi,
5828 RegisterFrom(locations->GetTemp(2)),
5829 RegisterFrom(locations->GetTemp(3)),
5830 instruction);
5831 } else {
5832 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
5833 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5834 GetAssembler()->StoreDToOffset(value_reg, base, offset);
5835 codegen_->MaybeRecordImplicitNullCheck(instruction);
5836 }
5837 break;
5838 }
5839
5840 case DataType::Type::kUint32:
5841 case DataType::Type::kUint64:
5842 case DataType::Type::kVoid:
5843 LOG(FATAL) << "Unreachable type " << field_type;
5844 UNREACHABLE();
5845 }
5846
5847 if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
5848 vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
5849 vixl32::Register card = RegisterFrom(locations->GetTemp(1));
5850 codegen_->MarkGCCard(temp, card, base, RegisterFrom(value), value_can_be_null);
5851 }
5852
5853 if (is_volatile) {
5854 codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
5855 }
5856
5857 if (is_predicated) {
5858 __ Bind(&*pred_is_null);
5859 }
5860 }
5861
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)5862 void LocationsBuilderARMVIXL::HandleFieldGet(HInstruction* instruction,
5863 const FieldInfo& field_info) {
5864 DCHECK(instruction->IsInstanceFieldGet() ||
5865 instruction->IsStaticFieldGet() ||
5866 instruction->IsPredicatedInstanceFieldGet());
5867
5868 bool object_field_get_with_read_barrier =
5869 kEmitCompilerReadBarrier && (field_info.GetFieldType() == DataType::Type::kReference);
5870 bool is_predicated = instruction->IsPredicatedInstanceFieldGet();
5871 LocationSummary* locations =
5872 new (GetGraph()->GetAllocator()) LocationSummary(instruction,
5873 object_field_get_with_read_barrier
5874 ? LocationSummary::kCallOnSlowPath
5875 : LocationSummary::kNoCall);
5876 if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
5877 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
5878 }
5879 // Input for object receiver.
5880 locations->SetInAt(is_predicated ? 1 : 0, Location::RequiresRegister());
5881
5882 bool volatile_for_double = field_info.IsVolatile()
5883 && (field_info.GetFieldType() == DataType::Type::kFloat64)
5884 && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
5885 // The output overlaps in case of volatile long: we don't want the
5886 // code generated by GenerateWideAtomicLoad to overwrite the
5887 // object's location. Likewise, in the case of an object field get
5888 // with read barriers enabled, we do not want the load to overwrite
5889 // the object's location, as we need it to emit the read barrier.
5890 bool overlap =
5891 (field_info.IsVolatile() && (field_info.GetFieldType() == DataType::Type::kInt64)) ||
5892 object_field_get_with_read_barrier;
5893
5894 if (DataType::IsFloatingPointType(instruction->GetType())) {
5895 if (is_predicated) {
5896 locations->SetInAt(0, Location::RequiresFpuRegister());
5897 locations->SetOut(Location::SameAsFirstInput());
5898 } else {
5899 locations->SetOut(Location::RequiresFpuRegister());
5900 }
5901 } else {
5902 if (is_predicated) {
5903 locations->SetInAt(0, Location::RequiresRegister());
5904 locations->SetOut(Location::SameAsFirstInput());
5905 } else {
5906 locations->SetOut(Location::RequiresRegister(),
5907 (overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap));
5908 }
5909 }
5910 if (volatile_for_double) {
5911 // ARM encoding have some additional constraints for ldrexd/strexd:
5912 // - registers need to be consecutive
5913 // - the first register should be even but not R14.
5914 // We don't test for ARM yet, and the assertion makes sure that we
5915 // revisit this if we ever enable ARM encoding.
5916 DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());
5917 locations->AddTemp(Location::RequiresRegister());
5918 locations->AddTemp(Location::RequiresRegister());
5919 } else if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
5920 // We need a temporary register for the read barrier load in
5921 // CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier()
5922 // only if the offset is too big.
5923 if (field_info.GetFieldOffset().Uint32Value() >= kReferenceLoadMinFarOffset) {
5924 locations->AddTemp(Location::RequiresRegister());
5925 }
5926 }
5927 }
5928
ArithmeticZeroOrFpuRegister(HInstruction * input)5929 Location LocationsBuilderARMVIXL::ArithmeticZeroOrFpuRegister(HInstruction* input) {
5930 DCHECK(DataType::IsFloatingPointType(input->GetType())) << input->GetType();
5931 if ((input->IsFloatConstant() && (input->AsFloatConstant()->IsArithmeticZero())) ||
5932 (input->IsDoubleConstant() && (input->AsDoubleConstant()->IsArithmeticZero()))) {
5933 return Location::ConstantLocation(input->AsConstant());
5934 } else {
5935 return Location::RequiresFpuRegister();
5936 }
5937 }
5938
ArmEncodableConstantOrRegister(HInstruction * constant,Opcode opcode)5939 Location LocationsBuilderARMVIXL::ArmEncodableConstantOrRegister(HInstruction* constant,
5940 Opcode opcode) {
5941 DCHECK(!DataType::IsFloatingPointType(constant->GetType()));
5942 if (constant->IsConstant() &&
5943 CanEncodeConstantAsImmediate(constant->AsConstant(), opcode)) {
5944 return Location::ConstantLocation(constant->AsConstant());
5945 }
5946 return Location::RequiresRegister();
5947 }
5948
CanEncode32BitConstantAsImmediate(CodeGeneratorARMVIXL * codegen,uint32_t value,Opcode opcode,vixl32::FlagsUpdate flags_update=vixl32::FlagsUpdate::DontCare)5949 static bool CanEncode32BitConstantAsImmediate(
5950 CodeGeneratorARMVIXL* codegen,
5951 uint32_t value,
5952 Opcode opcode,
5953 vixl32::FlagsUpdate flags_update = vixl32::FlagsUpdate::DontCare) {
5954 ArmVIXLAssembler* assembler = codegen->GetAssembler();
5955 if (assembler->ShifterOperandCanHold(opcode, value, flags_update)) {
5956 return true;
5957 }
5958 Opcode neg_opcode = kNoOperand;
5959 uint32_t neg_value = 0;
5960 switch (opcode) {
5961 case AND: neg_opcode = BIC; neg_value = ~value; break;
5962 case ORR: neg_opcode = ORN; neg_value = ~value; break;
5963 case ADD: neg_opcode = SUB; neg_value = -value; break;
5964 case ADC: neg_opcode = SBC; neg_value = ~value; break;
5965 case SUB: neg_opcode = ADD; neg_value = -value; break;
5966 case SBC: neg_opcode = ADC; neg_value = ~value; break;
5967 case MOV: neg_opcode = MVN; neg_value = ~value; break;
5968 default:
5969 return false;
5970 }
5971
5972 if (assembler->ShifterOperandCanHold(neg_opcode, neg_value, flags_update)) {
5973 return true;
5974 }
5975
5976 return opcode == AND && IsPowerOfTwo(value + 1);
5977 }
5978
CanEncodeConstantAsImmediate(HConstant * input_cst,Opcode opcode)5979 bool LocationsBuilderARMVIXL::CanEncodeConstantAsImmediate(HConstant* input_cst, Opcode opcode) {
5980 uint64_t value = static_cast<uint64_t>(Int64FromConstant(input_cst));
5981 if (DataType::Is64BitType(input_cst->GetType())) {
5982 Opcode high_opcode = opcode;
5983 vixl32::FlagsUpdate low_flags_update = vixl32::FlagsUpdate::DontCare;
5984 switch (opcode) {
5985 case SUB:
5986 // Flip the operation to an ADD.
5987 value = -value;
5988 opcode = ADD;
5989 FALLTHROUGH_INTENDED;
5990 case ADD:
5991 if (Low32Bits(value) == 0u) {
5992 return CanEncode32BitConstantAsImmediate(codegen_, High32Bits(value), opcode);
5993 }
5994 high_opcode = ADC;
5995 low_flags_update = vixl32::FlagsUpdate::SetFlags;
5996 break;
5997 default:
5998 break;
5999 }
6000 return CanEncode32BitConstantAsImmediate(codegen_, High32Bits(value), high_opcode) &&
6001 CanEncode32BitConstantAsImmediate(codegen_, Low32Bits(value), opcode, low_flags_update);
6002 } else {
6003 return CanEncode32BitConstantAsImmediate(codegen_, Low32Bits(value), opcode);
6004 }
6005 }
6006
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)6007 void InstructionCodeGeneratorARMVIXL::HandleFieldGet(HInstruction* instruction,
6008 const FieldInfo& field_info) {
6009 DCHECK(instruction->IsInstanceFieldGet() ||
6010 instruction->IsStaticFieldGet() ||
6011 instruction->IsPredicatedInstanceFieldGet());
6012
6013 LocationSummary* locations = instruction->GetLocations();
6014 uint32_t receiver_input = instruction->IsPredicatedInstanceFieldGet() ? 1 : 0;
6015 vixl32::Register base = InputRegisterAt(instruction, receiver_input);
6016 Location out = locations->Out();
6017 bool is_volatile = field_info.IsVolatile();
6018 bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
6019 DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType()));
6020 DataType::Type load_type = instruction->GetType();
6021 uint32_t offset = field_info.GetFieldOffset().Uint32Value();
6022
6023 switch (load_type) {
6024 case DataType::Type::kBool:
6025 case DataType::Type::kUint8:
6026 case DataType::Type::kInt8:
6027 case DataType::Type::kUint16:
6028 case DataType::Type::kInt16:
6029 case DataType::Type::kInt32: {
6030 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6031 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6032 LoadOperandType operand_type = GetLoadOperandType(load_type);
6033 GetAssembler()->LoadFromOffset(operand_type, RegisterFrom(out), base, offset);
6034 codegen_->MaybeRecordImplicitNullCheck(instruction);
6035 break;
6036 }
6037
6038 case DataType::Type::kReference: {
6039 // /* HeapReference<Object> */ out = *(base + offset)
6040 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
6041 Location maybe_temp = (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location();
6042 // Note that a potential implicit null check is handled in this
6043 // CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier call.
6044 codegen_->GenerateFieldLoadWithBakerReadBarrier(
6045 instruction, out, base, offset, maybe_temp, /* needs_null_check= */ true);
6046 if (is_volatile) {
6047 codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
6048 }
6049 } else {
6050 {
6051 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6052 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6053 GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(out), base, offset);
6054 codegen_->MaybeRecordImplicitNullCheck(instruction);
6055 }
6056 if (is_volatile) {
6057 codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
6058 }
6059 // If read barriers are enabled, emit read barriers other than
6060 // Baker's using a slow path (and also unpoison the loaded
6061 // reference, if heap poisoning is enabled).
6062 codegen_->MaybeGenerateReadBarrierSlow(
6063 instruction, out, out, locations->InAt(receiver_input), offset);
6064 }
6065 break;
6066 }
6067
6068 case DataType::Type::kInt64: {
6069 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6070 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6071 if (is_volatile && !atomic_ldrd_strd) {
6072 GenerateWideAtomicLoad(base, offset, LowRegisterFrom(out), HighRegisterFrom(out));
6073 } else {
6074 GetAssembler()->LoadFromOffset(kLoadWordPair, LowRegisterFrom(out), base, offset);
6075 }
6076 codegen_->MaybeRecordImplicitNullCheck(instruction);
6077 break;
6078 }
6079
6080 case DataType::Type::kFloat32: {
6081 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6082 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6083 GetAssembler()->LoadSFromOffset(SRegisterFrom(out), base, offset);
6084 codegen_->MaybeRecordImplicitNullCheck(instruction);
6085 break;
6086 }
6087
6088 case DataType::Type::kFloat64: {
6089 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6090 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6091 vixl32::DRegister out_dreg = DRegisterFrom(out);
6092 if (is_volatile && !atomic_ldrd_strd) {
6093 vixl32::Register lo = RegisterFrom(locations->GetTemp(0));
6094 vixl32::Register hi = RegisterFrom(locations->GetTemp(1));
6095 GenerateWideAtomicLoad(base, offset, lo, hi);
6096 codegen_->MaybeRecordImplicitNullCheck(instruction);
6097 __ Vmov(out_dreg, lo, hi);
6098 } else {
6099 GetAssembler()->LoadDFromOffset(out_dreg, base, offset);
6100 codegen_->MaybeRecordImplicitNullCheck(instruction);
6101 }
6102 break;
6103 }
6104
6105 case DataType::Type::kUint32:
6106 case DataType::Type::kUint64:
6107 case DataType::Type::kVoid:
6108 LOG(FATAL) << "Unreachable type " << load_type;
6109 UNREACHABLE();
6110 }
6111
6112 if (is_volatile) {
6113 if (load_type == DataType::Type::kReference) {
6114 // Memory barriers, in the case of references, are also handled
6115 // in the previous switch statement.
6116 } else {
6117 codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
6118 }
6119 }
6120 }
6121
VisitInstanceFieldSet(HInstanceFieldSet * instruction)6122 void LocationsBuilderARMVIXL::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
6123 HandleFieldSet(instruction, instruction->GetFieldInfo());
6124 }
6125
VisitInstanceFieldSet(HInstanceFieldSet * instruction)6126 void InstructionCodeGeneratorARMVIXL::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
6127 HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
6128 }
6129
VisitInstanceFieldGet(HInstanceFieldGet * instruction)6130 void LocationsBuilderARMVIXL::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
6131 HandleFieldGet(instruction, instruction->GetFieldInfo());
6132 }
6133
VisitPredicatedInstanceFieldGet(HPredicatedInstanceFieldGet * instruction)6134 void LocationsBuilderARMVIXL::VisitPredicatedInstanceFieldGet(
6135 HPredicatedInstanceFieldGet* instruction) {
6136 HandleFieldGet(instruction, instruction->GetFieldInfo());
6137 }
6138
VisitPredicatedInstanceFieldGet(HPredicatedInstanceFieldGet * instruction)6139 void InstructionCodeGeneratorARMVIXL::VisitPredicatedInstanceFieldGet(
6140 HPredicatedInstanceFieldGet* instruction) {
6141 vixl::aarch32::Label finish;
6142 __ CompareAndBranchIfZero(InputRegisterAt(instruction, 1), &finish, false);
6143 HandleFieldGet(instruction, instruction->GetFieldInfo());
6144 __ Bind(&finish);
6145 }
6146
VisitInstanceFieldGet(HInstanceFieldGet * instruction)6147 void InstructionCodeGeneratorARMVIXL::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
6148 HandleFieldGet(instruction, instruction->GetFieldInfo());
6149 }
6150
VisitStaticFieldGet(HStaticFieldGet * instruction)6151 void LocationsBuilderARMVIXL::VisitStaticFieldGet(HStaticFieldGet* instruction) {
6152 HandleFieldGet(instruction, instruction->GetFieldInfo());
6153 }
6154
VisitStaticFieldGet(HStaticFieldGet * instruction)6155 void InstructionCodeGeneratorARMVIXL::VisitStaticFieldGet(HStaticFieldGet* instruction) {
6156 HandleFieldGet(instruction, instruction->GetFieldInfo());
6157 }
6158
VisitStaticFieldSet(HStaticFieldSet * instruction)6159 void LocationsBuilderARMVIXL::VisitStaticFieldSet(HStaticFieldSet* instruction) {
6160 HandleFieldSet(instruction, instruction->GetFieldInfo());
6161 }
6162
VisitStaticFieldSet(HStaticFieldSet * instruction)6163 void InstructionCodeGeneratorARMVIXL::VisitStaticFieldSet(HStaticFieldSet* instruction) {
6164 HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
6165 }
6166
VisitStringBuilderAppend(HStringBuilderAppend * instruction)6167 void LocationsBuilderARMVIXL::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
6168 codegen_->CreateStringBuilderAppendLocations(instruction, LocationFrom(r0));
6169 }
6170
VisitStringBuilderAppend(HStringBuilderAppend * instruction)6171 void InstructionCodeGeneratorARMVIXL::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
6172 __ Mov(r0, instruction->GetFormat()->GetValue());
6173 codegen_->InvokeRuntime(kQuickStringBuilderAppend, instruction, instruction->GetDexPc());
6174 }
6175
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)6176 void LocationsBuilderARMVIXL::VisitUnresolvedInstanceFieldGet(
6177 HUnresolvedInstanceFieldGet* instruction) {
6178 FieldAccessCallingConventionARMVIXL calling_convention;
6179 codegen_->CreateUnresolvedFieldLocationSummary(
6180 instruction, instruction->GetFieldType(), calling_convention);
6181 }
6182
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)6183 void InstructionCodeGeneratorARMVIXL::VisitUnresolvedInstanceFieldGet(
6184 HUnresolvedInstanceFieldGet* instruction) {
6185 FieldAccessCallingConventionARMVIXL calling_convention;
6186 codegen_->GenerateUnresolvedFieldAccess(instruction,
6187 instruction->GetFieldType(),
6188 instruction->GetFieldIndex(),
6189 instruction->GetDexPc(),
6190 calling_convention);
6191 }
6192
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)6193 void LocationsBuilderARMVIXL::VisitUnresolvedInstanceFieldSet(
6194 HUnresolvedInstanceFieldSet* instruction) {
6195 FieldAccessCallingConventionARMVIXL calling_convention;
6196 codegen_->CreateUnresolvedFieldLocationSummary(
6197 instruction, instruction->GetFieldType(), calling_convention);
6198 }
6199
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)6200 void InstructionCodeGeneratorARMVIXL::VisitUnresolvedInstanceFieldSet(
6201 HUnresolvedInstanceFieldSet* instruction) {
6202 FieldAccessCallingConventionARMVIXL calling_convention;
6203 codegen_->GenerateUnresolvedFieldAccess(instruction,
6204 instruction->GetFieldType(),
6205 instruction->GetFieldIndex(),
6206 instruction->GetDexPc(),
6207 calling_convention);
6208 }
6209
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)6210 void LocationsBuilderARMVIXL::VisitUnresolvedStaticFieldGet(
6211 HUnresolvedStaticFieldGet* instruction) {
6212 FieldAccessCallingConventionARMVIXL calling_convention;
6213 codegen_->CreateUnresolvedFieldLocationSummary(
6214 instruction, instruction->GetFieldType(), calling_convention);
6215 }
6216
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)6217 void InstructionCodeGeneratorARMVIXL::VisitUnresolvedStaticFieldGet(
6218 HUnresolvedStaticFieldGet* instruction) {
6219 FieldAccessCallingConventionARMVIXL calling_convention;
6220 codegen_->GenerateUnresolvedFieldAccess(instruction,
6221 instruction->GetFieldType(),
6222 instruction->GetFieldIndex(),
6223 instruction->GetDexPc(),
6224 calling_convention);
6225 }
6226
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)6227 void LocationsBuilderARMVIXL::VisitUnresolvedStaticFieldSet(
6228 HUnresolvedStaticFieldSet* instruction) {
6229 FieldAccessCallingConventionARMVIXL calling_convention;
6230 codegen_->CreateUnresolvedFieldLocationSummary(
6231 instruction, instruction->GetFieldType(), calling_convention);
6232 }
6233
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)6234 void InstructionCodeGeneratorARMVIXL::VisitUnresolvedStaticFieldSet(
6235 HUnresolvedStaticFieldSet* instruction) {
6236 FieldAccessCallingConventionARMVIXL calling_convention;
6237 codegen_->GenerateUnresolvedFieldAccess(instruction,
6238 instruction->GetFieldType(),
6239 instruction->GetFieldIndex(),
6240 instruction->GetDexPc(),
6241 calling_convention);
6242 }
6243
VisitNullCheck(HNullCheck * instruction)6244 void LocationsBuilderARMVIXL::VisitNullCheck(HNullCheck* instruction) {
6245 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
6246 locations->SetInAt(0, Location::RequiresRegister());
6247 }
6248
GenerateImplicitNullCheck(HNullCheck * instruction)6249 void CodeGeneratorARMVIXL::GenerateImplicitNullCheck(HNullCheck* instruction) {
6250 if (CanMoveNullCheckToUser(instruction)) {
6251 return;
6252 }
6253
6254 UseScratchRegisterScope temps(GetVIXLAssembler());
6255 // Ensure the pc position is recorded immediately after the `ldr` instruction.
6256 ExactAssemblyScope aas(GetVIXLAssembler(),
6257 vixl32::kMaxInstructionSizeInBytes,
6258 CodeBufferCheckScope::kMaximumSize);
6259 __ ldr(temps.Acquire(), MemOperand(InputRegisterAt(instruction, 0)));
6260 RecordPcInfo(instruction, instruction->GetDexPc());
6261 }
6262
GenerateExplicitNullCheck(HNullCheck * instruction)6263 void CodeGeneratorARMVIXL::GenerateExplicitNullCheck(HNullCheck* instruction) {
6264 NullCheckSlowPathARMVIXL* slow_path =
6265 new (GetScopedAllocator()) NullCheckSlowPathARMVIXL(instruction);
6266 AddSlowPath(slow_path);
6267 __ CompareAndBranchIfZero(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
6268 }
6269
VisitNullCheck(HNullCheck * instruction)6270 void InstructionCodeGeneratorARMVIXL::VisitNullCheck(HNullCheck* instruction) {
6271 codegen_->GenerateNullCheck(instruction);
6272 }
6273
LoadFromShiftedRegOffset(DataType::Type type,Location out_loc,vixl32::Register base,vixl32::Register reg_index,vixl32::Condition cond)6274 void CodeGeneratorARMVIXL::LoadFromShiftedRegOffset(DataType::Type type,
6275 Location out_loc,
6276 vixl32::Register base,
6277 vixl32::Register reg_index,
6278 vixl32::Condition cond) {
6279 uint32_t shift_count = DataType::SizeShift(type);
6280 MemOperand mem_address(base, reg_index, vixl32::LSL, shift_count);
6281
6282 switch (type) {
6283 case DataType::Type::kBool:
6284 case DataType::Type::kUint8:
6285 __ Ldrb(cond, RegisterFrom(out_loc), mem_address);
6286 break;
6287 case DataType::Type::kInt8:
6288 __ Ldrsb(cond, RegisterFrom(out_loc), mem_address);
6289 break;
6290 case DataType::Type::kUint16:
6291 __ Ldrh(cond, RegisterFrom(out_loc), mem_address);
6292 break;
6293 case DataType::Type::kInt16:
6294 __ Ldrsh(cond, RegisterFrom(out_loc), mem_address);
6295 break;
6296 case DataType::Type::kReference:
6297 case DataType::Type::kInt32:
6298 __ Ldr(cond, RegisterFrom(out_loc), mem_address);
6299 break;
6300 // T32 doesn't support LoadFromShiftedRegOffset mem address mode for these types.
6301 case DataType::Type::kInt64:
6302 case DataType::Type::kFloat32:
6303 case DataType::Type::kFloat64:
6304 default:
6305 LOG(FATAL) << "Unreachable type " << type;
6306 UNREACHABLE();
6307 }
6308 }
6309
StoreToShiftedRegOffset(DataType::Type type,Location loc,vixl32::Register base,vixl32::Register reg_index,vixl32::Condition cond)6310 void CodeGeneratorARMVIXL::StoreToShiftedRegOffset(DataType::Type type,
6311 Location loc,
6312 vixl32::Register base,
6313 vixl32::Register reg_index,
6314 vixl32::Condition cond) {
6315 uint32_t shift_count = DataType::SizeShift(type);
6316 MemOperand mem_address(base, reg_index, vixl32::LSL, shift_count);
6317
6318 switch (type) {
6319 case DataType::Type::kBool:
6320 case DataType::Type::kUint8:
6321 case DataType::Type::kInt8:
6322 __ Strb(cond, RegisterFrom(loc), mem_address);
6323 break;
6324 case DataType::Type::kUint16:
6325 case DataType::Type::kInt16:
6326 __ Strh(cond, RegisterFrom(loc), mem_address);
6327 break;
6328 case DataType::Type::kReference:
6329 case DataType::Type::kInt32:
6330 __ Str(cond, RegisterFrom(loc), mem_address);
6331 break;
6332 // T32 doesn't support StoreToShiftedRegOffset mem address mode for these types.
6333 case DataType::Type::kInt64:
6334 case DataType::Type::kFloat32:
6335 case DataType::Type::kFloat64:
6336 default:
6337 LOG(FATAL) << "Unreachable type " << type;
6338 UNREACHABLE();
6339 }
6340 }
6341
VisitArrayGet(HArrayGet * instruction)6342 void LocationsBuilderARMVIXL::VisitArrayGet(HArrayGet* instruction) {
6343 bool object_array_get_with_read_barrier =
6344 kEmitCompilerReadBarrier && (instruction->GetType() == DataType::Type::kReference);
6345 LocationSummary* locations =
6346 new (GetGraph()->GetAllocator()) LocationSummary(instruction,
6347 object_array_get_with_read_barrier
6348 ? LocationSummary::kCallOnSlowPath
6349 : LocationSummary::kNoCall);
6350 if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
6351 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
6352 }
6353 locations->SetInAt(0, Location::RequiresRegister());
6354 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
6355 if (DataType::IsFloatingPointType(instruction->GetType())) {
6356 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
6357 } else {
6358 // The output overlaps in the case of an object array get with
6359 // read barriers enabled: we do not want the move to overwrite the
6360 // array's location, as we need it to emit the read barrier.
6361 locations->SetOut(
6362 Location::RequiresRegister(),
6363 object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
6364 }
6365 if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
6366 if (instruction->GetIndex()->IsConstant()) {
6367 // Array loads with constant index are treated as field loads.
6368 // We need a temporary register for the read barrier load in
6369 // CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier()
6370 // only if the offset is too big.
6371 uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction);
6372 uint32_t index = instruction->GetIndex()->AsIntConstant()->GetValue();
6373 offset += index << DataType::SizeShift(DataType::Type::kReference);
6374 if (offset >= kReferenceLoadMinFarOffset) {
6375 locations->AddTemp(Location::RequiresRegister());
6376 }
6377 } else {
6378 // We need a non-scratch temporary for the array data pointer in
6379 // CodeGeneratorARMVIXL::GenerateArrayLoadWithBakerReadBarrier().
6380 locations->AddTemp(Location::RequiresRegister());
6381 }
6382 } else if (mirror::kUseStringCompression && instruction->IsStringCharAt()) {
6383 // Also need a temporary for String compression feature.
6384 locations->AddTemp(Location::RequiresRegister());
6385 }
6386 }
6387
VisitArrayGet(HArrayGet * instruction)6388 void InstructionCodeGeneratorARMVIXL::VisitArrayGet(HArrayGet* instruction) {
6389 LocationSummary* locations = instruction->GetLocations();
6390 Location obj_loc = locations->InAt(0);
6391 vixl32::Register obj = InputRegisterAt(instruction, 0);
6392 Location index = locations->InAt(1);
6393 Location out_loc = locations->Out();
6394 uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction);
6395 DataType::Type type = instruction->GetType();
6396 const bool maybe_compressed_char_at = mirror::kUseStringCompression &&
6397 instruction->IsStringCharAt();
6398 HInstruction* array_instr = instruction->GetArray();
6399 bool has_intermediate_address = array_instr->IsIntermediateAddress();
6400
6401 switch (type) {
6402 case DataType::Type::kBool:
6403 case DataType::Type::kUint8:
6404 case DataType::Type::kInt8:
6405 case DataType::Type::kUint16:
6406 case DataType::Type::kInt16:
6407 case DataType::Type::kInt32: {
6408 vixl32::Register length;
6409 if (maybe_compressed_char_at) {
6410 length = RegisterFrom(locations->GetTemp(0));
6411 uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
6412 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6413 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6414 GetAssembler()->LoadFromOffset(kLoadWord, length, obj, count_offset);
6415 codegen_->MaybeRecordImplicitNullCheck(instruction);
6416 }
6417 if (index.IsConstant()) {
6418 int32_t const_index = Int32ConstantFrom(index);
6419 if (maybe_compressed_char_at) {
6420 vixl32::Label uncompressed_load, done;
6421 vixl32::Label* final_label = codegen_->GetFinalLabel(instruction, &done);
6422 __ Lsrs(length, length, 1u); // LSRS has a 16-bit encoding, TST (immediate) does not.
6423 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
6424 "Expecting 0=compressed, 1=uncompressed");
6425 __ B(cs, &uncompressed_load, /* is_far_target= */ false);
6426 GetAssembler()->LoadFromOffset(kLoadUnsignedByte,
6427 RegisterFrom(out_loc),
6428 obj,
6429 data_offset + const_index);
6430 __ B(final_label);
6431 __ Bind(&uncompressed_load);
6432 GetAssembler()->LoadFromOffset(GetLoadOperandType(DataType::Type::kUint16),
6433 RegisterFrom(out_loc),
6434 obj,
6435 data_offset + (const_index << 1));
6436 if (done.IsReferenced()) {
6437 __ Bind(&done);
6438 }
6439 } else {
6440 uint32_t full_offset = data_offset + (const_index << DataType::SizeShift(type));
6441
6442 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6443 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6444 LoadOperandType load_type = GetLoadOperandType(type);
6445 GetAssembler()->LoadFromOffset(load_type, RegisterFrom(out_loc), obj, full_offset);
6446 codegen_->MaybeRecordImplicitNullCheck(instruction);
6447 }
6448 } else {
6449 UseScratchRegisterScope temps(GetVIXLAssembler());
6450 vixl32::Register temp = temps.Acquire();
6451
6452 if (has_intermediate_address) {
6453 // We do not need to compute the intermediate address from the array: the
6454 // input instruction has done it already. See the comment in
6455 // `TryExtractArrayAccessAddress()`.
6456 if (kIsDebugBuild) {
6457 HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
6458 DCHECK_EQ(Uint64ConstantFrom(tmp->GetOffset()), data_offset);
6459 }
6460 temp = obj;
6461 } else {
6462 __ Add(temp, obj, data_offset);
6463 }
6464 if (maybe_compressed_char_at) {
6465 vixl32::Label uncompressed_load, done;
6466 vixl32::Label* final_label = codegen_->GetFinalLabel(instruction, &done);
6467 __ Lsrs(length, length, 1u); // LSRS has a 16-bit encoding, TST (immediate) does not.
6468 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
6469 "Expecting 0=compressed, 1=uncompressed");
6470 __ B(cs, &uncompressed_load, /* is_far_target= */ false);
6471 __ Ldrb(RegisterFrom(out_loc), MemOperand(temp, RegisterFrom(index), vixl32::LSL, 0));
6472 __ B(final_label);
6473 __ Bind(&uncompressed_load);
6474 __ Ldrh(RegisterFrom(out_loc), MemOperand(temp, RegisterFrom(index), vixl32::LSL, 1));
6475 if (done.IsReferenced()) {
6476 __ Bind(&done);
6477 }
6478 } else {
6479 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6480 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6481 codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, RegisterFrom(index));
6482 codegen_->MaybeRecordImplicitNullCheck(instruction);
6483 }
6484 }
6485 break;
6486 }
6487
6488 case DataType::Type::kReference: {
6489 // The read barrier instrumentation of object ArrayGet
6490 // instructions does not support the HIntermediateAddress
6491 // instruction.
6492 DCHECK(!(has_intermediate_address && kEmitCompilerReadBarrier));
6493
6494 static_assert(
6495 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
6496 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
6497 // /* HeapReference<Object> */ out =
6498 // *(obj + data_offset + index * sizeof(HeapReference<Object>))
6499 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
6500 // Note that a potential implicit null check is handled in this
6501 // CodeGeneratorARMVIXL::GenerateArrayLoadWithBakerReadBarrier call.
6502 DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0)));
6503 if (index.IsConstant()) {
6504 // Array load with a constant index can be treated as a field load.
6505 Location maybe_temp =
6506 (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location();
6507 data_offset += Int32ConstantFrom(index) << DataType::SizeShift(type);
6508 codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
6509 out_loc,
6510 obj,
6511 data_offset,
6512 maybe_temp,
6513 /* needs_null_check= */ false);
6514 } else {
6515 Location temp = locations->GetTemp(0);
6516 codegen_->GenerateArrayLoadWithBakerReadBarrier(
6517 out_loc, obj, data_offset, index, temp, /* needs_null_check= */ false);
6518 }
6519 } else {
6520 vixl32::Register out = OutputRegister(instruction);
6521 if (index.IsConstant()) {
6522 size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset;
6523 {
6524 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6525 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6526 GetAssembler()->LoadFromOffset(kLoadWord, out, obj, offset);
6527 codegen_->MaybeRecordImplicitNullCheck(instruction);
6528 }
6529 // If read barriers are enabled, emit read barriers other than
6530 // Baker's using a slow path (and also unpoison the loaded
6531 // reference, if heap poisoning is enabled).
6532 codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset);
6533 } else {
6534 UseScratchRegisterScope temps(GetVIXLAssembler());
6535 vixl32::Register temp = temps.Acquire();
6536
6537 if (has_intermediate_address) {
6538 // We do not need to compute the intermediate address from the array: the
6539 // input instruction has done it already. See the comment in
6540 // `TryExtractArrayAccessAddress()`.
6541 if (kIsDebugBuild) {
6542 HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
6543 DCHECK_EQ(Uint64ConstantFrom(tmp->GetOffset()), data_offset);
6544 }
6545 temp = obj;
6546 } else {
6547 __ Add(temp, obj, data_offset);
6548 }
6549 {
6550 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6551 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6552 codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, RegisterFrom(index));
6553 temps.Close();
6554 codegen_->MaybeRecordImplicitNullCheck(instruction);
6555 }
6556 // If read barriers are enabled, emit read barriers other than
6557 // Baker's using a slow path (and also unpoison the loaded
6558 // reference, if heap poisoning is enabled).
6559 codegen_->MaybeGenerateReadBarrierSlow(
6560 instruction, out_loc, out_loc, obj_loc, data_offset, index);
6561 }
6562 }
6563 break;
6564 }
6565
6566 case DataType::Type::kInt64: {
6567 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6568 // As two macro instructions can be emitted the max size is doubled.
6569 EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6570 if (index.IsConstant()) {
6571 size_t offset =
6572 (Int32ConstantFrom(index) << TIMES_8) + data_offset;
6573 GetAssembler()->LoadFromOffset(kLoadWordPair, LowRegisterFrom(out_loc), obj, offset);
6574 } else {
6575 UseScratchRegisterScope temps(GetVIXLAssembler());
6576 vixl32::Register temp = temps.Acquire();
6577 __ Add(temp, obj, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8));
6578 GetAssembler()->LoadFromOffset(kLoadWordPair, LowRegisterFrom(out_loc), temp, data_offset);
6579 }
6580 codegen_->MaybeRecordImplicitNullCheck(instruction);
6581 break;
6582 }
6583
6584 case DataType::Type::kFloat32: {
6585 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6586 // As two macro instructions can be emitted the max size is doubled.
6587 EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6588 vixl32::SRegister out = SRegisterFrom(out_loc);
6589 if (index.IsConstant()) {
6590 size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset;
6591 GetAssembler()->LoadSFromOffset(out, obj, offset);
6592 } else {
6593 UseScratchRegisterScope temps(GetVIXLAssembler());
6594 vixl32::Register temp = temps.Acquire();
6595 __ Add(temp, obj, Operand(RegisterFrom(index), vixl32::LSL, TIMES_4));
6596 GetAssembler()->LoadSFromOffset(out, temp, data_offset);
6597 }
6598 codegen_->MaybeRecordImplicitNullCheck(instruction);
6599 break;
6600 }
6601
6602 case DataType::Type::kFloat64: {
6603 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6604 // As two macro instructions can be emitted the max size is doubled.
6605 EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6606 if (index.IsConstant()) {
6607 size_t offset = (Int32ConstantFrom(index) << TIMES_8) + data_offset;
6608 GetAssembler()->LoadDFromOffset(DRegisterFrom(out_loc), obj, offset);
6609 } else {
6610 UseScratchRegisterScope temps(GetVIXLAssembler());
6611 vixl32::Register temp = temps.Acquire();
6612 __ Add(temp, obj, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8));
6613 GetAssembler()->LoadDFromOffset(DRegisterFrom(out_loc), temp, data_offset);
6614 }
6615 codegen_->MaybeRecordImplicitNullCheck(instruction);
6616 break;
6617 }
6618
6619 case DataType::Type::kUint32:
6620 case DataType::Type::kUint64:
6621 case DataType::Type::kVoid:
6622 LOG(FATAL) << "Unreachable type " << type;
6623 UNREACHABLE();
6624 }
6625 }
6626
VisitArraySet(HArraySet * instruction)6627 void LocationsBuilderARMVIXL::VisitArraySet(HArraySet* instruction) {
6628 DataType::Type value_type = instruction->GetComponentType();
6629
6630 bool needs_write_barrier =
6631 CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
6632 bool needs_type_check = instruction->NeedsTypeCheck();
6633
6634 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
6635 instruction,
6636 needs_type_check ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall);
6637
6638 locations->SetInAt(0, Location::RequiresRegister());
6639 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
6640 if (DataType::IsFloatingPointType(value_type)) {
6641 locations->SetInAt(2, Location::RequiresFpuRegister());
6642 } else {
6643 locations->SetInAt(2, Location::RequiresRegister());
6644 }
6645 if (needs_write_barrier) {
6646 // Temporary registers for the write barrier.
6647 locations->AddTemp(Location::RequiresRegister()); // Possibly used for ref. poisoning too.
6648 locations->AddTemp(Location::RequiresRegister());
6649 }
6650 }
6651
VisitArraySet(HArraySet * instruction)6652 void InstructionCodeGeneratorARMVIXL::VisitArraySet(HArraySet* instruction) {
6653 LocationSummary* locations = instruction->GetLocations();
6654 vixl32::Register array = InputRegisterAt(instruction, 0);
6655 Location index = locations->InAt(1);
6656 DataType::Type value_type = instruction->GetComponentType();
6657 bool needs_type_check = instruction->NeedsTypeCheck();
6658 bool needs_write_barrier =
6659 CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
6660 uint32_t data_offset =
6661 mirror::Array::DataOffset(DataType::Size(value_type)).Uint32Value();
6662 Location value_loc = locations->InAt(2);
6663 HInstruction* array_instr = instruction->GetArray();
6664 bool has_intermediate_address = array_instr->IsIntermediateAddress();
6665
6666 switch (value_type) {
6667 case DataType::Type::kBool:
6668 case DataType::Type::kUint8:
6669 case DataType::Type::kInt8:
6670 case DataType::Type::kUint16:
6671 case DataType::Type::kInt16:
6672 case DataType::Type::kInt32: {
6673 if (index.IsConstant()) {
6674 int32_t const_index = Int32ConstantFrom(index);
6675 uint32_t full_offset =
6676 data_offset + (const_index << DataType::SizeShift(value_type));
6677 StoreOperandType store_type = GetStoreOperandType(value_type);
6678 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
6679 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6680 GetAssembler()->StoreToOffset(store_type, RegisterFrom(value_loc), array, full_offset);
6681 codegen_->MaybeRecordImplicitNullCheck(instruction);
6682 } else {
6683 UseScratchRegisterScope temps(GetVIXLAssembler());
6684 vixl32::Register temp = temps.Acquire();
6685
6686 if (has_intermediate_address) {
6687 // We do not need to compute the intermediate address from the array: the
6688 // input instruction has done it already. See the comment in
6689 // `TryExtractArrayAccessAddress()`.
6690 if (kIsDebugBuild) {
6691 HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
6692 DCHECK_EQ(Uint64ConstantFrom(tmp->GetOffset()), data_offset);
6693 }
6694 temp = array;
6695 } else {
6696 __ Add(temp, array, data_offset);
6697 }
6698 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
6699 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6700 codegen_->StoreToShiftedRegOffset(value_type, value_loc, temp, RegisterFrom(index));
6701 codegen_->MaybeRecordImplicitNullCheck(instruction);
6702 }
6703 break;
6704 }
6705
6706 case DataType::Type::kReference: {
6707 vixl32::Register value = RegisterFrom(value_loc);
6708 // TryExtractArrayAccessAddress optimization is never applied for non-primitive ArraySet.
6709 // See the comment in instruction_simplifier_shared.cc.
6710 DCHECK(!has_intermediate_address);
6711
6712 if (instruction->InputAt(2)->IsNullConstant()) {
6713 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
6714 // As two macro instructions can be emitted the max size is doubled.
6715 EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6716 // Just setting null.
6717 if (index.IsConstant()) {
6718 size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset;
6719 GetAssembler()->StoreToOffset(kStoreWord, value, array, offset);
6720 } else {
6721 DCHECK(index.IsRegister()) << index;
6722 UseScratchRegisterScope temps(GetVIXLAssembler());
6723 vixl32::Register temp = temps.Acquire();
6724 __ Add(temp, array, data_offset);
6725 codegen_->StoreToShiftedRegOffset(value_type, value_loc, temp, RegisterFrom(index));
6726 }
6727 codegen_->MaybeRecordImplicitNullCheck(instruction);
6728 DCHECK(!needs_write_barrier);
6729 DCHECK(!needs_type_check);
6730 break;
6731 }
6732
6733 DCHECK(needs_write_barrier);
6734 Location temp1_loc = locations->GetTemp(0);
6735 vixl32::Register temp1 = RegisterFrom(temp1_loc);
6736 Location temp2_loc = locations->GetTemp(1);
6737 vixl32::Register temp2 = RegisterFrom(temp2_loc);
6738
6739 bool can_value_be_null = instruction->GetValueCanBeNull();
6740 vixl32::Label do_store;
6741 if (can_value_be_null) {
6742 __ CompareAndBranchIfZero(value, &do_store, /* is_far_target= */ false);
6743 }
6744
6745 SlowPathCodeARMVIXL* slow_path = nullptr;
6746 if (needs_type_check) {
6747 slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathARMVIXL(instruction);
6748 codegen_->AddSlowPath(slow_path);
6749
6750 const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
6751 const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
6752 const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
6753
6754 // Note that when read barriers are enabled, the type checks
6755 // are performed without read barriers. This is fine, even in
6756 // the case where a class object is in the from-space after
6757 // the flip, as a comparison involving such a type would not
6758 // produce a false positive; it may of course produce a false
6759 // negative, in which case we would take the ArraySet slow
6760 // path.
6761
6762 {
6763 // Ensure we record the pc position immediately after the `ldr` instruction.
6764 ExactAssemblyScope aas(GetVIXLAssembler(),
6765 vixl32::kMaxInstructionSizeInBytes,
6766 CodeBufferCheckScope::kMaximumSize);
6767 // /* HeapReference<Class> */ temp1 = array->klass_
6768 __ ldr(temp1, MemOperand(array, class_offset));
6769 codegen_->MaybeRecordImplicitNullCheck(instruction);
6770 }
6771 GetAssembler()->MaybeUnpoisonHeapReference(temp1);
6772
6773 // /* HeapReference<Class> */ temp1 = temp1->component_type_
6774 GetAssembler()->LoadFromOffset(kLoadWord, temp1, temp1, component_offset);
6775 // /* HeapReference<Class> */ temp2 = value->klass_
6776 GetAssembler()->LoadFromOffset(kLoadWord, temp2, value, class_offset);
6777 // If heap poisoning is enabled, no need to unpoison `temp1`
6778 // nor `temp2`, as we are comparing two poisoned references.
6779 __ Cmp(temp1, temp2);
6780
6781 if (instruction->StaticTypeOfArrayIsObjectArray()) {
6782 vixl32::Label do_put;
6783 __ B(eq, &do_put, /* is_far_target= */ false);
6784 // If heap poisoning is enabled, the `temp1` reference has
6785 // not been unpoisoned yet; unpoison it now.
6786 GetAssembler()->MaybeUnpoisonHeapReference(temp1);
6787
6788 // /* HeapReference<Class> */ temp1 = temp1->super_class_
6789 GetAssembler()->LoadFromOffset(kLoadWord, temp1, temp1, super_offset);
6790 // If heap poisoning is enabled, no need to unpoison
6791 // `temp1`, as we are comparing against null below.
6792 __ CompareAndBranchIfNonZero(temp1, slow_path->GetEntryLabel());
6793 __ Bind(&do_put);
6794 } else {
6795 __ B(ne, slow_path->GetEntryLabel());
6796 }
6797 }
6798
6799 codegen_->MarkGCCard(temp1, temp2, array, value, /* value_can_be_null= */ false);
6800
6801 if (can_value_be_null) {
6802 DCHECK(do_store.IsReferenced());
6803 __ Bind(&do_store);
6804 }
6805
6806 vixl32::Register source = value;
6807 if (kPoisonHeapReferences) {
6808 // Note that in the case where `value` is a null reference,
6809 // we do not enter this block, as a null reference does not
6810 // need poisoning.
6811 DCHECK_EQ(value_type, DataType::Type::kReference);
6812 __ Mov(temp1, value);
6813 GetAssembler()->PoisonHeapReference(temp1);
6814 source = temp1;
6815 }
6816
6817 {
6818 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
6819 // As two macro instructions can be emitted the max size is doubled.
6820 EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6821 if (index.IsConstant()) {
6822 size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset;
6823 GetAssembler()->StoreToOffset(kStoreWord, source, array, offset);
6824 } else {
6825 DCHECK(index.IsRegister()) << index;
6826
6827 UseScratchRegisterScope temps(GetVIXLAssembler());
6828 vixl32::Register temp = temps.Acquire();
6829 __ Add(temp, array, data_offset);
6830 codegen_->StoreToShiftedRegOffset(value_type,
6831 LocationFrom(source),
6832 temp,
6833 RegisterFrom(index));
6834 }
6835
6836 if (can_value_be_null || !needs_type_check) {
6837 codegen_->MaybeRecordImplicitNullCheck(instruction);
6838 }
6839 }
6840
6841 if (slow_path != nullptr) {
6842 __ Bind(slow_path->GetExitLabel());
6843 }
6844
6845 break;
6846 }
6847
6848 case DataType::Type::kInt64: {
6849 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
6850 // As two macro instructions can be emitted the max size is doubled.
6851 EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6852 Location value = locations->InAt(2);
6853 if (index.IsConstant()) {
6854 size_t offset =
6855 (Int32ConstantFrom(index) << TIMES_8) + data_offset;
6856 GetAssembler()->StoreToOffset(kStoreWordPair, LowRegisterFrom(value), array, offset);
6857 } else {
6858 UseScratchRegisterScope temps(GetVIXLAssembler());
6859 vixl32::Register temp = temps.Acquire();
6860 __ Add(temp, array, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8));
6861 GetAssembler()->StoreToOffset(kStoreWordPair, LowRegisterFrom(value), temp, data_offset);
6862 }
6863 codegen_->MaybeRecordImplicitNullCheck(instruction);
6864 break;
6865 }
6866
6867 case DataType::Type::kFloat32: {
6868 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
6869 // As two macro instructions can be emitted the max size is doubled.
6870 EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6871 Location value = locations->InAt(2);
6872 DCHECK(value.IsFpuRegister());
6873 if (index.IsConstant()) {
6874 size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset;
6875 GetAssembler()->StoreSToOffset(SRegisterFrom(value), array, offset);
6876 } else {
6877 UseScratchRegisterScope temps(GetVIXLAssembler());
6878 vixl32::Register temp = temps.Acquire();
6879 __ Add(temp, array, Operand(RegisterFrom(index), vixl32::LSL, TIMES_4));
6880 GetAssembler()->StoreSToOffset(SRegisterFrom(value), temp, data_offset);
6881 }
6882 codegen_->MaybeRecordImplicitNullCheck(instruction);
6883 break;
6884 }
6885
6886 case DataType::Type::kFloat64: {
6887 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
6888 // As two macro instructions can be emitted the max size is doubled.
6889 EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6890 Location value = locations->InAt(2);
6891 DCHECK(value.IsFpuRegisterPair());
6892 if (index.IsConstant()) {
6893 size_t offset = (Int32ConstantFrom(index) << TIMES_8) + data_offset;
6894 GetAssembler()->StoreDToOffset(DRegisterFrom(value), array, offset);
6895 } else {
6896 UseScratchRegisterScope temps(GetVIXLAssembler());
6897 vixl32::Register temp = temps.Acquire();
6898 __ Add(temp, array, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8));
6899 GetAssembler()->StoreDToOffset(DRegisterFrom(value), temp, data_offset);
6900 }
6901 codegen_->MaybeRecordImplicitNullCheck(instruction);
6902 break;
6903 }
6904
6905 case DataType::Type::kUint32:
6906 case DataType::Type::kUint64:
6907 case DataType::Type::kVoid:
6908 LOG(FATAL) << "Unreachable type " << value_type;
6909 UNREACHABLE();
6910 }
6911 }
6912
VisitArrayLength(HArrayLength * instruction)6913 void LocationsBuilderARMVIXL::VisitArrayLength(HArrayLength* instruction) {
6914 LocationSummary* locations =
6915 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
6916 locations->SetInAt(0, Location::RequiresRegister());
6917 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6918 }
6919
VisitArrayLength(HArrayLength * instruction)6920 void InstructionCodeGeneratorARMVIXL::VisitArrayLength(HArrayLength* instruction) {
6921 uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
6922 vixl32::Register obj = InputRegisterAt(instruction, 0);
6923 vixl32::Register out = OutputRegister(instruction);
6924 {
6925 ExactAssemblyScope aas(GetVIXLAssembler(),
6926 vixl32::kMaxInstructionSizeInBytes,
6927 CodeBufferCheckScope::kMaximumSize);
6928 __ ldr(out, MemOperand(obj, offset));
6929 codegen_->MaybeRecordImplicitNullCheck(instruction);
6930 }
6931 // Mask out compression flag from String's array length.
6932 if (mirror::kUseStringCompression && instruction->IsStringLength()) {
6933 __ Lsr(out, out, 1u);
6934 }
6935 }
6936
VisitIntermediateAddress(HIntermediateAddress * instruction)6937 void LocationsBuilderARMVIXL::VisitIntermediateAddress(HIntermediateAddress* instruction) {
6938 LocationSummary* locations =
6939 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
6940
6941 locations->SetInAt(0, Location::RequiresRegister());
6942 locations->SetInAt(1, Location::RegisterOrConstant(instruction->GetOffset()));
6943 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6944 }
6945
VisitIntermediateAddress(HIntermediateAddress * instruction)6946 void InstructionCodeGeneratorARMVIXL::VisitIntermediateAddress(HIntermediateAddress* instruction) {
6947 vixl32::Register out = OutputRegister(instruction);
6948 vixl32::Register first = InputRegisterAt(instruction, 0);
6949 Location second = instruction->GetLocations()->InAt(1);
6950
6951 if (second.IsRegister()) {
6952 __ Add(out, first, RegisterFrom(second));
6953 } else {
6954 __ Add(out, first, Int32ConstantFrom(second));
6955 }
6956 }
6957
VisitIntermediateAddressIndex(HIntermediateAddressIndex * instruction)6958 void LocationsBuilderARMVIXL::VisitIntermediateAddressIndex(
6959 HIntermediateAddressIndex* instruction) {
6960 LOG(FATAL) << "Unreachable " << instruction->GetId();
6961 }
6962
VisitIntermediateAddressIndex(HIntermediateAddressIndex * instruction)6963 void InstructionCodeGeneratorARMVIXL::VisitIntermediateAddressIndex(
6964 HIntermediateAddressIndex* instruction) {
6965 LOG(FATAL) << "Unreachable " << instruction->GetId();
6966 }
6967
VisitBoundsCheck(HBoundsCheck * instruction)6968 void LocationsBuilderARMVIXL::VisitBoundsCheck(HBoundsCheck* instruction) {
6969 RegisterSet caller_saves = RegisterSet::Empty();
6970 InvokeRuntimeCallingConventionARMVIXL calling_convention;
6971 caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(0)));
6972 caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(1)));
6973 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
6974
6975 HInstruction* index = instruction->InputAt(0);
6976 HInstruction* length = instruction->InputAt(1);
6977 // If both index and length are constants we can statically check the bounds. But if at least one
6978 // of them is not encodable ArmEncodableConstantOrRegister will create
6979 // Location::RequiresRegister() which is not desired to happen. Instead we create constant
6980 // locations.
6981 bool both_const = index->IsConstant() && length->IsConstant();
6982 locations->SetInAt(0, both_const
6983 ? Location::ConstantLocation(index->AsConstant())
6984 : ArmEncodableConstantOrRegister(index, CMP));
6985 locations->SetInAt(1, both_const
6986 ? Location::ConstantLocation(length->AsConstant())
6987 : ArmEncodableConstantOrRegister(length, CMP));
6988 }
6989
VisitBoundsCheck(HBoundsCheck * instruction)6990 void InstructionCodeGeneratorARMVIXL::VisitBoundsCheck(HBoundsCheck* instruction) {
6991 LocationSummary* locations = instruction->GetLocations();
6992 Location index_loc = locations->InAt(0);
6993 Location length_loc = locations->InAt(1);
6994
6995 if (length_loc.IsConstant()) {
6996 int32_t length = Int32ConstantFrom(length_loc);
6997 if (index_loc.IsConstant()) {
6998 // BCE will remove the bounds check if we are guaranteed to pass.
6999 int32_t index = Int32ConstantFrom(index_loc);
7000 if (index < 0 || index >= length) {
7001 SlowPathCodeARMVIXL* slow_path =
7002 new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARMVIXL(instruction);
7003 codegen_->AddSlowPath(slow_path);
7004 __ B(slow_path->GetEntryLabel());
7005 } else {
7006 // Some optimization after BCE may have generated this, and we should not
7007 // generate a bounds check if it is a valid range.
7008 }
7009 return;
7010 }
7011
7012 SlowPathCodeARMVIXL* slow_path =
7013 new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARMVIXL(instruction);
7014 __ Cmp(RegisterFrom(index_loc), length);
7015 codegen_->AddSlowPath(slow_path);
7016 __ B(hs, slow_path->GetEntryLabel());
7017 } else {
7018 SlowPathCodeARMVIXL* slow_path =
7019 new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARMVIXL(instruction);
7020 __ Cmp(RegisterFrom(length_loc), InputOperandAt(instruction, 0));
7021 codegen_->AddSlowPath(slow_path);
7022 __ B(ls, slow_path->GetEntryLabel());
7023 }
7024 }
7025
MarkGCCard(vixl32::Register temp,vixl32::Register card,vixl32::Register object,vixl32::Register value,bool value_can_be_null)7026 void CodeGeneratorARMVIXL::MarkGCCard(vixl32::Register temp,
7027 vixl32::Register card,
7028 vixl32::Register object,
7029 vixl32::Register value,
7030 bool value_can_be_null) {
7031 vixl32::Label is_null;
7032 if (value_can_be_null) {
7033 __ CompareAndBranchIfZero(value, &is_null, /* is_far_target=*/ false);
7034 }
7035 // Load the address of the card table into `card`.
7036 GetAssembler()->LoadFromOffset(
7037 kLoadWord, card, tr, Thread::CardTableOffset<kArmPointerSize>().Int32Value());
7038 // Calculate the offset (in the card table) of the card corresponding to
7039 // `object`.
7040 __ Lsr(temp, object, Operand::From(gc::accounting::CardTable::kCardShift));
7041 // Write the `art::gc::accounting::CardTable::kCardDirty` value into the
7042 // `object`'s card.
7043 //
7044 // Register `card` contains the address of the card table. Note that the card
7045 // table's base is biased during its creation so that it always starts at an
7046 // address whose least-significant byte is equal to `kCardDirty` (see
7047 // art::gc::accounting::CardTable::Create). Therefore the STRB instruction
7048 // below writes the `kCardDirty` (byte) value into the `object`'s card
7049 // (located at `card + object >> kCardShift`).
7050 //
7051 // This dual use of the value in register `card` (1. to calculate the location
7052 // of the card to mark; and 2. to load the `kCardDirty` value) saves a load
7053 // (no need to explicitly load `kCardDirty` as an immediate value).
7054 __ Strb(card, MemOperand(card, temp));
7055 if (value_can_be_null) {
7056 __ Bind(&is_null);
7057 }
7058 }
7059
VisitParallelMove(HParallelMove * instruction ATTRIBUTE_UNUSED)7060 void LocationsBuilderARMVIXL::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
7061 LOG(FATAL) << "Unreachable";
7062 }
7063
VisitParallelMove(HParallelMove * instruction)7064 void InstructionCodeGeneratorARMVIXL::VisitParallelMove(HParallelMove* instruction) {
7065 if (instruction->GetNext()->IsSuspendCheck() &&
7066 instruction->GetBlock()->GetLoopInformation() != nullptr) {
7067 HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck();
7068 // The back edge will generate the suspend check.
7069 codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction);
7070 }
7071
7072 codegen_->GetMoveResolver()->EmitNativeCode(instruction);
7073 }
7074
VisitSuspendCheck(HSuspendCheck * instruction)7075 void LocationsBuilderARMVIXL::VisitSuspendCheck(HSuspendCheck* instruction) {
7076 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
7077 instruction, LocationSummary::kCallOnSlowPath);
7078 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
7079 }
7080
VisitSuspendCheck(HSuspendCheck * instruction)7081 void InstructionCodeGeneratorARMVIXL::VisitSuspendCheck(HSuspendCheck* instruction) {
7082 HBasicBlock* block = instruction->GetBlock();
7083 if (block->GetLoopInformation() != nullptr) {
7084 DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
7085 // The back edge will generate the suspend check.
7086 return;
7087 }
7088 if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
7089 // The goto will generate the suspend check.
7090 return;
7091 }
7092 GenerateSuspendCheck(instruction, nullptr);
7093 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 14);
7094 }
7095
GenerateSuspendCheck(HSuspendCheck * instruction,HBasicBlock * successor)7096 void InstructionCodeGeneratorARMVIXL::GenerateSuspendCheck(HSuspendCheck* instruction,
7097 HBasicBlock* successor) {
7098 SuspendCheckSlowPathARMVIXL* slow_path =
7099 down_cast<SuspendCheckSlowPathARMVIXL*>(instruction->GetSlowPath());
7100 if (slow_path == nullptr) {
7101 slow_path =
7102 new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathARMVIXL(instruction, successor);
7103 instruction->SetSlowPath(slow_path);
7104 codegen_->AddSlowPath(slow_path);
7105 if (successor != nullptr) {
7106 DCHECK(successor->IsLoopHeader());
7107 }
7108 } else {
7109 DCHECK_EQ(slow_path->GetSuccessor(), successor);
7110 }
7111
7112 UseScratchRegisterScope temps(GetVIXLAssembler());
7113 vixl32::Register temp = temps.Acquire();
7114 GetAssembler()->LoadFromOffset(
7115 kLoadUnsignedHalfword, temp, tr, Thread::ThreadFlagsOffset<kArmPointerSize>().Int32Value());
7116 if (successor == nullptr) {
7117 __ CompareAndBranchIfNonZero(temp, slow_path->GetEntryLabel());
7118 __ Bind(slow_path->GetReturnLabel());
7119 } else {
7120 __ CompareAndBranchIfZero(temp, codegen_->GetLabelOf(successor));
7121 __ B(slow_path->GetEntryLabel());
7122 }
7123 }
7124
GetAssembler() const7125 ArmVIXLAssembler* ParallelMoveResolverARMVIXL::GetAssembler() const {
7126 return codegen_->GetAssembler();
7127 }
7128
EmitMove(size_t index)7129 void ParallelMoveResolverARMVIXL::EmitMove(size_t index) {
7130 UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
7131 MoveOperands* move = moves_[index];
7132 Location source = move->GetSource();
7133 Location destination = move->GetDestination();
7134
7135 if (source.IsRegister()) {
7136 if (destination.IsRegister()) {
7137 __ Mov(RegisterFrom(destination), RegisterFrom(source));
7138 } else if (destination.IsFpuRegister()) {
7139 __ Vmov(SRegisterFrom(destination), RegisterFrom(source));
7140 } else {
7141 DCHECK(destination.IsStackSlot());
7142 GetAssembler()->StoreToOffset(kStoreWord,
7143 RegisterFrom(source),
7144 sp,
7145 destination.GetStackIndex());
7146 }
7147 } else if (source.IsStackSlot()) {
7148 if (destination.IsRegister()) {
7149 GetAssembler()->LoadFromOffset(kLoadWord,
7150 RegisterFrom(destination),
7151 sp,
7152 source.GetStackIndex());
7153 } else if (destination.IsFpuRegister()) {
7154 GetAssembler()->LoadSFromOffset(SRegisterFrom(destination), sp, source.GetStackIndex());
7155 } else {
7156 DCHECK(destination.IsStackSlot());
7157 vixl32::Register temp = temps.Acquire();
7158 GetAssembler()->LoadFromOffset(kLoadWord, temp, sp, source.GetStackIndex());
7159 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
7160 }
7161 } else if (source.IsFpuRegister()) {
7162 if (destination.IsRegister()) {
7163 __ Vmov(RegisterFrom(destination), SRegisterFrom(source));
7164 } else if (destination.IsFpuRegister()) {
7165 __ Vmov(SRegisterFrom(destination), SRegisterFrom(source));
7166 } else {
7167 DCHECK(destination.IsStackSlot());
7168 GetAssembler()->StoreSToOffset(SRegisterFrom(source), sp, destination.GetStackIndex());
7169 }
7170 } else if (source.IsDoubleStackSlot()) {
7171 if (destination.IsDoubleStackSlot()) {
7172 vixl32::DRegister temp = temps.AcquireD();
7173 GetAssembler()->LoadDFromOffset(temp, sp, source.GetStackIndex());
7174 GetAssembler()->StoreDToOffset(temp, sp, destination.GetStackIndex());
7175 } else if (destination.IsRegisterPair()) {
7176 DCHECK(ExpectedPairLayout(destination));
7177 GetAssembler()->LoadFromOffset(
7178 kLoadWordPair, LowRegisterFrom(destination), sp, source.GetStackIndex());
7179 } else {
7180 DCHECK(destination.IsFpuRegisterPair()) << destination;
7181 GetAssembler()->LoadDFromOffset(DRegisterFrom(destination), sp, source.GetStackIndex());
7182 }
7183 } else if (source.IsRegisterPair()) {
7184 if (destination.IsRegisterPair()) {
7185 __ Mov(LowRegisterFrom(destination), LowRegisterFrom(source));
7186 __ Mov(HighRegisterFrom(destination), HighRegisterFrom(source));
7187 } else if (destination.IsFpuRegisterPair()) {
7188 __ Vmov(DRegisterFrom(destination), LowRegisterFrom(source), HighRegisterFrom(source));
7189 } else {
7190 DCHECK(destination.IsDoubleStackSlot()) << destination;
7191 DCHECK(ExpectedPairLayout(source));
7192 GetAssembler()->StoreToOffset(kStoreWordPair,
7193 LowRegisterFrom(source),
7194 sp,
7195 destination.GetStackIndex());
7196 }
7197 } else if (source.IsFpuRegisterPair()) {
7198 if (destination.IsRegisterPair()) {
7199 __ Vmov(LowRegisterFrom(destination), HighRegisterFrom(destination), DRegisterFrom(source));
7200 } else if (destination.IsFpuRegisterPair()) {
7201 __ Vmov(DRegisterFrom(destination), DRegisterFrom(source));
7202 } else {
7203 DCHECK(destination.IsDoubleStackSlot()) << destination;
7204 GetAssembler()->StoreDToOffset(DRegisterFrom(source), sp, destination.GetStackIndex());
7205 }
7206 } else {
7207 DCHECK(source.IsConstant()) << source;
7208 HConstant* constant = source.GetConstant();
7209 if (constant->IsIntConstant() || constant->IsNullConstant()) {
7210 int32_t value = CodeGenerator::GetInt32ValueOf(constant);
7211 if (destination.IsRegister()) {
7212 __ Mov(RegisterFrom(destination), value);
7213 } else {
7214 DCHECK(destination.IsStackSlot());
7215 vixl32::Register temp = temps.Acquire();
7216 __ Mov(temp, value);
7217 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
7218 }
7219 } else if (constant->IsLongConstant()) {
7220 int64_t value = Int64ConstantFrom(source);
7221 if (destination.IsRegisterPair()) {
7222 __ Mov(LowRegisterFrom(destination), Low32Bits(value));
7223 __ Mov(HighRegisterFrom(destination), High32Bits(value));
7224 } else {
7225 DCHECK(destination.IsDoubleStackSlot()) << destination;
7226 vixl32::Register temp = temps.Acquire();
7227 __ Mov(temp, Low32Bits(value));
7228 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
7229 __ Mov(temp, High32Bits(value));
7230 GetAssembler()->StoreToOffset(kStoreWord,
7231 temp,
7232 sp,
7233 destination.GetHighStackIndex(kArmWordSize));
7234 }
7235 } else if (constant->IsDoubleConstant()) {
7236 double value = constant->AsDoubleConstant()->GetValue();
7237 if (destination.IsFpuRegisterPair()) {
7238 __ Vmov(DRegisterFrom(destination), value);
7239 } else {
7240 DCHECK(destination.IsDoubleStackSlot()) << destination;
7241 uint64_t int_value = bit_cast<uint64_t, double>(value);
7242 vixl32::Register temp = temps.Acquire();
7243 __ Mov(temp, Low32Bits(int_value));
7244 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
7245 __ Mov(temp, High32Bits(int_value));
7246 GetAssembler()->StoreToOffset(kStoreWord,
7247 temp,
7248 sp,
7249 destination.GetHighStackIndex(kArmWordSize));
7250 }
7251 } else {
7252 DCHECK(constant->IsFloatConstant()) << constant->DebugName();
7253 float value = constant->AsFloatConstant()->GetValue();
7254 if (destination.IsFpuRegister()) {
7255 __ Vmov(SRegisterFrom(destination), value);
7256 } else {
7257 DCHECK(destination.IsStackSlot());
7258 vixl32::Register temp = temps.Acquire();
7259 __ Mov(temp, bit_cast<int32_t, float>(value));
7260 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
7261 }
7262 }
7263 }
7264 }
7265
Exchange(vixl32::Register reg,int mem)7266 void ParallelMoveResolverARMVIXL::Exchange(vixl32::Register reg, int mem) {
7267 UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
7268 vixl32::Register temp = temps.Acquire();
7269 __ Mov(temp, reg);
7270 GetAssembler()->LoadFromOffset(kLoadWord, reg, sp, mem);
7271 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, mem);
7272 }
7273
Exchange(int mem1,int mem2)7274 void ParallelMoveResolverARMVIXL::Exchange(int mem1, int mem2) {
7275 // TODO(VIXL32): Double check the performance of this implementation.
7276 UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
7277 vixl32::Register temp1 = temps.Acquire();
7278 ScratchRegisterScope ensure_scratch(
7279 this, temp1.GetCode(), r0.GetCode(), codegen_->GetNumberOfCoreRegisters());
7280 vixl32::Register temp2(ensure_scratch.GetRegister());
7281
7282 int stack_offset = ensure_scratch.IsSpilled() ? kArmWordSize : 0;
7283 GetAssembler()->LoadFromOffset(kLoadWord, temp1, sp, mem1 + stack_offset);
7284 GetAssembler()->LoadFromOffset(kLoadWord, temp2, sp, mem2 + stack_offset);
7285 GetAssembler()->StoreToOffset(kStoreWord, temp1, sp, mem2 + stack_offset);
7286 GetAssembler()->StoreToOffset(kStoreWord, temp2, sp, mem1 + stack_offset);
7287 }
7288
EmitSwap(size_t index)7289 void ParallelMoveResolverARMVIXL::EmitSwap(size_t index) {
7290 MoveOperands* move = moves_[index];
7291 Location source = move->GetSource();
7292 Location destination = move->GetDestination();
7293 UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
7294
7295 if (source.IsRegister() && destination.IsRegister()) {
7296 vixl32::Register temp = temps.Acquire();
7297 DCHECK(!RegisterFrom(source).Is(temp));
7298 DCHECK(!RegisterFrom(destination).Is(temp));
7299 __ Mov(temp, RegisterFrom(destination));
7300 __ Mov(RegisterFrom(destination), RegisterFrom(source));
7301 __ Mov(RegisterFrom(source), temp);
7302 } else if (source.IsRegister() && destination.IsStackSlot()) {
7303 Exchange(RegisterFrom(source), destination.GetStackIndex());
7304 } else if (source.IsStackSlot() && destination.IsRegister()) {
7305 Exchange(RegisterFrom(destination), source.GetStackIndex());
7306 } else if (source.IsStackSlot() && destination.IsStackSlot()) {
7307 Exchange(source.GetStackIndex(), destination.GetStackIndex());
7308 } else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
7309 vixl32::Register temp = temps.Acquire();
7310 __ Vmov(temp, SRegisterFrom(source));
7311 __ Vmov(SRegisterFrom(source), SRegisterFrom(destination));
7312 __ Vmov(SRegisterFrom(destination), temp);
7313 } else if (source.IsRegisterPair() && destination.IsRegisterPair()) {
7314 vixl32::DRegister temp = temps.AcquireD();
7315 __ Vmov(temp, LowRegisterFrom(source), HighRegisterFrom(source));
7316 __ Mov(LowRegisterFrom(source), LowRegisterFrom(destination));
7317 __ Mov(HighRegisterFrom(source), HighRegisterFrom(destination));
7318 __ Vmov(LowRegisterFrom(destination), HighRegisterFrom(destination), temp);
7319 } else if (source.IsRegisterPair() || destination.IsRegisterPair()) {
7320 vixl32::Register low_reg = LowRegisterFrom(source.IsRegisterPair() ? source : destination);
7321 int mem = source.IsRegisterPair() ? destination.GetStackIndex() : source.GetStackIndex();
7322 DCHECK(ExpectedPairLayout(source.IsRegisterPair() ? source : destination));
7323 vixl32::DRegister temp = temps.AcquireD();
7324 __ Vmov(temp, low_reg, vixl32::Register(low_reg.GetCode() + 1));
7325 GetAssembler()->LoadFromOffset(kLoadWordPair, low_reg, sp, mem);
7326 GetAssembler()->StoreDToOffset(temp, sp, mem);
7327 } else if (source.IsFpuRegisterPair() && destination.IsFpuRegisterPair()) {
7328 vixl32::DRegister first = DRegisterFrom(source);
7329 vixl32::DRegister second = DRegisterFrom(destination);
7330 vixl32::DRegister temp = temps.AcquireD();
7331 __ Vmov(temp, first);
7332 __ Vmov(first, second);
7333 __ Vmov(second, temp);
7334 } else if (source.IsFpuRegisterPair() || destination.IsFpuRegisterPair()) {
7335 vixl32::DRegister reg = source.IsFpuRegisterPair()
7336 ? DRegisterFrom(source)
7337 : DRegisterFrom(destination);
7338 int mem = source.IsFpuRegisterPair()
7339 ? destination.GetStackIndex()
7340 : source.GetStackIndex();
7341 vixl32::DRegister temp = temps.AcquireD();
7342 __ Vmov(temp, reg);
7343 GetAssembler()->LoadDFromOffset(reg, sp, mem);
7344 GetAssembler()->StoreDToOffset(temp, sp, mem);
7345 } else if (source.IsFpuRegister() || destination.IsFpuRegister()) {
7346 vixl32::SRegister reg = source.IsFpuRegister()
7347 ? SRegisterFrom(source)
7348 : SRegisterFrom(destination);
7349 int mem = source.IsFpuRegister()
7350 ? destination.GetStackIndex()
7351 : source.GetStackIndex();
7352 vixl32::Register temp = temps.Acquire();
7353 __ Vmov(temp, reg);
7354 GetAssembler()->LoadSFromOffset(reg, sp, mem);
7355 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, mem);
7356 } else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) {
7357 vixl32::DRegister temp1 = temps.AcquireD();
7358 vixl32::DRegister temp2 = temps.AcquireD();
7359 __ Vldr(temp1, MemOperand(sp, source.GetStackIndex()));
7360 __ Vldr(temp2, MemOperand(sp, destination.GetStackIndex()));
7361 __ Vstr(temp1, MemOperand(sp, destination.GetStackIndex()));
7362 __ Vstr(temp2, MemOperand(sp, source.GetStackIndex()));
7363 } else {
7364 LOG(FATAL) << "Unimplemented" << source << " <-> " << destination;
7365 }
7366 }
7367
SpillScratch(int reg)7368 void ParallelMoveResolverARMVIXL::SpillScratch(int reg) {
7369 __ Push(vixl32::Register(reg));
7370 }
7371
RestoreScratch(int reg)7372 void ParallelMoveResolverARMVIXL::RestoreScratch(int reg) {
7373 __ Pop(vixl32::Register(reg));
7374 }
7375
GetSupportedLoadClassKind(HLoadClass::LoadKind desired_class_load_kind)7376 HLoadClass::LoadKind CodeGeneratorARMVIXL::GetSupportedLoadClassKind(
7377 HLoadClass::LoadKind desired_class_load_kind) {
7378 switch (desired_class_load_kind) {
7379 case HLoadClass::LoadKind::kInvalid:
7380 LOG(FATAL) << "UNREACHABLE";
7381 UNREACHABLE();
7382 case HLoadClass::LoadKind::kReferrersClass:
7383 break;
7384 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
7385 case HLoadClass::LoadKind::kBootImageRelRo:
7386 case HLoadClass::LoadKind::kBssEntry:
7387 case HLoadClass::LoadKind::kBssEntryPublic:
7388 case HLoadClass::LoadKind::kBssEntryPackage:
7389 DCHECK(!GetCompilerOptions().IsJitCompiler());
7390 break;
7391 case HLoadClass::LoadKind::kJitBootImageAddress:
7392 case HLoadClass::LoadKind::kJitTableAddress:
7393 DCHECK(GetCompilerOptions().IsJitCompiler());
7394 break;
7395 case HLoadClass::LoadKind::kRuntimeCall:
7396 break;
7397 }
7398 return desired_class_load_kind;
7399 }
7400
VisitLoadClass(HLoadClass * cls)7401 void LocationsBuilderARMVIXL::VisitLoadClass(HLoadClass* cls) {
7402 HLoadClass::LoadKind load_kind = cls->GetLoadKind();
7403 if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
7404 InvokeRuntimeCallingConventionARMVIXL calling_convention;
7405 CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(
7406 cls,
7407 LocationFrom(calling_convention.GetRegisterAt(0)),
7408 LocationFrom(r0));
7409 DCHECK(calling_convention.GetRegisterAt(0).Is(r0));
7410 return;
7411 }
7412 DCHECK_EQ(cls->NeedsAccessCheck(),
7413 load_kind == HLoadClass::LoadKind::kBssEntryPublic ||
7414 load_kind == HLoadClass::LoadKind::kBssEntryPackage);
7415
7416 const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage();
7417 LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier)
7418 ? LocationSummary::kCallOnSlowPath
7419 : LocationSummary::kNoCall;
7420 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(cls, call_kind);
7421 if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) {
7422 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
7423 }
7424
7425 if (load_kind == HLoadClass::LoadKind::kReferrersClass) {
7426 locations->SetInAt(0, Location::RequiresRegister());
7427 }
7428 locations->SetOut(Location::RequiresRegister());
7429 if (load_kind == HLoadClass::LoadKind::kBssEntry) {
7430 if (!kUseReadBarrier || kUseBakerReadBarrier) {
7431 // Rely on the type resolution or initialization and marking to save everything we need.
7432 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
7433 } else {
7434 // For non-Baker read barrier we have a temp-clobbering call.
7435 }
7436 }
7437 }
7438
7439 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
7440 // move.
VisitLoadClass(HLoadClass * cls)7441 void InstructionCodeGeneratorARMVIXL::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS {
7442 HLoadClass::LoadKind load_kind = cls->GetLoadKind();
7443 if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
7444 codegen_->GenerateLoadClassRuntimeCall(cls);
7445 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 15);
7446 return;
7447 }
7448 DCHECK_EQ(cls->NeedsAccessCheck(),
7449 load_kind == HLoadClass::LoadKind::kBssEntryPublic ||
7450 load_kind == HLoadClass::LoadKind::kBssEntryPackage);
7451
7452 LocationSummary* locations = cls->GetLocations();
7453 Location out_loc = locations->Out();
7454 vixl32::Register out = OutputRegister(cls);
7455
7456 const ReadBarrierOption read_barrier_option = cls->IsInBootImage()
7457 ? kWithoutReadBarrier
7458 : kCompilerReadBarrierOption;
7459 bool generate_null_check = false;
7460 switch (load_kind) {
7461 case HLoadClass::LoadKind::kReferrersClass: {
7462 DCHECK(!cls->CanCallRuntime());
7463 DCHECK(!cls->MustGenerateClinitCheck());
7464 // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
7465 vixl32::Register current_method = InputRegisterAt(cls, 0);
7466 codegen_->GenerateGcRootFieldLoad(cls,
7467 out_loc,
7468 current_method,
7469 ArtMethod::DeclaringClassOffset().Int32Value(),
7470 read_barrier_option);
7471 break;
7472 }
7473 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
7474 DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
7475 codegen_->GetCompilerOptions().IsBootImageExtension());
7476 DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
7477 CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
7478 codegen_->NewBootImageTypePatch(cls->GetDexFile(), cls->GetTypeIndex());
7479 codegen_->EmitMovwMovtPlaceholder(labels, out);
7480 break;
7481 }
7482 case HLoadClass::LoadKind::kBootImageRelRo: {
7483 DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
7484 CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
7485 codegen_->NewBootImageRelRoPatch(CodeGenerator::GetBootImageOffset(cls));
7486 codegen_->EmitMovwMovtPlaceholder(labels, out);
7487 __ Ldr(out, MemOperand(out, /* offset= */ 0));
7488 break;
7489 }
7490 case HLoadClass::LoadKind::kBssEntry:
7491 case HLoadClass::LoadKind::kBssEntryPublic:
7492 case HLoadClass::LoadKind::kBssEntryPackage: {
7493 CodeGeneratorARMVIXL::PcRelativePatchInfo* labels = codegen_->NewTypeBssEntryPatch(cls);
7494 codegen_->EmitMovwMovtPlaceholder(labels, out);
7495 // All aligned loads are implicitly atomic consume operations on ARM.
7496 codegen_->GenerateGcRootFieldLoad(cls, out_loc, out, /* offset= */ 0, read_barrier_option);
7497 generate_null_check = true;
7498 break;
7499 }
7500 case HLoadClass::LoadKind::kJitBootImageAddress: {
7501 DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
7502 uint32_t address = reinterpret_cast32<uint32_t>(cls->GetClass().Get());
7503 DCHECK_NE(address, 0u);
7504 __ Ldr(out, codegen_->DeduplicateBootImageAddressLiteral(address));
7505 break;
7506 }
7507 case HLoadClass::LoadKind::kJitTableAddress: {
7508 __ Ldr(out, codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(),
7509 cls->GetTypeIndex(),
7510 cls->GetClass()));
7511 // /* GcRoot<mirror::Class> */ out = *out
7512 codegen_->GenerateGcRootFieldLoad(cls, out_loc, out, /* offset= */ 0, read_barrier_option);
7513 break;
7514 }
7515 case HLoadClass::LoadKind::kRuntimeCall:
7516 case HLoadClass::LoadKind::kInvalid:
7517 LOG(FATAL) << "UNREACHABLE";
7518 UNREACHABLE();
7519 }
7520
7521 if (generate_null_check || cls->MustGenerateClinitCheck()) {
7522 DCHECK(cls->CanCallRuntime());
7523 LoadClassSlowPathARMVIXL* slow_path =
7524 new (codegen_->GetScopedAllocator()) LoadClassSlowPathARMVIXL(cls, cls);
7525 codegen_->AddSlowPath(slow_path);
7526 if (generate_null_check) {
7527 __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel());
7528 }
7529 if (cls->MustGenerateClinitCheck()) {
7530 GenerateClassInitializationCheck(slow_path, out);
7531 } else {
7532 __ Bind(slow_path->GetExitLabel());
7533 }
7534 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 16);
7535 }
7536 }
7537
VisitLoadMethodHandle(HLoadMethodHandle * load)7538 void LocationsBuilderARMVIXL::VisitLoadMethodHandle(HLoadMethodHandle* load) {
7539 InvokeRuntimeCallingConventionARMVIXL calling_convention;
7540 Location location = LocationFrom(calling_convention.GetRegisterAt(0));
7541 CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(load, location, location);
7542 }
7543
VisitLoadMethodHandle(HLoadMethodHandle * load)7544 void InstructionCodeGeneratorARMVIXL::VisitLoadMethodHandle(HLoadMethodHandle* load) {
7545 codegen_->GenerateLoadMethodHandleRuntimeCall(load);
7546 }
7547
VisitLoadMethodType(HLoadMethodType * load)7548 void LocationsBuilderARMVIXL::VisitLoadMethodType(HLoadMethodType* load) {
7549 InvokeRuntimeCallingConventionARMVIXL calling_convention;
7550 Location location = LocationFrom(calling_convention.GetRegisterAt(0));
7551 CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(load, location, location);
7552 }
7553
VisitLoadMethodType(HLoadMethodType * load)7554 void InstructionCodeGeneratorARMVIXL::VisitLoadMethodType(HLoadMethodType* load) {
7555 codegen_->GenerateLoadMethodTypeRuntimeCall(load);
7556 }
7557
VisitClinitCheck(HClinitCheck * check)7558 void LocationsBuilderARMVIXL::VisitClinitCheck(HClinitCheck* check) {
7559 LocationSummary* locations =
7560 new (GetGraph()->GetAllocator()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
7561 locations->SetInAt(0, Location::RequiresRegister());
7562 if (check->HasUses()) {
7563 locations->SetOut(Location::SameAsFirstInput());
7564 }
7565 // Rely on the type initialization to save everything we need.
7566 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
7567 }
7568
VisitClinitCheck(HClinitCheck * check)7569 void InstructionCodeGeneratorARMVIXL::VisitClinitCheck(HClinitCheck* check) {
7570 // We assume the class is not null.
7571 LoadClassSlowPathARMVIXL* slow_path =
7572 new (codegen_->GetScopedAllocator()) LoadClassSlowPathARMVIXL(check->GetLoadClass(), check);
7573 codegen_->AddSlowPath(slow_path);
7574 GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0));
7575 }
7576
GenerateClassInitializationCheck(LoadClassSlowPathARMVIXL * slow_path,vixl32::Register class_reg)7577 void InstructionCodeGeneratorARMVIXL::GenerateClassInitializationCheck(
7578 LoadClassSlowPathARMVIXL* slow_path, vixl32::Register class_reg) {
7579 UseScratchRegisterScope temps(GetVIXLAssembler());
7580 vixl32::Register temp = temps.Acquire();
7581 constexpr size_t status_lsb_position = SubtypeCheckBits::BitStructSizeOf();
7582 constexpr uint32_t shifted_visibly_initialized_value =
7583 enum_cast<uint32_t>(ClassStatus::kVisiblyInitialized) << status_lsb_position;
7584
7585 const size_t status_offset = mirror::Class::StatusOffset().SizeValue();
7586 GetAssembler()->LoadFromOffset(kLoadWord, temp, class_reg, status_offset);
7587 __ Cmp(temp, shifted_visibly_initialized_value);
7588 __ B(lo, slow_path->GetEntryLabel());
7589 __ Bind(slow_path->GetExitLabel());
7590 }
7591
GenerateBitstringTypeCheckCompare(HTypeCheckInstruction * check,vixl32::Register temp,vixl32::FlagsUpdate flags_update)7592 void InstructionCodeGeneratorARMVIXL::GenerateBitstringTypeCheckCompare(
7593 HTypeCheckInstruction* check,
7594 vixl32::Register temp,
7595 vixl32::FlagsUpdate flags_update) {
7596 uint32_t path_to_root = check->GetBitstringPathToRoot();
7597 uint32_t mask = check->GetBitstringMask();
7598 DCHECK(IsPowerOfTwo(mask + 1));
7599 size_t mask_bits = WhichPowerOf2(mask + 1);
7600
7601 // Note that HInstanceOf shall check for zero value in `temp` but HCheckCast needs
7602 // the Z flag for BNE. This is indicated by the `flags_update` parameter.
7603 if (mask_bits == 16u) {
7604 // Load only the bitstring part of the status word.
7605 __ Ldrh(temp, MemOperand(temp, mirror::Class::StatusOffset().Int32Value()));
7606 // Check if the bitstring bits are equal to `path_to_root`.
7607 if (flags_update == SetFlags) {
7608 __ Cmp(temp, path_to_root);
7609 } else {
7610 __ Sub(temp, temp, path_to_root);
7611 }
7612 } else {
7613 // /* uint32_t */ temp = temp->status_
7614 __ Ldr(temp, MemOperand(temp, mirror::Class::StatusOffset().Int32Value()));
7615 if (GetAssembler()->ShifterOperandCanHold(SUB, path_to_root)) {
7616 // Compare the bitstring bits using SUB.
7617 __ Sub(temp, temp, path_to_root);
7618 // Shift out bits that do not contribute to the comparison.
7619 __ Lsl(flags_update, temp, temp, dchecked_integral_cast<uint32_t>(32u - mask_bits));
7620 } else if (IsUint<16>(path_to_root)) {
7621 if (temp.IsLow()) {
7622 // Note: Optimized for size but contains one more dependent instruction than necessary.
7623 // MOVW+SUB(register) would be 8 bytes unless we find a low-reg temporary but the
7624 // macro assembler would use the high reg IP for the constant by default.
7625 // Compare the bitstring bits using SUB.
7626 __ Sub(temp, temp, path_to_root & 0x00ffu); // 16-bit SUB (immediate) T2
7627 __ Sub(temp, temp, path_to_root & 0xff00u); // 32-bit SUB (immediate) T3
7628 // Shift out bits that do not contribute to the comparison.
7629 __ Lsl(flags_update, temp, temp, dchecked_integral_cast<uint32_t>(32u - mask_bits));
7630 } else {
7631 // Extract the bitstring bits.
7632 __ Ubfx(temp, temp, 0, mask_bits);
7633 // Check if the bitstring bits are equal to `path_to_root`.
7634 if (flags_update == SetFlags) {
7635 __ Cmp(temp, path_to_root);
7636 } else {
7637 __ Sub(temp, temp, path_to_root);
7638 }
7639 }
7640 } else {
7641 // Shift out bits that do not contribute to the comparison.
7642 __ Lsl(temp, temp, dchecked_integral_cast<uint32_t>(32u - mask_bits));
7643 // Check if the shifted bitstring bits are equal to `path_to_root << (32u - mask_bits)`.
7644 if (flags_update == SetFlags) {
7645 __ Cmp(temp, path_to_root << (32u - mask_bits));
7646 } else {
7647 __ Sub(temp, temp, path_to_root << (32u - mask_bits));
7648 }
7649 }
7650 }
7651 }
7652
GetSupportedLoadStringKind(HLoadString::LoadKind desired_string_load_kind)7653 HLoadString::LoadKind CodeGeneratorARMVIXL::GetSupportedLoadStringKind(
7654 HLoadString::LoadKind desired_string_load_kind) {
7655 switch (desired_string_load_kind) {
7656 case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
7657 case HLoadString::LoadKind::kBootImageRelRo:
7658 case HLoadString::LoadKind::kBssEntry:
7659 DCHECK(!GetCompilerOptions().IsJitCompiler());
7660 break;
7661 case HLoadString::LoadKind::kJitBootImageAddress:
7662 case HLoadString::LoadKind::kJitTableAddress:
7663 DCHECK(GetCompilerOptions().IsJitCompiler());
7664 break;
7665 case HLoadString::LoadKind::kRuntimeCall:
7666 break;
7667 }
7668 return desired_string_load_kind;
7669 }
7670
VisitLoadString(HLoadString * load)7671 void LocationsBuilderARMVIXL::VisitLoadString(HLoadString* load) {
7672 LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load);
7673 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, call_kind);
7674 HLoadString::LoadKind load_kind = load->GetLoadKind();
7675 if (load_kind == HLoadString::LoadKind::kRuntimeCall) {
7676 locations->SetOut(LocationFrom(r0));
7677 } else {
7678 locations->SetOut(Location::RequiresRegister());
7679 if (load_kind == HLoadString::LoadKind::kBssEntry) {
7680 if (!kUseReadBarrier || kUseBakerReadBarrier) {
7681 // Rely on the pResolveString and marking to save everything we need, including temps.
7682 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
7683 } else {
7684 // For non-Baker read barrier we have a temp-clobbering call.
7685 }
7686 }
7687 }
7688 }
7689
7690 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
7691 // move.
VisitLoadString(HLoadString * load)7692 void InstructionCodeGeneratorARMVIXL::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS {
7693 LocationSummary* locations = load->GetLocations();
7694 Location out_loc = locations->Out();
7695 vixl32::Register out = OutputRegister(load);
7696 HLoadString::LoadKind load_kind = load->GetLoadKind();
7697
7698 switch (load_kind) {
7699 case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
7700 DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
7701 codegen_->GetCompilerOptions().IsBootImageExtension());
7702 CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
7703 codegen_->NewBootImageStringPatch(load->GetDexFile(), load->GetStringIndex());
7704 codegen_->EmitMovwMovtPlaceholder(labels, out);
7705 return;
7706 }
7707 case HLoadString::LoadKind::kBootImageRelRo: {
7708 DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
7709 CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
7710 codegen_->NewBootImageRelRoPatch(CodeGenerator::GetBootImageOffset(load));
7711 codegen_->EmitMovwMovtPlaceholder(labels, out);
7712 __ Ldr(out, MemOperand(out, /* offset= */ 0));
7713 return;
7714 }
7715 case HLoadString::LoadKind::kBssEntry: {
7716 CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
7717 codegen_->NewStringBssEntryPatch(load->GetDexFile(), load->GetStringIndex());
7718 codegen_->EmitMovwMovtPlaceholder(labels, out);
7719 // All aligned loads are implicitly atomic consume operations on ARM.
7720 codegen_->GenerateGcRootFieldLoad(
7721 load, out_loc, out, /* offset= */ 0, kCompilerReadBarrierOption);
7722 LoadStringSlowPathARMVIXL* slow_path =
7723 new (codegen_->GetScopedAllocator()) LoadStringSlowPathARMVIXL(load);
7724 codegen_->AddSlowPath(slow_path);
7725 __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel());
7726 __ Bind(slow_path->GetExitLabel());
7727 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 17);
7728 return;
7729 }
7730 case HLoadString::LoadKind::kJitBootImageAddress: {
7731 uint32_t address = reinterpret_cast32<uint32_t>(load->GetString().Get());
7732 DCHECK_NE(address, 0u);
7733 __ Ldr(out, codegen_->DeduplicateBootImageAddressLiteral(address));
7734 return;
7735 }
7736 case HLoadString::LoadKind::kJitTableAddress: {
7737 __ Ldr(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(),
7738 load->GetStringIndex(),
7739 load->GetString()));
7740 // /* GcRoot<mirror::String> */ out = *out
7741 codegen_->GenerateGcRootFieldLoad(
7742 load, out_loc, out, /* offset= */ 0, kCompilerReadBarrierOption);
7743 return;
7744 }
7745 default:
7746 break;
7747 }
7748
7749 // TODO: Re-add the compiler code to do string dex cache lookup again.
7750 DCHECK_EQ(load->GetLoadKind(), HLoadString::LoadKind::kRuntimeCall);
7751 InvokeRuntimeCallingConventionARMVIXL calling_convention;
7752 __ Mov(calling_convention.GetRegisterAt(0), load->GetStringIndex().index_);
7753 codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc());
7754 CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
7755 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 18);
7756 }
7757
GetExceptionTlsOffset()7758 static int32_t GetExceptionTlsOffset() {
7759 return Thread::ExceptionOffset<kArmPointerSize>().Int32Value();
7760 }
7761
VisitLoadException(HLoadException * load)7762 void LocationsBuilderARMVIXL::VisitLoadException(HLoadException* load) {
7763 LocationSummary* locations =
7764 new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kNoCall);
7765 locations->SetOut(Location::RequiresRegister());
7766 }
7767
VisitLoadException(HLoadException * load)7768 void InstructionCodeGeneratorARMVIXL::VisitLoadException(HLoadException* load) {
7769 vixl32::Register out = OutputRegister(load);
7770 GetAssembler()->LoadFromOffset(kLoadWord, out, tr, GetExceptionTlsOffset());
7771 }
7772
7773
VisitClearException(HClearException * clear)7774 void LocationsBuilderARMVIXL::VisitClearException(HClearException* clear) {
7775 new (GetGraph()->GetAllocator()) LocationSummary(clear, LocationSummary::kNoCall);
7776 }
7777
VisitClearException(HClearException * clear ATTRIBUTE_UNUSED)7778 void InstructionCodeGeneratorARMVIXL::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
7779 UseScratchRegisterScope temps(GetVIXLAssembler());
7780 vixl32::Register temp = temps.Acquire();
7781 __ Mov(temp, 0);
7782 GetAssembler()->StoreToOffset(kStoreWord, temp, tr, GetExceptionTlsOffset());
7783 }
7784
VisitThrow(HThrow * instruction)7785 void LocationsBuilderARMVIXL::VisitThrow(HThrow* instruction) {
7786 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
7787 instruction, LocationSummary::kCallOnMainOnly);
7788 InvokeRuntimeCallingConventionARMVIXL calling_convention;
7789 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
7790 }
7791
VisitThrow(HThrow * instruction)7792 void InstructionCodeGeneratorARMVIXL::VisitThrow(HThrow* instruction) {
7793 codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
7794 CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
7795 }
7796
7797 // Temp is used for read barrier.
NumberOfInstanceOfTemps(TypeCheckKind type_check_kind)7798 static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) {
7799 if (kEmitCompilerReadBarrier &&
7800 (kUseBakerReadBarrier ||
7801 type_check_kind == TypeCheckKind::kAbstractClassCheck ||
7802 type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
7803 type_check_kind == TypeCheckKind::kArrayObjectCheck)) {
7804 return 1;
7805 }
7806 return 0;
7807 }
7808
7809 // Interface case has 3 temps, one for holding the number of interfaces, one for the current
7810 // interface pointer, one for loading the current interface.
7811 // The other checks have one temp for loading the object's class.
NumberOfCheckCastTemps(TypeCheckKind type_check_kind)7812 static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) {
7813 if (type_check_kind == TypeCheckKind::kInterfaceCheck) {
7814 return 3;
7815 }
7816 return 1 + NumberOfInstanceOfTemps(type_check_kind);
7817 }
7818
VisitInstanceOf(HInstanceOf * instruction)7819 void LocationsBuilderARMVIXL::VisitInstanceOf(HInstanceOf* instruction) {
7820 LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
7821 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
7822 bool baker_read_barrier_slow_path = false;
7823 switch (type_check_kind) {
7824 case TypeCheckKind::kExactCheck:
7825 case TypeCheckKind::kAbstractClassCheck:
7826 case TypeCheckKind::kClassHierarchyCheck:
7827 case TypeCheckKind::kArrayObjectCheck: {
7828 bool needs_read_barrier = CodeGenerator::InstanceOfNeedsReadBarrier(instruction);
7829 call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
7830 baker_read_barrier_slow_path = kUseBakerReadBarrier && needs_read_barrier;
7831 break;
7832 }
7833 case TypeCheckKind::kArrayCheck:
7834 case TypeCheckKind::kUnresolvedCheck:
7835 case TypeCheckKind::kInterfaceCheck:
7836 call_kind = LocationSummary::kCallOnSlowPath;
7837 break;
7838 case TypeCheckKind::kBitstringCheck:
7839 break;
7840 }
7841
7842 LocationSummary* locations =
7843 new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
7844 if (baker_read_barrier_slow_path) {
7845 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
7846 }
7847 locations->SetInAt(0, Location::RequiresRegister());
7848 if (type_check_kind == TypeCheckKind::kBitstringCheck) {
7849 locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant()));
7850 locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant()));
7851 locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant()));
7852 } else {
7853 locations->SetInAt(1, Location::RequiresRegister());
7854 }
7855 // The "out" register is used as a temporary, so it overlaps with the inputs.
7856 // Note that TypeCheckSlowPathARM uses this register too.
7857 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
7858 locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind));
7859 }
7860
VisitInstanceOf(HInstanceOf * instruction)7861 void InstructionCodeGeneratorARMVIXL::VisitInstanceOf(HInstanceOf* instruction) {
7862 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
7863 LocationSummary* locations = instruction->GetLocations();
7864 Location obj_loc = locations->InAt(0);
7865 vixl32::Register obj = InputRegisterAt(instruction, 0);
7866 vixl32::Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck)
7867 ? vixl32::Register()
7868 : InputRegisterAt(instruction, 1);
7869 Location out_loc = locations->Out();
7870 vixl32::Register out = OutputRegister(instruction);
7871 const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind);
7872 DCHECK_LE(num_temps, 1u);
7873 Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation();
7874 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
7875 uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
7876 uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
7877 uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
7878 vixl32::Label done;
7879 vixl32::Label* const final_label = codegen_->GetFinalLabel(instruction, &done);
7880 SlowPathCodeARMVIXL* slow_path = nullptr;
7881
7882 // Return 0 if `obj` is null.
7883 // avoid null check if we know obj is not null.
7884 if (instruction->MustDoNullCheck()) {
7885 DCHECK(!out.Is(obj));
7886 __ Mov(out, 0);
7887 __ CompareAndBranchIfZero(obj, final_label, /* is_far_target= */ false);
7888 }
7889
7890 switch (type_check_kind) {
7891 case TypeCheckKind::kExactCheck: {
7892 ReadBarrierOption read_barrier_option =
7893 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
7894 // /* HeapReference<Class> */ out = obj->klass_
7895 GenerateReferenceLoadTwoRegisters(instruction,
7896 out_loc,
7897 obj_loc,
7898 class_offset,
7899 maybe_temp_loc,
7900 read_barrier_option);
7901 // Classes must be equal for the instanceof to succeed.
7902 __ Cmp(out, cls);
7903 // We speculatively set the result to false without changing the condition
7904 // flags, which allows us to avoid some branching later.
7905 __ Mov(LeaveFlags, out, 0);
7906
7907 // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
7908 // we check that the output is in a low register, so that a 16-bit MOV
7909 // encoding can be used.
7910 if (out.IsLow()) {
7911 // We use the scope because of the IT block that follows.
7912 ExactAssemblyScope guard(GetVIXLAssembler(),
7913 2 * vixl32::k16BitT32InstructionSizeInBytes,
7914 CodeBufferCheckScope::kExactSize);
7915
7916 __ it(eq);
7917 __ mov(eq, out, 1);
7918 } else {
7919 __ B(ne, final_label, /* is_far_target= */ false);
7920 __ Mov(out, 1);
7921 }
7922
7923 break;
7924 }
7925
7926 case TypeCheckKind::kAbstractClassCheck: {
7927 ReadBarrierOption read_barrier_option =
7928 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
7929 // /* HeapReference<Class> */ out = obj->klass_
7930 GenerateReferenceLoadTwoRegisters(instruction,
7931 out_loc,
7932 obj_loc,
7933 class_offset,
7934 maybe_temp_loc,
7935 read_barrier_option);
7936 // If the class is abstract, we eagerly fetch the super class of the
7937 // object to avoid doing a comparison we know will fail.
7938 vixl32::Label loop;
7939 __ Bind(&loop);
7940 // /* HeapReference<Class> */ out = out->super_class_
7941 GenerateReferenceLoadOneRegister(instruction,
7942 out_loc,
7943 super_offset,
7944 maybe_temp_loc,
7945 read_barrier_option);
7946 // If `out` is null, we use it for the result, and jump to the final label.
7947 __ CompareAndBranchIfZero(out, final_label, /* is_far_target= */ false);
7948 __ Cmp(out, cls);
7949 __ B(ne, &loop, /* is_far_target= */ false);
7950 __ Mov(out, 1);
7951 break;
7952 }
7953
7954 case TypeCheckKind::kClassHierarchyCheck: {
7955 ReadBarrierOption read_barrier_option =
7956 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
7957 // /* HeapReference<Class> */ out = obj->klass_
7958 GenerateReferenceLoadTwoRegisters(instruction,
7959 out_loc,
7960 obj_loc,
7961 class_offset,
7962 maybe_temp_loc,
7963 read_barrier_option);
7964 // Walk over the class hierarchy to find a match.
7965 vixl32::Label loop, success;
7966 __ Bind(&loop);
7967 __ Cmp(out, cls);
7968 __ B(eq, &success, /* is_far_target= */ false);
7969 // /* HeapReference<Class> */ out = out->super_class_
7970 GenerateReferenceLoadOneRegister(instruction,
7971 out_loc,
7972 super_offset,
7973 maybe_temp_loc,
7974 read_barrier_option);
7975 // This is essentially a null check, but it sets the condition flags to the
7976 // proper value for the code that follows the loop, i.e. not `eq`.
7977 __ Cmp(out, 1);
7978 __ B(hs, &loop, /* is_far_target= */ false);
7979
7980 // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
7981 // we check that the output is in a low register, so that a 16-bit MOV
7982 // encoding can be used.
7983 if (out.IsLow()) {
7984 // If `out` is null, we use it for the result, and the condition flags
7985 // have already been set to `ne`, so the IT block that comes afterwards
7986 // (and which handles the successful case) turns into a NOP (instead of
7987 // overwriting `out`).
7988 __ Bind(&success);
7989
7990 // We use the scope because of the IT block that follows.
7991 ExactAssemblyScope guard(GetVIXLAssembler(),
7992 2 * vixl32::k16BitT32InstructionSizeInBytes,
7993 CodeBufferCheckScope::kExactSize);
7994
7995 // There is only one branch to the `success` label (which is bound to this
7996 // IT block), and it has the same condition, `eq`, so in that case the MOV
7997 // is executed.
7998 __ it(eq);
7999 __ mov(eq, out, 1);
8000 } else {
8001 // If `out` is null, we use it for the result, and jump to the final label.
8002 __ B(final_label);
8003 __ Bind(&success);
8004 __ Mov(out, 1);
8005 }
8006
8007 break;
8008 }
8009
8010 case TypeCheckKind::kArrayObjectCheck: {
8011 ReadBarrierOption read_barrier_option =
8012 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
8013 // /* HeapReference<Class> */ out = obj->klass_
8014 GenerateReferenceLoadTwoRegisters(instruction,
8015 out_loc,
8016 obj_loc,
8017 class_offset,
8018 maybe_temp_loc,
8019 read_barrier_option);
8020 // Do an exact check.
8021 vixl32::Label exact_check;
8022 __ Cmp(out, cls);
8023 __ B(eq, &exact_check, /* is_far_target= */ false);
8024 // Otherwise, we need to check that the object's class is a non-primitive array.
8025 // /* HeapReference<Class> */ out = out->component_type_
8026 GenerateReferenceLoadOneRegister(instruction,
8027 out_loc,
8028 component_offset,
8029 maybe_temp_loc,
8030 read_barrier_option);
8031 // If `out` is null, we use it for the result, and jump to the final label.
8032 __ CompareAndBranchIfZero(out, final_label, /* is_far_target= */ false);
8033 GetAssembler()->LoadFromOffset(kLoadUnsignedHalfword, out, out, primitive_offset);
8034 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
8035 __ Cmp(out, 0);
8036 // We speculatively set the result to false without changing the condition
8037 // flags, which allows us to avoid some branching later.
8038 __ Mov(LeaveFlags, out, 0);
8039
8040 // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
8041 // we check that the output is in a low register, so that a 16-bit MOV
8042 // encoding can be used.
8043 if (out.IsLow()) {
8044 __ Bind(&exact_check);
8045
8046 // We use the scope because of the IT block that follows.
8047 ExactAssemblyScope guard(GetVIXLAssembler(),
8048 2 * vixl32::k16BitT32InstructionSizeInBytes,
8049 CodeBufferCheckScope::kExactSize);
8050
8051 __ it(eq);
8052 __ mov(eq, out, 1);
8053 } else {
8054 __ B(ne, final_label, /* is_far_target= */ false);
8055 __ Bind(&exact_check);
8056 __ Mov(out, 1);
8057 }
8058
8059 break;
8060 }
8061
8062 case TypeCheckKind::kArrayCheck: {
8063 // No read barrier since the slow path will retry upon failure.
8064 // /* HeapReference<Class> */ out = obj->klass_
8065 GenerateReferenceLoadTwoRegisters(instruction,
8066 out_loc,
8067 obj_loc,
8068 class_offset,
8069 maybe_temp_loc,
8070 kWithoutReadBarrier);
8071 __ Cmp(out, cls);
8072 DCHECK(locations->OnlyCallsOnSlowPath());
8073 slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARMVIXL(
8074 instruction, /* is_fatal= */ false);
8075 codegen_->AddSlowPath(slow_path);
8076 __ B(ne, slow_path->GetEntryLabel());
8077 __ Mov(out, 1);
8078 break;
8079 }
8080
8081 case TypeCheckKind::kUnresolvedCheck:
8082 case TypeCheckKind::kInterfaceCheck: {
8083 // Note that we indeed only call on slow path, but we always go
8084 // into the slow path for the unresolved and interface check
8085 // cases.
8086 //
8087 // We cannot directly call the InstanceofNonTrivial runtime
8088 // entry point without resorting to a type checking slow path
8089 // here (i.e. by calling InvokeRuntime directly), as it would
8090 // require to assign fixed registers for the inputs of this
8091 // HInstanceOf instruction (following the runtime calling
8092 // convention), which might be cluttered by the potential first
8093 // read barrier emission at the beginning of this method.
8094 //
8095 // TODO: Introduce a new runtime entry point taking the object
8096 // to test (instead of its class) as argument, and let it deal
8097 // with the read barrier issues. This will let us refactor this
8098 // case of the `switch` code as it was previously (with a direct
8099 // call to the runtime not using a type checking slow path).
8100 // This should also be beneficial for the other cases above.
8101 DCHECK(locations->OnlyCallsOnSlowPath());
8102 slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARMVIXL(
8103 instruction, /* is_fatal= */ false);
8104 codegen_->AddSlowPath(slow_path);
8105 __ B(slow_path->GetEntryLabel());
8106 break;
8107 }
8108
8109 case TypeCheckKind::kBitstringCheck: {
8110 // /* HeapReference<Class> */ temp = obj->klass_
8111 GenerateReferenceLoadTwoRegisters(instruction,
8112 out_loc,
8113 obj_loc,
8114 class_offset,
8115 maybe_temp_loc,
8116 kWithoutReadBarrier);
8117
8118 GenerateBitstringTypeCheckCompare(instruction, out, DontCare);
8119 // If `out` is a low reg and we would have another low reg temp, we could
8120 // optimize this as RSBS+ADC, see GenerateConditionWithZero().
8121 //
8122 // Also, in some cases when `out` is a low reg and we're loading a constant to IP
8123 // it would make sense to use CMP+MOV+IT+MOV instead of SUB+CLZ+LSR as the code size
8124 // would be the same and we would have fewer direct data dependencies.
8125 codegen_->GenerateConditionWithZero(kCondEQ, out, out); // CLZ+LSR
8126 break;
8127 }
8128 }
8129
8130 if (done.IsReferenced()) {
8131 __ Bind(&done);
8132 }
8133
8134 if (slow_path != nullptr) {
8135 __ Bind(slow_path->GetExitLabel());
8136 }
8137 }
8138
VisitCheckCast(HCheckCast * instruction)8139 void LocationsBuilderARMVIXL::VisitCheckCast(HCheckCast* instruction) {
8140 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
8141 LocationSummary::CallKind call_kind = CodeGenerator::GetCheckCastCallKind(instruction);
8142 LocationSummary* locations =
8143 new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
8144 locations->SetInAt(0, Location::RequiresRegister());
8145 if (type_check_kind == TypeCheckKind::kBitstringCheck) {
8146 locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant()));
8147 locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant()));
8148 locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant()));
8149 } else {
8150 locations->SetInAt(1, Location::RequiresRegister());
8151 }
8152 locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind));
8153 }
8154
VisitCheckCast(HCheckCast * instruction)8155 void InstructionCodeGeneratorARMVIXL::VisitCheckCast(HCheckCast* instruction) {
8156 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
8157 LocationSummary* locations = instruction->GetLocations();
8158 Location obj_loc = locations->InAt(0);
8159 vixl32::Register obj = InputRegisterAt(instruction, 0);
8160 vixl32::Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck)
8161 ? vixl32::Register()
8162 : InputRegisterAt(instruction, 1);
8163 Location temp_loc = locations->GetTemp(0);
8164 vixl32::Register temp = RegisterFrom(temp_loc);
8165 const size_t num_temps = NumberOfCheckCastTemps(type_check_kind);
8166 DCHECK_LE(num_temps, 3u);
8167 Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation();
8168 Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation();
8169 const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
8170 const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
8171 const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
8172 const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
8173 const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
8174 const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
8175 const uint32_t object_array_data_offset =
8176 mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
8177
8178 bool is_type_check_slow_path_fatal = CodeGenerator::IsTypeCheckSlowPathFatal(instruction);
8179 SlowPathCodeARMVIXL* type_check_slow_path =
8180 new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARMVIXL(
8181 instruction, is_type_check_slow_path_fatal);
8182 codegen_->AddSlowPath(type_check_slow_path);
8183
8184 vixl32::Label done;
8185 vixl32::Label* final_label = codegen_->GetFinalLabel(instruction, &done);
8186 // Avoid null check if we know obj is not null.
8187 if (instruction->MustDoNullCheck()) {
8188 __ CompareAndBranchIfZero(obj, final_label, /* is_far_target= */ false);
8189 }
8190
8191 switch (type_check_kind) {
8192 case TypeCheckKind::kExactCheck:
8193 case TypeCheckKind::kArrayCheck: {
8194 // /* HeapReference<Class> */ temp = obj->klass_
8195 GenerateReferenceLoadTwoRegisters(instruction,
8196 temp_loc,
8197 obj_loc,
8198 class_offset,
8199 maybe_temp2_loc,
8200 kWithoutReadBarrier);
8201
8202 __ Cmp(temp, cls);
8203 // Jump to slow path for throwing the exception or doing a
8204 // more involved array check.
8205 __ B(ne, type_check_slow_path->GetEntryLabel());
8206 break;
8207 }
8208
8209 case TypeCheckKind::kAbstractClassCheck: {
8210 // /* HeapReference<Class> */ temp = obj->klass_
8211 GenerateReferenceLoadTwoRegisters(instruction,
8212 temp_loc,
8213 obj_loc,
8214 class_offset,
8215 maybe_temp2_loc,
8216 kWithoutReadBarrier);
8217
8218 // If the class is abstract, we eagerly fetch the super class of the
8219 // object to avoid doing a comparison we know will fail.
8220 vixl32::Label loop;
8221 __ Bind(&loop);
8222 // /* HeapReference<Class> */ temp = temp->super_class_
8223 GenerateReferenceLoadOneRegister(instruction,
8224 temp_loc,
8225 super_offset,
8226 maybe_temp2_loc,
8227 kWithoutReadBarrier);
8228
8229 // If the class reference currently in `temp` is null, jump to the slow path to throw the
8230 // exception.
8231 __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
8232
8233 // Otherwise, compare the classes.
8234 __ Cmp(temp, cls);
8235 __ B(ne, &loop, /* is_far_target= */ false);
8236 break;
8237 }
8238
8239 case TypeCheckKind::kClassHierarchyCheck: {
8240 // /* HeapReference<Class> */ temp = obj->klass_
8241 GenerateReferenceLoadTwoRegisters(instruction,
8242 temp_loc,
8243 obj_loc,
8244 class_offset,
8245 maybe_temp2_loc,
8246 kWithoutReadBarrier);
8247
8248 // Walk over the class hierarchy to find a match.
8249 vixl32::Label loop;
8250 __ Bind(&loop);
8251 __ Cmp(temp, cls);
8252 __ B(eq, final_label, /* is_far_target= */ false);
8253
8254 // /* HeapReference<Class> */ temp = temp->super_class_
8255 GenerateReferenceLoadOneRegister(instruction,
8256 temp_loc,
8257 super_offset,
8258 maybe_temp2_loc,
8259 kWithoutReadBarrier);
8260
8261 // If the class reference currently in `temp` is null, jump to the slow path to throw the
8262 // exception.
8263 __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
8264 // Otherwise, jump to the beginning of the loop.
8265 __ B(&loop);
8266 break;
8267 }
8268
8269 case TypeCheckKind::kArrayObjectCheck: {
8270 // /* HeapReference<Class> */ temp = obj->klass_
8271 GenerateReferenceLoadTwoRegisters(instruction,
8272 temp_loc,
8273 obj_loc,
8274 class_offset,
8275 maybe_temp2_loc,
8276 kWithoutReadBarrier);
8277
8278 // Do an exact check.
8279 __ Cmp(temp, cls);
8280 __ B(eq, final_label, /* is_far_target= */ false);
8281
8282 // Otherwise, we need to check that the object's class is a non-primitive array.
8283 // /* HeapReference<Class> */ temp = temp->component_type_
8284 GenerateReferenceLoadOneRegister(instruction,
8285 temp_loc,
8286 component_offset,
8287 maybe_temp2_loc,
8288 kWithoutReadBarrier);
8289 // If the component type is null, jump to the slow path to throw the exception.
8290 __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
8291 // Otherwise,the object is indeed an array, jump to label `check_non_primitive_component_type`
8292 // to further check that this component type is not a primitive type.
8293 GetAssembler()->LoadFromOffset(kLoadUnsignedHalfword, temp, temp, primitive_offset);
8294 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
8295 __ CompareAndBranchIfNonZero(temp, type_check_slow_path->GetEntryLabel());
8296 break;
8297 }
8298
8299 case TypeCheckKind::kUnresolvedCheck:
8300 // We always go into the type check slow path for the unresolved check case.
8301 // We cannot directly call the CheckCast runtime entry point
8302 // without resorting to a type checking slow path here (i.e. by
8303 // calling InvokeRuntime directly), as it would require to
8304 // assign fixed registers for the inputs of this HInstanceOf
8305 // instruction (following the runtime calling convention), which
8306 // might be cluttered by the potential first read barrier
8307 // emission at the beginning of this method.
8308
8309 __ B(type_check_slow_path->GetEntryLabel());
8310 break;
8311
8312 case TypeCheckKind::kInterfaceCheck: {
8313 // Avoid read barriers to improve performance of the fast path. We can not get false
8314 // positives by doing this.
8315 // /* HeapReference<Class> */ temp = obj->klass_
8316 GenerateReferenceLoadTwoRegisters(instruction,
8317 temp_loc,
8318 obj_loc,
8319 class_offset,
8320 maybe_temp2_loc,
8321 kWithoutReadBarrier);
8322
8323 // /* HeapReference<Class> */ temp = temp->iftable_
8324 GenerateReferenceLoadTwoRegisters(instruction,
8325 temp_loc,
8326 temp_loc,
8327 iftable_offset,
8328 maybe_temp2_loc,
8329 kWithoutReadBarrier);
8330 // Iftable is never null.
8331 __ Ldr(RegisterFrom(maybe_temp2_loc), MemOperand(temp, array_length_offset));
8332 // Loop through the iftable and check if any class matches.
8333 vixl32::Label start_loop;
8334 __ Bind(&start_loop);
8335 __ CompareAndBranchIfZero(RegisterFrom(maybe_temp2_loc),
8336 type_check_slow_path->GetEntryLabel());
8337 __ Ldr(RegisterFrom(maybe_temp3_loc), MemOperand(temp, object_array_data_offset));
8338 GetAssembler()->MaybeUnpoisonHeapReference(RegisterFrom(maybe_temp3_loc));
8339 // Go to next interface.
8340 __ Add(temp, temp, Operand::From(2 * kHeapReferenceSize));
8341 __ Sub(RegisterFrom(maybe_temp2_loc), RegisterFrom(maybe_temp2_loc), 2);
8342 // Compare the classes and continue the loop if they do not match.
8343 __ Cmp(cls, RegisterFrom(maybe_temp3_loc));
8344 __ B(ne, &start_loop, /* is_far_target= */ false);
8345 break;
8346 }
8347
8348 case TypeCheckKind::kBitstringCheck: {
8349 // /* HeapReference<Class> */ temp = obj->klass_
8350 GenerateReferenceLoadTwoRegisters(instruction,
8351 temp_loc,
8352 obj_loc,
8353 class_offset,
8354 maybe_temp2_loc,
8355 kWithoutReadBarrier);
8356
8357 GenerateBitstringTypeCheckCompare(instruction, temp, SetFlags);
8358 __ B(ne, type_check_slow_path->GetEntryLabel());
8359 break;
8360 }
8361 }
8362 if (done.IsReferenced()) {
8363 __ Bind(&done);
8364 }
8365
8366 __ Bind(type_check_slow_path->GetExitLabel());
8367 }
8368
VisitMonitorOperation(HMonitorOperation * instruction)8369 void LocationsBuilderARMVIXL::VisitMonitorOperation(HMonitorOperation* instruction) {
8370 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
8371 instruction, LocationSummary::kCallOnMainOnly);
8372 InvokeRuntimeCallingConventionARMVIXL calling_convention;
8373 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
8374 }
8375
VisitMonitorOperation(HMonitorOperation * instruction)8376 void InstructionCodeGeneratorARMVIXL::VisitMonitorOperation(HMonitorOperation* instruction) {
8377 codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject,
8378 instruction,
8379 instruction->GetDexPc());
8380 if (instruction->IsEnter()) {
8381 CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
8382 } else {
8383 CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
8384 }
8385 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 19);
8386 }
8387
VisitAnd(HAnd * instruction)8388 void LocationsBuilderARMVIXL::VisitAnd(HAnd* instruction) {
8389 HandleBitwiseOperation(instruction, AND);
8390 }
8391
VisitOr(HOr * instruction)8392 void LocationsBuilderARMVIXL::VisitOr(HOr* instruction) {
8393 HandleBitwiseOperation(instruction, ORR);
8394 }
8395
VisitXor(HXor * instruction)8396 void LocationsBuilderARMVIXL::VisitXor(HXor* instruction) {
8397 HandleBitwiseOperation(instruction, EOR);
8398 }
8399
HandleBitwiseOperation(HBinaryOperation * instruction,Opcode opcode)8400 void LocationsBuilderARMVIXL::HandleBitwiseOperation(HBinaryOperation* instruction, Opcode opcode) {
8401 LocationSummary* locations =
8402 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
8403 DCHECK(instruction->GetResultType() == DataType::Type::kInt32
8404 || instruction->GetResultType() == DataType::Type::kInt64);
8405 // Note: GVN reorders commutative operations to have the constant on the right hand side.
8406 locations->SetInAt(0, Location::RequiresRegister());
8407 locations->SetInAt(1, ArmEncodableConstantOrRegister(instruction->InputAt(1), opcode));
8408 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
8409 }
8410
VisitAnd(HAnd * instruction)8411 void InstructionCodeGeneratorARMVIXL::VisitAnd(HAnd* instruction) {
8412 HandleBitwiseOperation(instruction);
8413 }
8414
VisitOr(HOr * instruction)8415 void InstructionCodeGeneratorARMVIXL::VisitOr(HOr* instruction) {
8416 HandleBitwiseOperation(instruction);
8417 }
8418
VisitXor(HXor * instruction)8419 void InstructionCodeGeneratorARMVIXL::VisitXor(HXor* instruction) {
8420 HandleBitwiseOperation(instruction);
8421 }
8422
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instruction)8423 void LocationsBuilderARMVIXL::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
8424 LocationSummary* locations =
8425 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
8426 DCHECK(instruction->GetResultType() == DataType::Type::kInt32
8427 || instruction->GetResultType() == DataType::Type::kInt64);
8428
8429 locations->SetInAt(0, Location::RequiresRegister());
8430 locations->SetInAt(1, Location::RequiresRegister());
8431 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
8432 }
8433
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instruction)8434 void InstructionCodeGeneratorARMVIXL::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
8435 LocationSummary* locations = instruction->GetLocations();
8436 Location first = locations->InAt(0);
8437 Location second = locations->InAt(1);
8438 Location out = locations->Out();
8439
8440 if (instruction->GetResultType() == DataType::Type::kInt32) {
8441 vixl32::Register first_reg = RegisterFrom(first);
8442 vixl32::Register second_reg = RegisterFrom(second);
8443 vixl32::Register out_reg = RegisterFrom(out);
8444
8445 switch (instruction->GetOpKind()) {
8446 case HInstruction::kAnd:
8447 __ Bic(out_reg, first_reg, second_reg);
8448 break;
8449 case HInstruction::kOr:
8450 __ Orn(out_reg, first_reg, second_reg);
8451 break;
8452 // There is no EON on arm.
8453 case HInstruction::kXor:
8454 default:
8455 LOG(FATAL) << "Unexpected instruction " << instruction->DebugName();
8456 UNREACHABLE();
8457 }
8458 return;
8459
8460 } else {
8461 DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64);
8462 vixl32::Register first_low = LowRegisterFrom(first);
8463 vixl32::Register first_high = HighRegisterFrom(first);
8464 vixl32::Register second_low = LowRegisterFrom(second);
8465 vixl32::Register second_high = HighRegisterFrom(second);
8466 vixl32::Register out_low = LowRegisterFrom(out);
8467 vixl32::Register out_high = HighRegisterFrom(out);
8468
8469 switch (instruction->GetOpKind()) {
8470 case HInstruction::kAnd:
8471 __ Bic(out_low, first_low, second_low);
8472 __ Bic(out_high, first_high, second_high);
8473 break;
8474 case HInstruction::kOr:
8475 __ Orn(out_low, first_low, second_low);
8476 __ Orn(out_high, first_high, second_high);
8477 break;
8478 // There is no EON on arm.
8479 case HInstruction::kXor:
8480 default:
8481 LOG(FATAL) << "Unexpected instruction " << instruction->DebugName();
8482 UNREACHABLE();
8483 }
8484 }
8485 }
8486
VisitDataProcWithShifterOp(HDataProcWithShifterOp * instruction)8487 void LocationsBuilderARMVIXL::VisitDataProcWithShifterOp(
8488 HDataProcWithShifterOp* instruction) {
8489 DCHECK(instruction->GetType() == DataType::Type::kInt32 ||
8490 instruction->GetType() == DataType::Type::kInt64);
8491 LocationSummary* locations =
8492 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
8493 const bool overlap = instruction->GetType() == DataType::Type::kInt64 &&
8494 HDataProcWithShifterOp::IsExtensionOp(instruction->GetOpKind());
8495
8496 locations->SetInAt(0, Location::RequiresRegister());
8497 locations->SetInAt(1, Location::RequiresRegister());
8498 locations->SetOut(Location::RequiresRegister(),
8499 overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap);
8500 }
8501
VisitDataProcWithShifterOp(HDataProcWithShifterOp * instruction)8502 void InstructionCodeGeneratorARMVIXL::VisitDataProcWithShifterOp(
8503 HDataProcWithShifterOp* instruction) {
8504 const LocationSummary* const locations = instruction->GetLocations();
8505 const HInstruction::InstructionKind kind = instruction->GetInstrKind();
8506 const HDataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind();
8507
8508 if (instruction->GetType() == DataType::Type::kInt32) {
8509 const vixl32::Register first = InputRegisterAt(instruction, 0);
8510 const vixl32::Register output = OutputRegister(instruction);
8511 const vixl32::Register second = instruction->InputAt(1)->GetType() == DataType::Type::kInt64
8512 ? LowRegisterFrom(locations->InAt(1))
8513 : InputRegisterAt(instruction, 1);
8514
8515 if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) {
8516 DCHECK_EQ(kind, HInstruction::kAdd);
8517
8518 switch (op_kind) {
8519 case HDataProcWithShifterOp::kUXTB:
8520 __ Uxtab(output, first, second);
8521 break;
8522 case HDataProcWithShifterOp::kUXTH:
8523 __ Uxtah(output, first, second);
8524 break;
8525 case HDataProcWithShifterOp::kSXTB:
8526 __ Sxtab(output, first, second);
8527 break;
8528 case HDataProcWithShifterOp::kSXTH:
8529 __ Sxtah(output, first, second);
8530 break;
8531 default:
8532 LOG(FATAL) << "Unexpected operation kind: " << op_kind;
8533 UNREACHABLE();
8534 }
8535 } else {
8536 GenerateDataProcInstruction(kind,
8537 output,
8538 first,
8539 Operand(second,
8540 ShiftFromOpKind(op_kind),
8541 instruction->GetShiftAmount()),
8542 codegen_);
8543 }
8544 } else {
8545 DCHECK_EQ(instruction->GetType(), DataType::Type::kInt64);
8546
8547 if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) {
8548 const vixl32::Register second = InputRegisterAt(instruction, 1);
8549
8550 DCHECK(!LowRegisterFrom(locations->Out()).Is(second));
8551 GenerateDataProc(kind,
8552 locations->Out(),
8553 locations->InAt(0),
8554 second,
8555 Operand(second, ShiftType::ASR, 31),
8556 codegen_);
8557 } else {
8558 GenerateLongDataProc(instruction, codegen_);
8559 }
8560 }
8561 }
8562
8563 // TODO(VIXL): Remove optimizations in the helper when they are implemented in vixl.
GenerateAndConst(vixl32::Register out,vixl32::Register first,uint32_t value)8564 void InstructionCodeGeneratorARMVIXL::GenerateAndConst(vixl32::Register out,
8565 vixl32::Register first,
8566 uint32_t value) {
8567 // Optimize special cases for individual halfs of `and-long` (`and` is simplified earlier).
8568 if (value == 0xffffffffu) {
8569 if (!out.Is(first)) {
8570 __ Mov(out, first);
8571 }
8572 return;
8573 }
8574 if (value == 0u) {
8575 __ Mov(out, 0);
8576 return;
8577 }
8578 if (GetAssembler()->ShifterOperandCanHold(AND, value)) {
8579 __ And(out, first, value);
8580 } else if (GetAssembler()->ShifterOperandCanHold(BIC, ~value)) {
8581 __ Bic(out, first, ~value);
8582 } else {
8583 DCHECK(IsPowerOfTwo(value + 1));
8584 __ Ubfx(out, first, 0, WhichPowerOf2(value + 1));
8585 }
8586 }
8587
8588 // TODO(VIXL): Remove optimizations in the helper when they are implemented in vixl.
GenerateOrrConst(vixl32::Register out,vixl32::Register first,uint32_t value)8589 void InstructionCodeGeneratorARMVIXL::GenerateOrrConst(vixl32::Register out,
8590 vixl32::Register first,
8591 uint32_t value) {
8592 // Optimize special cases for individual halfs of `or-long` (`or` is simplified earlier).
8593 if (value == 0u) {
8594 if (!out.Is(first)) {
8595 __ Mov(out, first);
8596 }
8597 return;
8598 }
8599 if (value == 0xffffffffu) {
8600 __ Mvn(out, 0);
8601 return;
8602 }
8603 if (GetAssembler()->ShifterOperandCanHold(ORR, value)) {
8604 __ Orr(out, first, value);
8605 } else {
8606 DCHECK(GetAssembler()->ShifterOperandCanHold(ORN, ~value));
8607 __ Orn(out, first, ~value);
8608 }
8609 }
8610
8611 // TODO(VIXL): Remove optimizations in the helper when they are implemented in vixl.
GenerateEorConst(vixl32::Register out,vixl32::Register first,uint32_t value)8612 void InstructionCodeGeneratorARMVIXL::GenerateEorConst(vixl32::Register out,
8613 vixl32::Register first,
8614 uint32_t value) {
8615 // Optimize special case for individual halfs of `xor-long` (`xor` is simplified earlier).
8616 if (value == 0u) {
8617 if (!out.Is(first)) {
8618 __ Mov(out, first);
8619 }
8620 return;
8621 }
8622 __ Eor(out, first, value);
8623 }
8624
GenerateAddLongConst(Location out,Location first,uint64_t value)8625 void InstructionCodeGeneratorARMVIXL::GenerateAddLongConst(Location out,
8626 Location first,
8627 uint64_t value) {
8628 vixl32::Register out_low = LowRegisterFrom(out);
8629 vixl32::Register out_high = HighRegisterFrom(out);
8630 vixl32::Register first_low = LowRegisterFrom(first);
8631 vixl32::Register first_high = HighRegisterFrom(first);
8632 uint32_t value_low = Low32Bits(value);
8633 uint32_t value_high = High32Bits(value);
8634 if (value_low == 0u) {
8635 if (!out_low.Is(first_low)) {
8636 __ Mov(out_low, first_low);
8637 }
8638 __ Add(out_high, first_high, value_high);
8639 return;
8640 }
8641 __ Adds(out_low, first_low, value_low);
8642 if (GetAssembler()->ShifterOperandCanHold(ADC, value_high)) {
8643 __ Adc(out_high, first_high, value_high);
8644 } else {
8645 DCHECK(GetAssembler()->ShifterOperandCanHold(SBC, ~value_high));
8646 __ Sbc(out_high, first_high, ~value_high);
8647 }
8648 }
8649
HandleBitwiseOperation(HBinaryOperation * instruction)8650 void InstructionCodeGeneratorARMVIXL::HandleBitwiseOperation(HBinaryOperation* instruction) {
8651 LocationSummary* locations = instruction->GetLocations();
8652 Location first = locations->InAt(0);
8653 Location second = locations->InAt(1);
8654 Location out = locations->Out();
8655
8656 if (second.IsConstant()) {
8657 uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
8658 uint32_t value_low = Low32Bits(value);
8659 if (instruction->GetResultType() == DataType::Type::kInt32) {
8660 vixl32::Register first_reg = InputRegisterAt(instruction, 0);
8661 vixl32::Register out_reg = OutputRegister(instruction);
8662 if (instruction->IsAnd()) {
8663 GenerateAndConst(out_reg, first_reg, value_low);
8664 } else if (instruction->IsOr()) {
8665 GenerateOrrConst(out_reg, first_reg, value_low);
8666 } else {
8667 DCHECK(instruction->IsXor());
8668 GenerateEorConst(out_reg, first_reg, value_low);
8669 }
8670 } else {
8671 DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64);
8672 uint32_t value_high = High32Bits(value);
8673 vixl32::Register first_low = LowRegisterFrom(first);
8674 vixl32::Register first_high = HighRegisterFrom(first);
8675 vixl32::Register out_low = LowRegisterFrom(out);
8676 vixl32::Register out_high = HighRegisterFrom(out);
8677 if (instruction->IsAnd()) {
8678 GenerateAndConst(out_low, first_low, value_low);
8679 GenerateAndConst(out_high, first_high, value_high);
8680 } else if (instruction->IsOr()) {
8681 GenerateOrrConst(out_low, first_low, value_low);
8682 GenerateOrrConst(out_high, first_high, value_high);
8683 } else {
8684 DCHECK(instruction->IsXor());
8685 GenerateEorConst(out_low, first_low, value_low);
8686 GenerateEorConst(out_high, first_high, value_high);
8687 }
8688 }
8689 return;
8690 }
8691
8692 if (instruction->GetResultType() == DataType::Type::kInt32) {
8693 vixl32::Register first_reg = InputRegisterAt(instruction, 0);
8694 vixl32::Register second_reg = InputRegisterAt(instruction, 1);
8695 vixl32::Register out_reg = OutputRegister(instruction);
8696 if (instruction->IsAnd()) {
8697 __ And(out_reg, first_reg, second_reg);
8698 } else if (instruction->IsOr()) {
8699 __ Orr(out_reg, first_reg, second_reg);
8700 } else {
8701 DCHECK(instruction->IsXor());
8702 __ Eor(out_reg, first_reg, second_reg);
8703 }
8704 } else {
8705 DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64);
8706 vixl32::Register first_low = LowRegisterFrom(first);
8707 vixl32::Register first_high = HighRegisterFrom(first);
8708 vixl32::Register second_low = LowRegisterFrom(second);
8709 vixl32::Register second_high = HighRegisterFrom(second);
8710 vixl32::Register out_low = LowRegisterFrom(out);
8711 vixl32::Register out_high = HighRegisterFrom(out);
8712 if (instruction->IsAnd()) {
8713 __ And(out_low, first_low, second_low);
8714 __ And(out_high, first_high, second_high);
8715 } else if (instruction->IsOr()) {
8716 __ Orr(out_low, first_low, second_low);
8717 __ Orr(out_high, first_high, second_high);
8718 } else {
8719 DCHECK(instruction->IsXor());
8720 __ Eor(out_low, first_low, second_low);
8721 __ Eor(out_high, first_high, second_high);
8722 }
8723 }
8724 }
8725
GenerateReferenceLoadOneRegister(HInstruction * instruction,Location out,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)8726 void InstructionCodeGeneratorARMVIXL::GenerateReferenceLoadOneRegister(
8727 HInstruction* instruction,
8728 Location out,
8729 uint32_t offset,
8730 Location maybe_temp,
8731 ReadBarrierOption read_barrier_option) {
8732 vixl32::Register out_reg = RegisterFrom(out);
8733 if (read_barrier_option == kWithReadBarrier) {
8734 CHECK(kEmitCompilerReadBarrier);
8735 DCHECK(maybe_temp.IsRegister()) << maybe_temp;
8736 if (kUseBakerReadBarrier) {
8737 // Load with fast path based Baker's read barrier.
8738 // /* HeapReference<Object> */ out = *(out + offset)
8739 codegen_->GenerateFieldLoadWithBakerReadBarrier(
8740 instruction, out, out_reg, offset, maybe_temp, /* needs_null_check= */ false);
8741 } else {
8742 // Load with slow path based read barrier.
8743 // Save the value of `out` into `maybe_temp` before overwriting it
8744 // in the following move operation, as we will need it for the
8745 // read barrier below.
8746 __ Mov(RegisterFrom(maybe_temp), out_reg);
8747 // /* HeapReference<Object> */ out = *(out + offset)
8748 GetAssembler()->LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
8749 codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
8750 }
8751 } else {
8752 // Plain load with no read barrier.
8753 // /* HeapReference<Object> */ out = *(out + offset)
8754 GetAssembler()->LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
8755 GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
8756 }
8757 }
8758
GenerateReferenceLoadTwoRegisters(HInstruction * instruction,Location out,Location obj,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)8759 void InstructionCodeGeneratorARMVIXL::GenerateReferenceLoadTwoRegisters(
8760 HInstruction* instruction,
8761 Location out,
8762 Location obj,
8763 uint32_t offset,
8764 Location maybe_temp,
8765 ReadBarrierOption read_barrier_option) {
8766 vixl32::Register out_reg = RegisterFrom(out);
8767 vixl32::Register obj_reg = RegisterFrom(obj);
8768 if (read_barrier_option == kWithReadBarrier) {
8769 CHECK(kEmitCompilerReadBarrier);
8770 if (kUseBakerReadBarrier) {
8771 DCHECK(maybe_temp.IsRegister()) << maybe_temp;
8772 // Load with fast path based Baker's read barrier.
8773 // /* HeapReference<Object> */ out = *(obj + offset)
8774 codegen_->GenerateFieldLoadWithBakerReadBarrier(
8775 instruction, out, obj_reg, offset, maybe_temp, /* needs_null_check= */ false);
8776 } else {
8777 // Load with slow path based read barrier.
8778 // /* HeapReference<Object> */ out = *(obj + offset)
8779 GetAssembler()->LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
8780 codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
8781 }
8782 } else {
8783 // Plain load with no read barrier.
8784 // /* HeapReference<Object> */ out = *(obj + offset)
8785 GetAssembler()->LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
8786 GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
8787 }
8788 }
8789
GenerateGcRootFieldLoad(HInstruction * instruction,Location root,vixl32::Register obj,uint32_t offset,ReadBarrierOption read_barrier_option)8790 void CodeGeneratorARMVIXL::GenerateGcRootFieldLoad(
8791 HInstruction* instruction,
8792 Location root,
8793 vixl32::Register obj,
8794 uint32_t offset,
8795 ReadBarrierOption read_barrier_option) {
8796 vixl32::Register root_reg = RegisterFrom(root);
8797 if (read_barrier_option == kWithReadBarrier) {
8798 DCHECK(kEmitCompilerReadBarrier);
8799 if (kUseBakerReadBarrier) {
8800 // Fast path implementation of art::ReadBarrier::BarrierForRoot when
8801 // Baker's read barrier are used.
8802
8803 // Query `art::Thread::Current()->GetIsGcMarking()` (stored in
8804 // the Marking Register) to decide whether we need to enter
8805 // the slow path to mark the GC root.
8806 //
8807 // We use shared thunks for the slow path; shared within the method
8808 // for JIT, across methods for AOT. That thunk checks the reference
8809 // and jumps to the entrypoint if needed.
8810 //
8811 // lr = &return_address;
8812 // GcRoot<mirror::Object> root = *(obj+offset); // Original reference load.
8813 // if (mr) { // Thread::Current()->GetIsGcMarking()
8814 // goto gc_root_thunk<root_reg>(lr)
8815 // }
8816 // return_address:
8817
8818 UseScratchRegisterScope temps(GetVIXLAssembler());
8819 temps.Exclude(ip);
8820 bool narrow = CanEmitNarrowLdr(root_reg, obj, offset);
8821 uint32_t custom_data = EncodeBakerReadBarrierGcRootData(root_reg.GetCode(), narrow);
8822
8823 size_t narrow_instructions = /* CMP */ (mr.IsLow() ? 1u : 0u) + /* LDR */ (narrow ? 1u : 0u);
8824 size_t wide_instructions = /* ADR+CMP+LDR+BNE */ 4u - narrow_instructions;
8825 size_t exact_size = wide_instructions * vixl32::k32BitT32InstructionSizeInBytes +
8826 narrow_instructions * vixl32::k16BitT32InstructionSizeInBytes;
8827 ExactAssemblyScope guard(GetVIXLAssembler(), exact_size);
8828 vixl32::Label return_address;
8829 EmitAdrCode adr(GetVIXLAssembler(), lr, &return_address);
8830 __ cmp(mr, Operand(0));
8831 // Currently the offset is always within range. If that changes,
8832 // we shall have to split the load the same way as for fields.
8833 DCHECK_LT(offset, kReferenceLoadMinFarOffset);
8834 ptrdiff_t old_offset = GetVIXLAssembler()->GetBuffer()->GetCursorOffset();
8835 __ ldr(EncodingSize(narrow ? Narrow : Wide), root_reg, MemOperand(obj, offset));
8836 EmitBakerReadBarrierBne(custom_data);
8837 __ bind(&return_address);
8838 DCHECK_EQ(old_offset - GetVIXLAssembler()->GetBuffer()->GetCursorOffset(),
8839 narrow ? BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_NARROW_OFFSET
8840 : BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_WIDE_OFFSET);
8841 } else {
8842 // GC root loaded through a slow path for read barriers other
8843 // than Baker's.
8844 // /* GcRoot<mirror::Object>* */ root = obj + offset
8845 __ Add(root_reg, obj, offset);
8846 // /* mirror::Object* */ root = root->Read()
8847 GenerateReadBarrierForRootSlow(instruction, root, root);
8848 }
8849 } else {
8850 // Plain GC root load with no read barrier.
8851 // /* GcRoot<mirror::Object> */ root = *(obj + offset)
8852 GetAssembler()->LoadFromOffset(kLoadWord, root_reg, obj, offset);
8853 // Note that GC roots are not affected by heap poisoning, thus we
8854 // do not have to unpoison `root_reg` here.
8855 }
8856 MaybeGenerateMarkingRegisterCheck(/* code= */ 20);
8857 }
8858
GenerateIntrinsicCasMoveWithBakerReadBarrier(vixl::aarch32::Register marked_old_value,vixl::aarch32::Register old_value)8859 void CodeGeneratorARMVIXL::GenerateIntrinsicCasMoveWithBakerReadBarrier(
8860 vixl::aarch32::Register marked_old_value,
8861 vixl::aarch32::Register old_value) {
8862 DCHECK(kEmitCompilerReadBarrier);
8863 DCHECK(kUseBakerReadBarrier);
8864
8865 // Similar to the Baker RB path in GenerateGcRootFieldLoad(), with a MOV instead of LDR.
8866 // For low registers, we can reuse the GC root narrow entrypoint, for high registers
8867 // we use a specialized entrypoint because the register bits are 8-11 instead of 12-15.
8868 bool narrow_mov = marked_old_value.IsLow();
8869 uint32_t custom_data = narrow_mov
8870 ? EncodeBakerReadBarrierGcRootData(marked_old_value.GetCode(), /*narrow=*/ true)
8871 : EncodeBakerReadBarrierIntrinsicCasData(marked_old_value.GetCode());
8872
8873 size_t narrow_instructions = /* CMP */ (mr.IsLow() ? 1u : 0u) + /* MOV */ (narrow_mov ? 1u : 0u);
8874 size_t wide_instructions = /* ADR+CMP+MOV+BNE */ 4u - narrow_instructions;
8875 size_t exact_size = wide_instructions * vixl32::k32BitT32InstructionSizeInBytes +
8876 narrow_instructions * vixl32::k16BitT32InstructionSizeInBytes;
8877 ExactAssemblyScope guard(GetVIXLAssembler(), exact_size);
8878 vixl32::Label return_address;
8879 EmitAdrCode adr(GetVIXLAssembler(), lr, &return_address);
8880 __ cmp(mr, Operand(0));
8881 ptrdiff_t old_offset = GetVIXLAssembler()->GetBuffer()->GetCursorOffset();
8882 __ mov(EncodingSize(narrow_mov ? Narrow : Wide), marked_old_value, old_value);
8883 EmitBakerReadBarrierBne(custom_data);
8884 __ bind(&return_address);
8885 DCHECK_EQ(old_offset - GetVIXLAssembler()->GetBuffer()->GetCursorOffset(),
8886 narrow_mov
8887 ? BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_NARROW_OFFSET
8888 : BAKER_MARK_INTROSPECTION_INTRINSIC_CAS_MOV_OFFSET);
8889 }
8890
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,vixl32::Register obj,const vixl32::MemOperand & src,bool needs_null_check)8891 void CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
8892 Location ref,
8893 vixl32::Register obj,
8894 const vixl32::MemOperand& src,
8895 bool needs_null_check) {
8896 DCHECK(kEmitCompilerReadBarrier);
8897 DCHECK(kUseBakerReadBarrier);
8898
8899 // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
8900 // Marking Register) to decide whether we need to enter the slow
8901 // path to mark the reference. Then, in the slow path, check the
8902 // gray bit in the lock word of the reference's holder (`obj`) to
8903 // decide whether to mark `ref` or not.
8904 //
8905 // We use shared thunks for the slow path; shared within the method
8906 // for JIT, across methods for AOT. That thunk checks the holder
8907 // and jumps to the entrypoint if needed. If the holder is not gray,
8908 // it creates a fake dependency and returns to the LDR instruction.
8909 //
8910 // lr = &gray_return_address;
8911 // if (mr) { // Thread::Current()->GetIsGcMarking()
8912 // goto field_thunk<holder_reg, base_reg>(lr)
8913 // }
8914 // not_gray_return_address:
8915 // // Original reference load. If the offset is too large to fit
8916 // // into LDR, we use an adjusted base register here.
8917 // HeapReference<mirror::Object> reference = *(obj+offset);
8918 // gray_return_address:
8919
8920 DCHECK(src.GetAddrMode() == vixl32::Offset);
8921 DCHECK_ALIGNED(src.GetOffsetImmediate(), sizeof(mirror::HeapReference<mirror::Object>));
8922 vixl32::Register ref_reg = RegisterFrom(ref, DataType::Type::kReference);
8923 bool narrow = CanEmitNarrowLdr(ref_reg, src.GetBaseRegister(), src.GetOffsetImmediate());
8924
8925 UseScratchRegisterScope temps(GetVIXLAssembler());
8926 temps.Exclude(ip);
8927 uint32_t custom_data =
8928 EncodeBakerReadBarrierFieldData(src.GetBaseRegister().GetCode(), obj.GetCode(), narrow);
8929
8930 {
8931 size_t narrow_instructions =
8932 /* CMP */ (mr.IsLow() ? 1u : 0u) +
8933 /* LDR+unpoison? */ (narrow ? (kPoisonHeapReferences ? 2u : 1u) : 0u);
8934 size_t wide_instructions =
8935 /* ADR+CMP+LDR+BNE+unpoison? */ (kPoisonHeapReferences ? 5u : 4u) - narrow_instructions;
8936 size_t exact_size = wide_instructions * vixl32::k32BitT32InstructionSizeInBytes +
8937 narrow_instructions * vixl32::k16BitT32InstructionSizeInBytes;
8938 ExactAssemblyScope guard(GetVIXLAssembler(), exact_size);
8939 vixl32::Label return_address;
8940 EmitAdrCode adr(GetVIXLAssembler(), lr, &return_address);
8941 __ cmp(mr, Operand(0));
8942 EmitBakerReadBarrierBne(custom_data);
8943 ptrdiff_t old_offset = GetVIXLAssembler()->GetBuffer()->GetCursorOffset();
8944 __ ldr(EncodingSize(narrow ? Narrow : Wide), ref_reg, src);
8945 if (needs_null_check) {
8946 MaybeRecordImplicitNullCheck(instruction);
8947 }
8948 // Note: We need a specific width for the unpoisoning NEG.
8949 if (kPoisonHeapReferences) {
8950 if (narrow) {
8951 // The only 16-bit encoding is T1 which sets flags outside IT block (i.e. RSBS, not RSB).
8952 __ rsbs(EncodingSize(Narrow), ref_reg, ref_reg, Operand(0));
8953 } else {
8954 __ rsb(EncodingSize(Wide), ref_reg, ref_reg, Operand(0));
8955 }
8956 }
8957 __ bind(&return_address);
8958 DCHECK_EQ(old_offset - GetVIXLAssembler()->GetBuffer()->GetCursorOffset(),
8959 narrow ? BAKER_MARK_INTROSPECTION_FIELD_LDR_NARROW_OFFSET
8960 : BAKER_MARK_INTROSPECTION_FIELD_LDR_WIDE_OFFSET);
8961 }
8962 MaybeGenerateMarkingRegisterCheck(/* code= */ 21, /* temp_loc= */ LocationFrom(ip));
8963 }
8964
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,vixl32::Register obj,uint32_t offset,Location maybe_temp,bool needs_null_check)8965 void CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
8966 Location ref,
8967 vixl32::Register obj,
8968 uint32_t offset,
8969 Location maybe_temp,
8970 bool needs_null_check) {
8971 DCHECK_ALIGNED(offset, sizeof(mirror::HeapReference<mirror::Object>));
8972 vixl32::Register base = obj;
8973 if (offset >= kReferenceLoadMinFarOffset) {
8974 base = RegisterFrom(maybe_temp);
8975 static_assert(IsPowerOfTwo(kReferenceLoadMinFarOffset), "Expecting a power of 2.");
8976 __ Add(base, obj, Operand(offset & ~(kReferenceLoadMinFarOffset - 1u)));
8977 offset &= (kReferenceLoadMinFarOffset - 1u);
8978 }
8979 GenerateFieldLoadWithBakerReadBarrier(
8980 instruction, ref, obj, MemOperand(base, offset), needs_null_check);
8981 }
8982
GenerateArrayLoadWithBakerReadBarrier(Location ref,vixl32::Register obj,uint32_t data_offset,Location index,Location temp,bool needs_null_check)8983 void CodeGeneratorARMVIXL::GenerateArrayLoadWithBakerReadBarrier(Location ref,
8984 vixl32::Register obj,
8985 uint32_t data_offset,
8986 Location index,
8987 Location temp,
8988 bool needs_null_check) {
8989 DCHECK(kEmitCompilerReadBarrier);
8990 DCHECK(kUseBakerReadBarrier);
8991
8992 static_assert(
8993 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
8994 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
8995 ScaleFactor scale_factor = TIMES_4;
8996
8997 // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
8998 // Marking Register) to decide whether we need to enter the slow
8999 // path to mark the reference. Then, in the slow path, check the
9000 // gray bit in the lock word of the reference's holder (`obj`) to
9001 // decide whether to mark `ref` or not.
9002 //
9003 // We use shared thunks for the slow path; shared within the method
9004 // for JIT, across methods for AOT. That thunk checks the holder
9005 // and jumps to the entrypoint if needed. If the holder is not gray,
9006 // it creates a fake dependency and returns to the LDR instruction.
9007 //
9008 // lr = &gray_return_address;
9009 // if (mr) { // Thread::Current()->GetIsGcMarking()
9010 // goto array_thunk<base_reg>(lr)
9011 // }
9012 // not_gray_return_address:
9013 // // Original reference load. If the offset is too large to fit
9014 // // into LDR, we use an adjusted base register here.
9015 // HeapReference<mirror::Object> reference = data[index];
9016 // gray_return_address:
9017
9018 DCHECK(index.IsValid());
9019 vixl32::Register index_reg = RegisterFrom(index, DataType::Type::kInt32);
9020 vixl32::Register ref_reg = RegisterFrom(ref, DataType::Type::kReference);
9021 vixl32::Register data_reg = RegisterFrom(temp, DataType::Type::kInt32); // Raw pointer.
9022
9023 UseScratchRegisterScope temps(GetVIXLAssembler());
9024 temps.Exclude(ip);
9025 uint32_t custom_data = EncodeBakerReadBarrierArrayData(data_reg.GetCode());
9026
9027 __ Add(data_reg, obj, Operand(data_offset));
9028 {
9029 size_t narrow_instructions = /* CMP */ (mr.IsLow() ? 1u : 0u);
9030 size_t wide_instructions =
9031 /* ADR+CMP+BNE+LDR+unpoison? */ (kPoisonHeapReferences ? 5u : 4u) - narrow_instructions;
9032 size_t exact_size = wide_instructions * vixl32::k32BitT32InstructionSizeInBytes +
9033 narrow_instructions * vixl32::k16BitT32InstructionSizeInBytes;
9034 ExactAssemblyScope guard(GetVIXLAssembler(), exact_size);
9035 vixl32::Label return_address;
9036 EmitAdrCode adr(GetVIXLAssembler(), lr, &return_address);
9037 __ cmp(mr, Operand(0));
9038 EmitBakerReadBarrierBne(custom_data);
9039 ptrdiff_t old_offset = GetVIXLAssembler()->GetBuffer()->GetCursorOffset();
9040 __ ldr(ref_reg, MemOperand(data_reg, index_reg, vixl32::LSL, scale_factor));
9041 DCHECK(!needs_null_check); // The thunk cannot handle the null check.
9042 // Note: We need a Wide NEG for the unpoisoning.
9043 if (kPoisonHeapReferences) {
9044 __ rsb(EncodingSize(Wide), ref_reg, ref_reg, Operand(0));
9045 }
9046 __ bind(&return_address);
9047 DCHECK_EQ(old_offset - GetVIXLAssembler()->GetBuffer()->GetCursorOffset(),
9048 BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET);
9049 }
9050 MaybeGenerateMarkingRegisterCheck(/* code= */ 22, /* temp_loc= */ LocationFrom(ip));
9051 }
9052
MaybeGenerateMarkingRegisterCheck(int code,Location temp_loc)9053 void CodeGeneratorARMVIXL::MaybeGenerateMarkingRegisterCheck(int code, Location temp_loc) {
9054 // The following condition is a compile-time one, so it does not have a run-time cost.
9055 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier && kIsDebugBuild) {
9056 // The following condition is a run-time one; it is executed after the
9057 // previous compile-time test, to avoid penalizing non-debug builds.
9058 if (GetCompilerOptions().EmitRunTimeChecksInDebugMode()) {
9059 UseScratchRegisterScope temps(GetVIXLAssembler());
9060 vixl32::Register temp = temp_loc.IsValid() ? RegisterFrom(temp_loc) : temps.Acquire();
9061 GetAssembler()->GenerateMarkingRegisterCheck(temp,
9062 kMarkingRegisterCheckBreakCodeBaseCode + code);
9063 }
9064 }
9065 }
9066
AddReadBarrierSlowPath(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)9067 SlowPathCodeARMVIXL* CodeGeneratorARMVIXL::AddReadBarrierSlowPath(HInstruction* instruction,
9068 Location out,
9069 Location ref,
9070 Location obj,
9071 uint32_t offset,
9072 Location index) {
9073 SlowPathCodeARMVIXL* slow_path = new (GetScopedAllocator())
9074 ReadBarrierForHeapReferenceSlowPathARMVIXL(instruction, out, ref, obj, offset, index);
9075 AddSlowPath(slow_path);
9076 return slow_path;
9077 }
9078
GenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)9079 void CodeGeneratorARMVIXL::GenerateReadBarrierSlow(HInstruction* instruction,
9080 Location out,
9081 Location ref,
9082 Location obj,
9083 uint32_t offset,
9084 Location index) {
9085 DCHECK(kEmitCompilerReadBarrier);
9086
9087 // Insert a slow path based read barrier *after* the reference load.
9088 //
9089 // If heap poisoning is enabled, the unpoisoning of the loaded
9090 // reference will be carried out by the runtime within the slow
9091 // path.
9092 //
9093 // Note that `ref` currently does not get unpoisoned (when heap
9094 // poisoning is enabled), which is alright as the `ref` argument is
9095 // not used by the artReadBarrierSlow entry point.
9096 //
9097 // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
9098 SlowPathCodeARMVIXL* slow_path =
9099 AddReadBarrierSlowPath(instruction, out, ref, obj, offset, index);
9100
9101 __ B(slow_path->GetEntryLabel());
9102 __ Bind(slow_path->GetExitLabel());
9103 }
9104
MaybeGenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)9105 void CodeGeneratorARMVIXL::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
9106 Location out,
9107 Location ref,
9108 Location obj,
9109 uint32_t offset,
9110 Location index) {
9111 if (kEmitCompilerReadBarrier) {
9112 // Baker's read barriers shall be handled by the fast path
9113 // (CodeGeneratorARMVIXL::GenerateReferenceLoadWithBakerReadBarrier).
9114 DCHECK(!kUseBakerReadBarrier);
9115 // If heap poisoning is enabled, unpoisoning will be taken care of
9116 // by the runtime within the slow path.
9117 GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
9118 } else if (kPoisonHeapReferences) {
9119 GetAssembler()->UnpoisonHeapReference(RegisterFrom(out));
9120 }
9121 }
9122
GenerateReadBarrierForRootSlow(HInstruction * instruction,Location out,Location root)9123 void CodeGeneratorARMVIXL::GenerateReadBarrierForRootSlow(HInstruction* instruction,
9124 Location out,
9125 Location root) {
9126 DCHECK(kEmitCompilerReadBarrier);
9127
9128 // Insert a slow path based read barrier *after* the GC root load.
9129 //
9130 // Note that GC roots are not affected by heap poisoning, so we do
9131 // not need to do anything special for this here.
9132 SlowPathCodeARMVIXL* slow_path =
9133 new (GetScopedAllocator()) ReadBarrierForRootSlowPathARMVIXL(instruction, out, root);
9134 AddSlowPath(slow_path);
9135
9136 __ B(slow_path->GetEntryLabel());
9137 __ Bind(slow_path->GetExitLabel());
9138 }
9139
9140 // Check if the desired_dispatch_info is supported. If it is, return it,
9141 // otherwise return a fall-back info that should be used instead.
GetSupportedInvokeStaticOrDirectDispatch(const HInvokeStaticOrDirect::DispatchInfo & desired_dispatch_info,ArtMethod * method)9142 HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARMVIXL::GetSupportedInvokeStaticOrDirectDispatch(
9143 const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
9144 ArtMethod* method) {
9145 if (method->IsIntrinsic() &&
9146 desired_dispatch_info.code_ptr_location == CodePtrLocation::kCallCriticalNative) {
9147 // As a work-around for soft-float native ABI interfering with type checks, we are
9148 // inserting fake calls to Float.floatToRawIntBits() or Double.doubleToRawLongBits()
9149 // when a float or double argument is passed in core registers but we cannot do that
9150 // for actual intrinsic implementations that expect them in FP registers. Therefore
9151 // we do not use `kCallCriticalNative` for intrinsics with FP arguments; if they are
9152 // properly intrinsified, the dispatch type does not matter anyway.
9153 ScopedObjectAccess soa(Thread::Current());
9154 uint32_t shorty_len;
9155 const char* shorty = method->GetShorty(&shorty_len);
9156 for (uint32_t i = 1; i != shorty_len; ++i) {
9157 if (shorty[i] == 'D' || shorty[i] == 'F') {
9158 HInvokeStaticOrDirect::DispatchInfo dispatch_info = desired_dispatch_info;
9159 dispatch_info.code_ptr_location = CodePtrLocation::kCallArtMethod;
9160 return dispatch_info;
9161 }
9162 }
9163 }
9164 return desired_dispatch_info;
9165 }
9166
9167
LoadMethod(MethodLoadKind load_kind,Location temp,HInvoke * invoke)9168 void CodeGeneratorARMVIXL::LoadMethod(MethodLoadKind load_kind, Location temp, HInvoke* invoke) {
9169 switch (load_kind) {
9170 case MethodLoadKind::kBootImageLinkTimePcRelative: {
9171 DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
9172 PcRelativePatchInfo* labels = NewBootImageMethodPatch(invoke->GetResolvedMethodReference());
9173 vixl32::Register temp_reg = RegisterFrom(temp);
9174 EmitMovwMovtPlaceholder(labels, temp_reg);
9175 break;
9176 }
9177 case MethodLoadKind::kBootImageRelRo: {
9178 uint32_t boot_image_offset = GetBootImageOffset(invoke);
9179 PcRelativePatchInfo* labels = NewBootImageRelRoPatch(boot_image_offset);
9180 vixl32::Register temp_reg = RegisterFrom(temp);
9181 EmitMovwMovtPlaceholder(labels, temp_reg);
9182 GetAssembler()->LoadFromOffset(kLoadWord, temp_reg, temp_reg, /* offset*/ 0);
9183 break;
9184 }
9185 case MethodLoadKind::kBssEntry: {
9186 PcRelativePatchInfo* labels = NewMethodBssEntryPatch(invoke->GetMethodReference());
9187 vixl32::Register temp_reg = RegisterFrom(temp);
9188 EmitMovwMovtPlaceholder(labels, temp_reg);
9189 // All aligned loads are implicitly atomic consume operations on ARM.
9190 GetAssembler()->LoadFromOffset(kLoadWord, temp_reg, temp_reg, /* offset*/ 0);
9191 break;
9192 }
9193 case MethodLoadKind::kJitDirectAddress: {
9194 __ Mov(RegisterFrom(temp), Operand::From(invoke->GetResolvedMethod()));
9195 break;
9196 }
9197 case MethodLoadKind::kRuntimeCall: {
9198 // Test situation, don't do anything.
9199 break;
9200 }
9201 default: {
9202 LOG(FATAL) << "Load kind should have already been handled " << load_kind;
9203 UNREACHABLE();
9204 }
9205 }
9206 }
9207
GenerateStaticOrDirectCall(HInvokeStaticOrDirect * invoke,Location temp,SlowPathCode * slow_path)9208 void CodeGeneratorARMVIXL::GenerateStaticOrDirectCall(
9209 HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
9210 Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp.
9211 switch (invoke->GetMethodLoadKind()) {
9212 case MethodLoadKind::kStringInit: {
9213 uint32_t offset =
9214 GetThreadOffset<kArmPointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
9215 // temp = thread->string_init_entrypoint
9216 GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(temp), tr, offset);
9217 break;
9218 }
9219 case MethodLoadKind::kRecursive: {
9220 callee_method = invoke->GetLocations()->InAt(invoke->GetCurrentMethodIndex());
9221 break;
9222 }
9223 case MethodLoadKind::kRuntimeCall: {
9224 GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path);
9225 return; // No code pointer retrieval; the runtime performs the call directly.
9226 }
9227 case MethodLoadKind::kBootImageLinkTimePcRelative:
9228 // Note: Unlike arm64, x86 and x86-64, we do not avoid the materialization of method
9229 // pointer for kCallCriticalNative because it would not save us an instruction from
9230 // the current sequence MOVW+MOVT+ADD(pc)+LDR+BL. The ADD(pc) separates the patched
9231 // offset instructions MOVW+MOVT from the entrypoint load, so they cannot be fused.
9232 FALLTHROUGH_INTENDED;
9233 default: {
9234 LoadMethod(invoke->GetMethodLoadKind(), temp, invoke);
9235 break;
9236 }
9237 }
9238
9239 auto call_code_pointer_member = [&](MemberOffset offset) {
9240 // LR = callee_method->member;
9241 GetAssembler()->LoadFromOffset(kLoadWord, lr, RegisterFrom(callee_method), offset.Int32Value());
9242 {
9243 // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
9244 // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
9245 ExactAssemblyScope aas(GetVIXLAssembler(),
9246 vixl32::k16BitT32InstructionSizeInBytes,
9247 CodeBufferCheckScope::kExactSize);
9248 // LR()
9249 __ blx(lr);
9250 RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
9251 }
9252 };
9253 switch (invoke->GetCodePtrLocation()) {
9254 case CodePtrLocation::kCallSelf:
9255 {
9256 // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
9257 ExactAssemblyScope aas(GetVIXLAssembler(),
9258 vixl32::k32BitT32InstructionSizeInBytes,
9259 CodeBufferCheckScope::kMaximumSize);
9260 __ bl(GetFrameEntryLabel());
9261 RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
9262 }
9263 break;
9264 case CodePtrLocation::kCallCriticalNative: {
9265 size_t out_frame_size =
9266 PrepareCriticalNativeCall<CriticalNativeCallingConventionVisitorARMVIXL,
9267 kAapcsStackAlignment,
9268 GetCriticalNativeDirectCallFrameSize>(invoke);
9269 call_code_pointer_member(ArtMethod::EntryPointFromJniOffset(kArmPointerSize));
9270 // Move the result when needed due to native and managed ABI mismatch.
9271 switch (invoke->GetType()) {
9272 case DataType::Type::kFloat32:
9273 __ Vmov(s0, r0);
9274 break;
9275 case DataType::Type::kFloat64:
9276 __ Vmov(d0, r0, r1);
9277 break;
9278 case DataType::Type::kBool:
9279 case DataType::Type::kInt8:
9280 case DataType::Type::kUint16:
9281 case DataType::Type::kInt16:
9282 case DataType::Type::kInt32:
9283 case DataType::Type::kInt64:
9284 case DataType::Type::kVoid:
9285 break;
9286 default:
9287 DCHECK(false) << invoke->GetType();
9288 break;
9289 }
9290 if (out_frame_size != 0u) {
9291 DecreaseFrame(out_frame_size);
9292 }
9293 break;
9294 }
9295 case CodePtrLocation::kCallArtMethod:
9296 call_code_pointer_member(ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize));
9297 break;
9298 }
9299
9300 DCHECK(!IsLeafMethod());
9301 }
9302
GenerateVirtualCall(HInvokeVirtual * invoke,Location temp_location,SlowPathCode * slow_path)9303 void CodeGeneratorARMVIXL::GenerateVirtualCall(
9304 HInvokeVirtual* invoke, Location temp_location, SlowPathCode* slow_path) {
9305 vixl32::Register temp = RegisterFrom(temp_location);
9306 uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
9307 invoke->GetVTableIndex(), kArmPointerSize).Uint32Value();
9308
9309 // Use the calling convention instead of the location of the receiver, as
9310 // intrinsics may have put the receiver in a different register. In the intrinsics
9311 // slow path, the arguments have been moved to the right place, so here we are
9312 // guaranteed that the receiver is the first register of the calling convention.
9313 InvokeDexCallingConventionARMVIXL calling_convention;
9314 vixl32::Register receiver = calling_convention.GetRegisterAt(0);
9315 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
9316 {
9317 // Make sure the pc is recorded immediately after the `ldr` instruction.
9318 ExactAssemblyScope aas(GetVIXLAssembler(),
9319 vixl32::kMaxInstructionSizeInBytes,
9320 CodeBufferCheckScope::kMaximumSize);
9321 // /* HeapReference<Class> */ temp = receiver->klass_
9322 __ ldr(temp, MemOperand(receiver, class_offset));
9323 MaybeRecordImplicitNullCheck(invoke);
9324 }
9325 // Instead of simply (possibly) unpoisoning `temp` here, we should
9326 // emit a read barrier for the previous class reference load.
9327 // However this is not required in practice, as this is an
9328 // intermediate/temporary reference and because the current
9329 // concurrent copying collector keeps the from-space memory
9330 // intact/accessible until the end of the marking phase (the
9331 // concurrent copying collector may not in the future).
9332 GetAssembler()->MaybeUnpoisonHeapReference(temp);
9333
9334 // If we're compiling baseline, update the inline cache.
9335 MaybeGenerateInlineCacheCheck(invoke, temp);
9336
9337 // temp = temp->GetMethodAt(method_offset);
9338 uint32_t entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(
9339 kArmPointerSize).Int32Value();
9340 GetAssembler()->LoadFromOffset(kLoadWord, temp, temp, method_offset);
9341 // LR = temp->GetEntryPoint();
9342 GetAssembler()->LoadFromOffset(kLoadWord, lr, temp, entry_point);
9343 {
9344 // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
9345 // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
9346 ExactAssemblyScope aas(GetVIXLAssembler(),
9347 vixl32::k16BitT32InstructionSizeInBytes,
9348 CodeBufferCheckScope::kExactSize);
9349 // LR();
9350 __ blx(lr);
9351 RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
9352 }
9353 }
9354
NewBootImageIntrinsicPatch(uint32_t intrinsic_data)9355 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewBootImageIntrinsicPatch(
9356 uint32_t intrinsic_data) {
9357 return NewPcRelativePatch(/* dex_file= */ nullptr, intrinsic_data, &boot_image_other_patches_);
9358 }
9359
NewBootImageRelRoPatch(uint32_t boot_image_offset)9360 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewBootImageRelRoPatch(
9361 uint32_t boot_image_offset) {
9362 return NewPcRelativePatch(/* dex_file= */ nullptr,
9363 boot_image_offset,
9364 &boot_image_other_patches_);
9365 }
9366
NewBootImageMethodPatch(MethodReference target_method)9367 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewBootImageMethodPatch(
9368 MethodReference target_method) {
9369 return NewPcRelativePatch(
9370 target_method.dex_file, target_method.index, &boot_image_method_patches_);
9371 }
9372
NewMethodBssEntryPatch(MethodReference target_method)9373 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewMethodBssEntryPatch(
9374 MethodReference target_method) {
9375 return NewPcRelativePatch(
9376 target_method.dex_file, target_method.index, &method_bss_entry_patches_);
9377 }
9378
NewBootImageTypePatch(const DexFile & dex_file,dex::TypeIndex type_index)9379 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewBootImageTypePatch(
9380 const DexFile& dex_file, dex::TypeIndex type_index) {
9381 return NewPcRelativePatch(&dex_file, type_index.index_, &boot_image_type_patches_);
9382 }
9383
NewTypeBssEntryPatch(HLoadClass * load_class)9384 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewTypeBssEntryPatch(
9385 HLoadClass* load_class) {
9386 const DexFile& dex_file = load_class->GetDexFile();
9387 dex::TypeIndex type_index = load_class->GetTypeIndex();
9388 ArenaDeque<PcRelativePatchInfo>* patches = nullptr;
9389 switch (load_class->GetLoadKind()) {
9390 case HLoadClass::LoadKind::kBssEntry:
9391 patches = &type_bss_entry_patches_;
9392 break;
9393 case HLoadClass::LoadKind::kBssEntryPublic:
9394 patches = &public_type_bss_entry_patches_;
9395 break;
9396 case HLoadClass::LoadKind::kBssEntryPackage:
9397 patches = &package_type_bss_entry_patches_;
9398 break;
9399 default:
9400 LOG(FATAL) << "Unexpected load kind: " << load_class->GetLoadKind();
9401 UNREACHABLE();
9402 }
9403 return NewPcRelativePatch(&dex_file, type_index.index_, patches);
9404 }
9405
NewBootImageStringPatch(const DexFile & dex_file,dex::StringIndex string_index)9406 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewBootImageStringPatch(
9407 const DexFile& dex_file, dex::StringIndex string_index) {
9408 return NewPcRelativePatch(&dex_file, string_index.index_, &boot_image_string_patches_);
9409 }
9410
NewStringBssEntryPatch(const DexFile & dex_file,dex::StringIndex string_index)9411 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewStringBssEntryPatch(
9412 const DexFile& dex_file, dex::StringIndex string_index) {
9413 return NewPcRelativePatch(&dex_file, string_index.index_, &string_bss_entry_patches_);
9414 }
9415
NewPcRelativePatch(const DexFile * dex_file,uint32_t offset_or_index,ArenaDeque<PcRelativePatchInfo> * patches)9416 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewPcRelativePatch(
9417 const DexFile* dex_file, uint32_t offset_or_index, ArenaDeque<PcRelativePatchInfo>* patches) {
9418 patches->emplace_back(dex_file, offset_or_index);
9419 return &patches->back();
9420 }
9421
EmitEntrypointThunkCall(ThreadOffset32 entrypoint_offset)9422 void CodeGeneratorARMVIXL::EmitEntrypointThunkCall(ThreadOffset32 entrypoint_offset) {
9423 DCHECK(!__ AllowMacroInstructions()); // In ExactAssemblyScope.
9424 DCHECK(!GetCompilerOptions().IsJitCompiler());
9425 call_entrypoint_patches_.emplace_back(/*dex_file*/ nullptr, entrypoint_offset.Uint32Value());
9426 vixl::aarch32::Label* bl_label = &call_entrypoint_patches_.back().label;
9427 __ bind(bl_label);
9428 vixl32::Label placeholder_label;
9429 __ bl(&placeholder_label); // Placeholder, patched at link-time.
9430 __ bind(&placeholder_label);
9431 }
9432
EmitBakerReadBarrierBne(uint32_t custom_data)9433 void CodeGeneratorARMVIXL::EmitBakerReadBarrierBne(uint32_t custom_data) {
9434 DCHECK(!__ AllowMacroInstructions()); // In ExactAssemblyScope.
9435 if (GetCompilerOptions().IsJitCompiler()) {
9436 auto it = jit_baker_read_barrier_slow_paths_.FindOrAdd(custom_data);
9437 vixl::aarch32::Label* slow_path_entry = &it->second.label;
9438 __ b(ne, EncodingSize(Wide), slow_path_entry);
9439 } else {
9440 baker_read_barrier_patches_.emplace_back(custom_data);
9441 vixl::aarch32::Label* patch_label = &baker_read_barrier_patches_.back().label;
9442 __ bind(patch_label);
9443 vixl32::Label placeholder_label;
9444 __ b(ne, EncodingSize(Wide), &placeholder_label); // Placeholder, patched at link-time.
9445 __ bind(&placeholder_label);
9446 }
9447 }
9448
DeduplicateBootImageAddressLiteral(uint32_t address)9449 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateBootImageAddressLiteral(uint32_t address) {
9450 return DeduplicateUint32Literal(address, &uint32_literals_);
9451 }
9452
DeduplicateJitStringLiteral(const DexFile & dex_file,dex::StringIndex string_index,Handle<mirror::String> handle)9453 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateJitStringLiteral(
9454 const DexFile& dex_file,
9455 dex::StringIndex string_index,
9456 Handle<mirror::String> handle) {
9457 ReserveJitStringRoot(StringReference(&dex_file, string_index), handle);
9458 return jit_string_patches_.GetOrCreate(
9459 StringReference(&dex_file, string_index),
9460 [this]() {
9461 return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ 0u);
9462 });
9463 }
9464
DeduplicateJitClassLiteral(const DexFile & dex_file,dex::TypeIndex type_index,Handle<mirror::Class> handle)9465 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateJitClassLiteral(const DexFile& dex_file,
9466 dex::TypeIndex type_index,
9467 Handle<mirror::Class> handle) {
9468 ReserveJitClassRoot(TypeReference(&dex_file, type_index), handle);
9469 return jit_class_patches_.GetOrCreate(
9470 TypeReference(&dex_file, type_index),
9471 [this]() {
9472 return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ 0u);
9473 });
9474 }
9475
LoadBootImageAddress(vixl32::Register reg,uint32_t boot_image_reference)9476 void CodeGeneratorARMVIXL::LoadBootImageAddress(vixl32::Register reg,
9477 uint32_t boot_image_reference) {
9478 if (GetCompilerOptions().IsBootImage()) {
9479 CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
9480 NewBootImageIntrinsicPatch(boot_image_reference);
9481 EmitMovwMovtPlaceholder(labels, reg);
9482 } else if (GetCompilerOptions().GetCompilePic()) {
9483 CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
9484 NewBootImageRelRoPatch(boot_image_reference);
9485 EmitMovwMovtPlaceholder(labels, reg);
9486 __ Ldr(reg, MemOperand(reg, /* offset= */ 0));
9487 } else {
9488 DCHECK(GetCompilerOptions().IsJitCompiler());
9489 gc::Heap* heap = Runtime::Current()->GetHeap();
9490 DCHECK(!heap->GetBootImageSpaces().empty());
9491 uintptr_t address =
9492 reinterpret_cast<uintptr_t>(heap->GetBootImageSpaces()[0]->Begin() + boot_image_reference);
9493 __ Ldr(reg, DeduplicateBootImageAddressLiteral(dchecked_integral_cast<uint32_t>(address)));
9494 }
9495 }
9496
LoadTypeForBootImageIntrinsic(vixl::aarch32::Register reg,TypeReference target_type)9497 void CodeGeneratorARMVIXL::LoadTypeForBootImageIntrinsic(vixl::aarch32::Register reg,
9498 TypeReference target_type) {
9499 // Load the class the same way as for HLoadClass::LoadKind::kBootImageLinkTimePcRelative.
9500 DCHECK(GetCompilerOptions().IsBootImage());
9501 PcRelativePatchInfo* labels =
9502 NewBootImageTypePatch(*target_type.dex_file, target_type.TypeIndex());
9503 EmitMovwMovtPlaceholder(labels, reg);
9504 }
9505
LoadIntrinsicDeclaringClass(vixl32::Register reg,HInvoke * invoke)9506 void CodeGeneratorARMVIXL::LoadIntrinsicDeclaringClass(vixl32::Register reg, HInvoke* invoke) {
9507 DCHECK_NE(invoke->GetIntrinsic(), Intrinsics::kNone);
9508 if (GetCompilerOptions().IsBootImage()) {
9509 MethodReference target_method = invoke->GetResolvedMethodReference();
9510 dex::TypeIndex type_idx = target_method.dex_file->GetMethodId(target_method.index).class_idx_;
9511 LoadTypeForBootImageIntrinsic(reg, TypeReference(target_method.dex_file, type_idx));
9512 } else {
9513 uint32_t boot_image_offset = GetBootImageOffsetOfIntrinsicDeclaringClass(invoke);
9514 LoadBootImageAddress(reg, boot_image_offset);
9515 }
9516 }
9517
LoadClassRootForIntrinsic(vixl::aarch32::Register reg,ClassRoot class_root)9518 void CodeGeneratorARMVIXL::LoadClassRootForIntrinsic(vixl::aarch32::Register reg,
9519 ClassRoot class_root) {
9520 if (GetCompilerOptions().IsBootImage()) {
9521 ScopedObjectAccess soa(Thread::Current());
9522 ObjPtr<mirror::Class> klass = GetClassRoot(class_root);
9523 TypeReference target_type(&klass->GetDexFile(), klass->GetDexTypeIndex());
9524 LoadTypeForBootImageIntrinsic(reg, target_type);
9525 } else {
9526 uint32_t boot_image_offset = GetBootImageOffset(class_root);
9527 LoadBootImageAddress(reg, boot_image_offset);
9528 }
9529 }
9530
9531 template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
EmitPcRelativeLinkerPatches(const ArenaDeque<PcRelativePatchInfo> & infos,ArenaVector<linker::LinkerPatch> * linker_patches)9532 inline void CodeGeneratorARMVIXL::EmitPcRelativeLinkerPatches(
9533 const ArenaDeque<PcRelativePatchInfo>& infos,
9534 ArenaVector<linker::LinkerPatch>* linker_patches) {
9535 for (const PcRelativePatchInfo& info : infos) {
9536 const DexFile* dex_file = info.target_dex_file;
9537 size_t offset_or_index = info.offset_or_index;
9538 DCHECK(info.add_pc_label.IsBound());
9539 uint32_t add_pc_offset = dchecked_integral_cast<uint32_t>(info.add_pc_label.GetLocation());
9540 // Add MOVW patch.
9541 DCHECK(info.movw_label.IsBound());
9542 uint32_t movw_offset = dchecked_integral_cast<uint32_t>(info.movw_label.GetLocation());
9543 linker_patches->push_back(Factory(movw_offset, dex_file, add_pc_offset, offset_or_index));
9544 // Add MOVT patch.
9545 DCHECK(info.movt_label.IsBound());
9546 uint32_t movt_offset = dchecked_integral_cast<uint32_t>(info.movt_label.GetLocation());
9547 linker_patches->push_back(Factory(movt_offset, dex_file, add_pc_offset, offset_or_index));
9548 }
9549 }
9550
9551 template <linker::LinkerPatch (*Factory)(size_t, uint32_t, uint32_t)>
NoDexFileAdapter(size_t literal_offset,const DexFile * target_dex_file,uint32_t pc_insn_offset,uint32_t boot_image_offset)9552 linker::LinkerPatch NoDexFileAdapter(size_t literal_offset,
9553 const DexFile* target_dex_file,
9554 uint32_t pc_insn_offset,
9555 uint32_t boot_image_offset) {
9556 DCHECK(target_dex_file == nullptr); // Unused for these patches, should be null.
9557 return Factory(literal_offset, pc_insn_offset, boot_image_offset);
9558 }
9559
EmitLinkerPatches(ArenaVector<linker::LinkerPatch> * linker_patches)9560 void CodeGeneratorARMVIXL::EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) {
9561 DCHECK(linker_patches->empty());
9562 size_t size =
9563 /* MOVW+MOVT for each entry */ 2u * boot_image_method_patches_.size() +
9564 /* MOVW+MOVT for each entry */ 2u * method_bss_entry_patches_.size() +
9565 /* MOVW+MOVT for each entry */ 2u * boot_image_type_patches_.size() +
9566 /* MOVW+MOVT for each entry */ 2u * type_bss_entry_patches_.size() +
9567 /* MOVW+MOVT for each entry */ 2u * public_type_bss_entry_patches_.size() +
9568 /* MOVW+MOVT for each entry */ 2u * package_type_bss_entry_patches_.size() +
9569 /* MOVW+MOVT for each entry */ 2u * boot_image_string_patches_.size() +
9570 /* MOVW+MOVT for each entry */ 2u * string_bss_entry_patches_.size() +
9571 /* MOVW+MOVT for each entry */ 2u * boot_image_other_patches_.size() +
9572 call_entrypoint_patches_.size() +
9573 baker_read_barrier_patches_.size();
9574 linker_patches->reserve(size);
9575 if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()) {
9576 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeMethodPatch>(
9577 boot_image_method_patches_, linker_patches);
9578 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeTypePatch>(
9579 boot_image_type_patches_, linker_patches);
9580 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeStringPatch>(
9581 boot_image_string_patches_, linker_patches);
9582 } else {
9583 DCHECK(boot_image_method_patches_.empty());
9584 DCHECK(boot_image_type_patches_.empty());
9585 DCHECK(boot_image_string_patches_.empty());
9586 }
9587 if (GetCompilerOptions().IsBootImage()) {
9588 EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::IntrinsicReferencePatch>>(
9589 boot_image_other_patches_, linker_patches);
9590 } else {
9591 EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::DataBimgRelRoPatch>>(
9592 boot_image_other_patches_, linker_patches);
9593 }
9594 EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodBssEntryPatch>(
9595 method_bss_entry_patches_, linker_patches);
9596 EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeBssEntryPatch>(
9597 type_bss_entry_patches_, linker_patches);
9598 EmitPcRelativeLinkerPatches<linker::LinkerPatch::PublicTypeBssEntryPatch>(
9599 public_type_bss_entry_patches_, linker_patches);
9600 EmitPcRelativeLinkerPatches<linker::LinkerPatch::PackageTypeBssEntryPatch>(
9601 package_type_bss_entry_patches_, linker_patches);
9602 EmitPcRelativeLinkerPatches<linker::LinkerPatch::StringBssEntryPatch>(
9603 string_bss_entry_patches_, linker_patches);
9604 for (const PatchInfo<vixl32::Label>& info : call_entrypoint_patches_) {
9605 DCHECK(info.target_dex_file == nullptr);
9606 linker_patches->push_back(linker::LinkerPatch::CallEntrypointPatch(
9607 info.label.GetLocation(), info.offset_or_index));
9608 }
9609 for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) {
9610 linker_patches->push_back(linker::LinkerPatch::BakerReadBarrierBranchPatch(
9611 info.label.GetLocation(), info.custom_data));
9612 }
9613 DCHECK_EQ(size, linker_patches->size());
9614 }
9615
NeedsThunkCode(const linker::LinkerPatch & patch) const9616 bool CodeGeneratorARMVIXL::NeedsThunkCode(const linker::LinkerPatch& patch) const {
9617 return patch.GetType() == linker::LinkerPatch::Type::kCallEntrypoint ||
9618 patch.GetType() == linker::LinkerPatch::Type::kBakerReadBarrierBranch ||
9619 patch.GetType() == linker::LinkerPatch::Type::kCallRelative;
9620 }
9621
EmitThunkCode(const linker::LinkerPatch & patch,ArenaVector<uint8_t> * code,std::string * debug_name)9622 void CodeGeneratorARMVIXL::EmitThunkCode(const linker::LinkerPatch& patch,
9623 /*out*/ ArenaVector<uint8_t>* code,
9624 /*out*/ std::string* debug_name) {
9625 arm::ArmVIXLAssembler assembler(GetGraph()->GetAllocator());
9626 switch (patch.GetType()) {
9627 case linker::LinkerPatch::Type::kCallRelative: {
9628 // The thunk just uses the entry point in the ArtMethod. This works even for calls
9629 // to the generic JNI and interpreter trampolines.
9630 MemberOffset offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize);
9631 assembler.LoadFromOffset(arm::kLoadWord, vixl32::pc, vixl32::r0, offset.Int32Value());
9632 assembler.GetVIXLAssembler()->Bkpt(0);
9633 if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
9634 *debug_name = "MethodCallThunk";
9635 }
9636 break;
9637 }
9638 case linker::LinkerPatch::Type::kCallEntrypoint: {
9639 assembler.LoadFromOffset(arm::kLoadWord, vixl32::pc, tr, patch.EntrypointOffset());
9640 assembler.GetVIXLAssembler()->Bkpt(0);
9641 if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
9642 *debug_name = "EntrypointCallThunk_" + std::to_string(patch.EntrypointOffset());
9643 }
9644 break;
9645 }
9646 case linker::LinkerPatch::Type::kBakerReadBarrierBranch: {
9647 DCHECK_EQ(patch.GetBakerCustomValue2(), 0u);
9648 CompileBakerReadBarrierThunk(assembler, patch.GetBakerCustomValue1(), debug_name);
9649 break;
9650 }
9651 default:
9652 LOG(FATAL) << "Unexpected patch type " << patch.GetType();
9653 UNREACHABLE();
9654 }
9655
9656 // Ensure we emit the literal pool if any.
9657 assembler.FinalizeCode();
9658 code->resize(assembler.CodeSize());
9659 MemoryRegion code_region(code->data(), code->size());
9660 assembler.FinalizeInstructions(code_region);
9661 }
9662
DeduplicateUint32Literal(uint32_t value,Uint32ToLiteralMap * map)9663 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateUint32Literal(
9664 uint32_t value,
9665 Uint32ToLiteralMap* map) {
9666 return map->GetOrCreate(
9667 value,
9668 [this, value]() {
9669 return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ value);
9670 });
9671 }
9672
VisitMultiplyAccumulate(HMultiplyAccumulate * instr)9673 void LocationsBuilderARMVIXL::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
9674 LocationSummary* locations =
9675 new (GetGraph()->GetAllocator()) LocationSummary(instr, LocationSummary::kNoCall);
9676 locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex,
9677 Location::RequiresRegister());
9678 locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister());
9679 locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister());
9680 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
9681 }
9682
VisitMultiplyAccumulate(HMultiplyAccumulate * instr)9683 void InstructionCodeGeneratorARMVIXL::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
9684 vixl32::Register res = OutputRegister(instr);
9685 vixl32::Register accumulator =
9686 InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
9687 vixl32::Register mul_left =
9688 InputRegisterAt(instr, HMultiplyAccumulate::kInputMulLeftIndex);
9689 vixl32::Register mul_right =
9690 InputRegisterAt(instr, HMultiplyAccumulate::kInputMulRightIndex);
9691
9692 if (instr->GetOpKind() == HInstruction::kAdd) {
9693 __ Mla(res, mul_left, mul_right, accumulator);
9694 } else {
9695 __ Mls(res, mul_left, mul_right, accumulator);
9696 }
9697 }
9698
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)9699 void LocationsBuilderARMVIXL::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
9700 // Nothing to do, this should be removed during prepare for register allocator.
9701 LOG(FATAL) << "Unreachable";
9702 }
9703
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)9704 void InstructionCodeGeneratorARMVIXL::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
9705 // Nothing to do, this should be removed during prepare for register allocator.
9706 LOG(FATAL) << "Unreachable";
9707 }
9708
9709 // Simple implementation of packed switch - generate cascaded compare/jumps.
VisitPackedSwitch(HPackedSwitch * switch_instr)9710 void LocationsBuilderARMVIXL::VisitPackedSwitch(HPackedSwitch* switch_instr) {
9711 LocationSummary* locations =
9712 new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall);
9713 locations->SetInAt(0, Location::RequiresRegister());
9714 if (switch_instr->GetNumEntries() > kPackedSwitchCompareJumpThreshold &&
9715 codegen_->GetAssembler()->GetVIXLAssembler()->IsUsingT32()) {
9716 locations->AddTemp(Location::RequiresRegister()); // We need a temp for the table base.
9717 if (switch_instr->GetStartValue() != 0) {
9718 locations->AddTemp(Location::RequiresRegister()); // We need a temp for the bias.
9719 }
9720 }
9721 }
9722
9723 // TODO(VIXL): Investigate and reach the parity with old arm codegen.
VisitPackedSwitch(HPackedSwitch * switch_instr)9724 void InstructionCodeGeneratorARMVIXL::VisitPackedSwitch(HPackedSwitch* switch_instr) {
9725 int32_t lower_bound = switch_instr->GetStartValue();
9726 uint32_t num_entries = switch_instr->GetNumEntries();
9727 LocationSummary* locations = switch_instr->GetLocations();
9728 vixl32::Register value_reg = InputRegisterAt(switch_instr, 0);
9729 HBasicBlock* default_block = switch_instr->GetDefaultBlock();
9730
9731 if (num_entries <= kPackedSwitchCompareJumpThreshold ||
9732 !codegen_->GetAssembler()->GetVIXLAssembler()->IsUsingT32()) {
9733 // Create a series of compare/jumps.
9734 UseScratchRegisterScope temps(GetVIXLAssembler());
9735 vixl32::Register temp_reg = temps.Acquire();
9736 // Note: It is fine for the below AddConstantSetFlags() using IP register to temporarily store
9737 // the immediate, because IP is used as the destination register. For the other
9738 // AddConstantSetFlags() and GenerateCompareWithImmediate(), the immediate values are constant,
9739 // and they can be encoded in the instruction without making use of IP register.
9740 __ Adds(temp_reg, value_reg, -lower_bound);
9741
9742 const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
9743 // Jump to successors[0] if value == lower_bound.
9744 __ B(eq, codegen_->GetLabelOf(successors[0]));
9745 int32_t last_index = 0;
9746 for (; num_entries - last_index > 2; last_index += 2) {
9747 __ Adds(temp_reg, temp_reg, -2);
9748 // Jump to successors[last_index + 1] if value < case_value[last_index + 2].
9749 __ B(lo, codegen_->GetLabelOf(successors[last_index + 1]));
9750 // Jump to successors[last_index + 2] if value == case_value[last_index + 2].
9751 __ B(eq, codegen_->GetLabelOf(successors[last_index + 2]));
9752 }
9753 if (num_entries - last_index == 2) {
9754 // The last missing case_value.
9755 __ Cmp(temp_reg, 1);
9756 __ B(eq, codegen_->GetLabelOf(successors[last_index + 1]));
9757 }
9758
9759 // And the default for any other value.
9760 if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
9761 __ B(codegen_->GetLabelOf(default_block));
9762 }
9763 } else {
9764 // Create a table lookup.
9765 vixl32::Register table_base = RegisterFrom(locations->GetTemp(0));
9766
9767 JumpTableARMVIXL* jump_table = codegen_->CreateJumpTable(switch_instr);
9768
9769 // Remove the bias.
9770 vixl32::Register key_reg;
9771 if (lower_bound != 0) {
9772 key_reg = RegisterFrom(locations->GetTemp(1));
9773 __ Sub(key_reg, value_reg, lower_bound);
9774 } else {
9775 key_reg = value_reg;
9776 }
9777
9778 // Check whether the value is in the table, jump to default block if not.
9779 __ Cmp(key_reg, num_entries - 1);
9780 __ B(hi, codegen_->GetLabelOf(default_block));
9781
9782 UseScratchRegisterScope temps(GetVIXLAssembler());
9783 vixl32::Register jump_offset = temps.Acquire();
9784
9785 // Load jump offset from the table.
9786 {
9787 const size_t jump_size = switch_instr->GetNumEntries() * sizeof(int32_t);
9788 ExactAssemblyScope aas(GetVIXLAssembler(),
9789 (vixl32::kMaxInstructionSizeInBytes * 4) + jump_size,
9790 CodeBufferCheckScope::kMaximumSize);
9791 __ adr(table_base, jump_table->GetTableStartLabel());
9792 __ ldr(jump_offset, MemOperand(table_base, key_reg, vixl32::LSL, 2));
9793
9794 // Jump to target block by branching to table_base(pc related) + offset.
9795 vixl32::Register target_address = table_base;
9796 __ add(target_address, table_base, jump_offset);
9797 __ bx(target_address);
9798
9799 jump_table->EmitTable(codegen_);
9800 }
9801 }
9802 }
9803
9804 // Copy the result of a call into the given target.
MoveFromReturnRegister(Location trg,DataType::Type type)9805 void CodeGeneratorARMVIXL::MoveFromReturnRegister(Location trg, DataType::Type type) {
9806 if (!trg.IsValid()) {
9807 DCHECK_EQ(type, DataType::Type::kVoid);
9808 return;
9809 }
9810
9811 DCHECK_NE(type, DataType::Type::kVoid);
9812
9813 Location return_loc = InvokeDexCallingConventionVisitorARMVIXL().GetReturnLocation(type);
9814 if (return_loc.Equals(trg)) {
9815 return;
9816 }
9817
9818 // Let the parallel move resolver take care of all of this.
9819 HParallelMove parallel_move(GetGraph()->GetAllocator());
9820 parallel_move.AddMove(return_loc, trg, type, nullptr);
9821 GetMoveResolver()->EmitNativeCode(¶llel_move);
9822 }
9823
VisitClassTableGet(HClassTableGet * instruction)9824 void LocationsBuilderARMVIXL::VisitClassTableGet(HClassTableGet* instruction) {
9825 LocationSummary* locations =
9826 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
9827 locations->SetInAt(0, Location::RequiresRegister());
9828 locations->SetOut(Location::RequiresRegister());
9829 }
9830
VisitClassTableGet(HClassTableGet * instruction)9831 void InstructionCodeGeneratorARMVIXL::VisitClassTableGet(HClassTableGet* instruction) {
9832 if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
9833 uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
9834 instruction->GetIndex(), kArmPointerSize).SizeValue();
9835 GetAssembler()->LoadFromOffset(kLoadWord,
9836 OutputRegister(instruction),
9837 InputRegisterAt(instruction, 0),
9838 method_offset);
9839 } else {
9840 uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
9841 instruction->GetIndex(), kArmPointerSize));
9842 GetAssembler()->LoadFromOffset(kLoadWord,
9843 OutputRegister(instruction),
9844 InputRegisterAt(instruction, 0),
9845 mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value());
9846 GetAssembler()->LoadFromOffset(kLoadWord,
9847 OutputRegister(instruction),
9848 OutputRegister(instruction),
9849 method_offset);
9850 }
9851 }
9852
PatchJitRootUse(uint8_t * code,const uint8_t * roots_data,VIXLUInt32Literal * literal,uint64_t index_in_table)9853 static void PatchJitRootUse(uint8_t* code,
9854 const uint8_t* roots_data,
9855 VIXLUInt32Literal* literal,
9856 uint64_t index_in_table) {
9857 DCHECK(literal->IsBound());
9858 uint32_t literal_offset = literal->GetLocation();
9859 uintptr_t address =
9860 reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>);
9861 uint8_t* data = code + literal_offset;
9862 reinterpret_cast<uint32_t*>(data)[0] = dchecked_integral_cast<uint32_t>(address);
9863 }
9864
EmitJitRootPatches(uint8_t * code,const uint8_t * roots_data)9865 void CodeGeneratorARMVIXL::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) {
9866 for (const auto& entry : jit_string_patches_) {
9867 const StringReference& string_reference = entry.first;
9868 VIXLUInt32Literal* table_entry_literal = entry.second;
9869 uint64_t index_in_table = GetJitStringRootIndex(string_reference);
9870 PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table);
9871 }
9872 for (const auto& entry : jit_class_patches_) {
9873 const TypeReference& type_reference = entry.first;
9874 VIXLUInt32Literal* table_entry_literal = entry.second;
9875 uint64_t index_in_table = GetJitClassRootIndex(type_reference);
9876 PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table);
9877 }
9878 }
9879
EmitMovwMovtPlaceholder(CodeGeneratorARMVIXL::PcRelativePatchInfo * labels,vixl32::Register out)9880 void CodeGeneratorARMVIXL::EmitMovwMovtPlaceholder(
9881 CodeGeneratorARMVIXL::PcRelativePatchInfo* labels,
9882 vixl32::Register out) {
9883 ExactAssemblyScope aas(GetVIXLAssembler(),
9884 3 * vixl32::kMaxInstructionSizeInBytes,
9885 CodeBufferCheckScope::kMaximumSize);
9886 // TODO(VIXL): Think about using mov instead of movw.
9887 __ bind(&labels->movw_label);
9888 __ movw(out, /* operand= */ 0u);
9889 __ bind(&labels->movt_label);
9890 __ movt(out, /* operand= */ 0u);
9891 __ bind(&labels->add_pc_label);
9892 __ add(out, out, pc);
9893 }
9894
9895 #undef __
9896 #undef QUICK_ENTRY_POINT
9897 #undef TODO_VIXL32
9898
9899 #define __ assembler.GetVIXLAssembler()->
9900
EmitGrayCheckAndFastPath(ArmVIXLAssembler & assembler,vixl32::Register base_reg,vixl32::MemOperand & lock_word,vixl32::Label * slow_path,int32_t raw_ldr_offset,vixl32::Label * throw_npe=nullptr)9901 static void EmitGrayCheckAndFastPath(ArmVIXLAssembler& assembler,
9902 vixl32::Register base_reg,
9903 vixl32::MemOperand& lock_word,
9904 vixl32::Label* slow_path,
9905 int32_t raw_ldr_offset,
9906 vixl32::Label* throw_npe = nullptr) {
9907 // Load the lock word containing the rb_state.
9908 __ Ldr(ip, lock_word);
9909 // Given the numeric representation, it's enough to check the low bit of the rb_state.
9910 static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0");
9911 static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
9912 __ Tst(ip, Operand(LockWord::kReadBarrierStateMaskShifted));
9913 __ B(ne, slow_path, /* is_far_target= */ false);
9914 // To throw NPE, we return to the fast path; the artificial dependence below does not matter.
9915 if (throw_npe != nullptr) {
9916 __ Bind(throw_npe);
9917 }
9918 __ Add(lr, lr, raw_ldr_offset);
9919 // Introduce a dependency on the lock_word including rb_state,
9920 // to prevent load-load reordering, and without using
9921 // a memory barrier (which would be more expensive).
9922 __ Add(base_reg, base_reg, Operand(ip, LSR, 32));
9923 __ Bx(lr); // And return back to the function.
9924 // Note: The fake dependency is unnecessary for the slow path.
9925 }
9926
9927 // Load the read barrier introspection entrypoint in register `entrypoint`
LoadReadBarrierMarkIntrospectionEntrypoint(ArmVIXLAssembler & assembler)9928 static vixl32::Register LoadReadBarrierMarkIntrospectionEntrypoint(ArmVIXLAssembler& assembler) {
9929 // The register where the read barrier introspection entrypoint is loaded
9930 // is the marking register. We clobber it here and the entrypoint restores it to 1.
9931 vixl32::Register entrypoint = mr;
9932 // entrypoint = Thread::Current()->pReadBarrierMarkReg12, i.e. pReadBarrierMarkIntrospection.
9933 DCHECK_EQ(ip.GetCode(), 12u);
9934 const int32_t entry_point_offset =
9935 Thread::ReadBarrierMarkEntryPointsOffset<kArmPointerSize>(ip.GetCode());
9936 __ Ldr(entrypoint, MemOperand(tr, entry_point_offset));
9937 return entrypoint;
9938 }
9939
CompileBakerReadBarrierThunk(ArmVIXLAssembler & assembler,uint32_t encoded_data,std::string * debug_name)9940 void CodeGeneratorARMVIXL::CompileBakerReadBarrierThunk(ArmVIXLAssembler& assembler,
9941 uint32_t encoded_data,
9942 /*out*/ std::string* debug_name) {
9943 BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
9944 switch (kind) {
9945 case BakerReadBarrierKind::kField: {
9946 vixl32::Register base_reg(BakerReadBarrierFirstRegField::Decode(encoded_data));
9947 CheckValidReg(base_reg.GetCode());
9948 vixl32::Register holder_reg(BakerReadBarrierSecondRegField::Decode(encoded_data));
9949 CheckValidReg(holder_reg.GetCode());
9950 BakerReadBarrierWidth width = BakerReadBarrierWidthField::Decode(encoded_data);
9951 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
9952 temps.Exclude(ip);
9953 // In the case of a field load, if `base_reg` differs from
9954 // `holder_reg`, the offset was too large and we must have emitted (during the construction
9955 // of the HIR graph, see `art::HInstructionBuilder::BuildInstanceFieldAccess`) and preserved
9956 // (see `art::PrepareForRegisterAllocation::VisitNullCheck`) an explicit null check before
9957 // the load. Otherwise, for implicit null checks, we need to null-check the holder as we do
9958 // not necessarily do that check before going to the thunk.
9959 vixl32::Label throw_npe_label;
9960 vixl32::Label* throw_npe = nullptr;
9961 if (GetCompilerOptions().GetImplicitNullChecks() && holder_reg.Is(base_reg)) {
9962 throw_npe = &throw_npe_label;
9963 __ CompareAndBranchIfZero(holder_reg, throw_npe, /* is_far_target= */ false);
9964 }
9965 // Check if the holder is gray and, if not, add fake dependency to the base register
9966 // and return to the LDR instruction to load the reference. Otherwise, use introspection
9967 // to load the reference and call the entrypoint that performs further checks on the
9968 // reference and marks it if needed.
9969 vixl32::Label slow_path;
9970 MemOperand lock_word(holder_reg, mirror::Object::MonitorOffset().Int32Value());
9971 const int32_t raw_ldr_offset = (width == BakerReadBarrierWidth::kWide)
9972 ? BAKER_MARK_INTROSPECTION_FIELD_LDR_WIDE_OFFSET
9973 : BAKER_MARK_INTROSPECTION_FIELD_LDR_NARROW_OFFSET;
9974 EmitGrayCheckAndFastPath(
9975 assembler, base_reg, lock_word, &slow_path, raw_ldr_offset, throw_npe);
9976 __ Bind(&slow_path);
9977 const int32_t ldr_offset = /* Thumb state adjustment (LR contains Thumb state). */ -1 +
9978 raw_ldr_offset;
9979 vixl32::Register ep_reg = LoadReadBarrierMarkIntrospectionEntrypoint(assembler);
9980 if (width == BakerReadBarrierWidth::kWide) {
9981 MemOperand ldr_half_address(lr, ldr_offset + 2);
9982 __ Ldrh(ip, ldr_half_address); // Load the LDR immediate half-word with "Rt | imm12".
9983 __ Ubfx(ip, ip, 0, 12); // Extract the offset imm12.
9984 __ Ldr(ip, MemOperand(base_reg, ip)); // Load the reference.
9985 } else {
9986 MemOperand ldr_address(lr, ldr_offset);
9987 __ Ldrh(ip, ldr_address); // Load the LDR immediate, encoding T1.
9988 __ Add(ep_reg, // Adjust the entrypoint address to the entrypoint
9989 ep_reg, // for narrow LDR.
9990 Operand(BAKER_MARK_INTROSPECTION_FIELD_LDR_NARROW_ENTRYPOINT_OFFSET));
9991 __ Ubfx(ip, ip, 6, 5); // Extract the imm5, i.e. offset / 4.
9992 __ Ldr(ip, MemOperand(base_reg, ip, LSL, 2)); // Load the reference.
9993 }
9994 // Do not unpoison. With heap poisoning enabled, the entrypoint expects a poisoned reference.
9995 __ Bx(ep_reg); // Jump to the entrypoint.
9996 break;
9997 }
9998 case BakerReadBarrierKind::kArray: {
9999 vixl32::Register base_reg(BakerReadBarrierFirstRegField::Decode(encoded_data));
10000 CheckValidReg(base_reg.GetCode());
10001 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
10002 BakerReadBarrierSecondRegField::Decode(encoded_data));
10003 DCHECK(BakerReadBarrierWidthField::Decode(encoded_data) == BakerReadBarrierWidth::kWide);
10004 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
10005 temps.Exclude(ip);
10006 vixl32::Label slow_path;
10007 int32_t data_offset =
10008 mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimNot)).Int32Value();
10009 MemOperand lock_word(base_reg, mirror::Object::MonitorOffset().Int32Value() - data_offset);
10010 DCHECK_LT(lock_word.GetOffsetImmediate(), 0);
10011 const int32_t raw_ldr_offset = BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET;
10012 EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path, raw_ldr_offset);
10013 __ Bind(&slow_path);
10014 const int32_t ldr_offset = /* Thumb state adjustment (LR contains Thumb state). */ -1 +
10015 raw_ldr_offset;
10016 MemOperand ldr_address(lr, ldr_offset + 2);
10017 __ Ldrb(ip, ldr_address); // Load the LDR (register) byte with "00 | imm2 | Rm",
10018 // i.e. Rm+32 because the scale in imm2 is 2.
10019 vixl32::Register ep_reg = LoadReadBarrierMarkIntrospectionEntrypoint(assembler);
10020 __ Bfi(ep_reg, ip, 3, 6); // Insert ip to the entrypoint address to create
10021 // a switch case target based on the index register.
10022 __ Mov(ip, base_reg); // Move the base register to ip0.
10023 __ Bx(ep_reg); // Jump to the entrypoint's array switch case.
10024 break;
10025 }
10026 case BakerReadBarrierKind::kGcRoot:
10027 case BakerReadBarrierKind::kIntrinsicCas: {
10028 // Check if the reference needs to be marked and if so (i.e. not null, not marked yet
10029 // and it does not have a forwarding address), call the correct introspection entrypoint;
10030 // otherwise return the reference (or the extracted forwarding address).
10031 // There is no gray bit check for GC roots.
10032 vixl32::Register root_reg(BakerReadBarrierFirstRegField::Decode(encoded_data));
10033 CheckValidReg(root_reg.GetCode());
10034 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
10035 BakerReadBarrierSecondRegField::Decode(encoded_data));
10036 BakerReadBarrierWidth width = BakerReadBarrierWidthField::Decode(encoded_data);
10037 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
10038 temps.Exclude(ip);
10039 vixl32::Label return_label, not_marked, forwarding_address;
10040 __ CompareAndBranchIfZero(root_reg, &return_label, /* is_far_target= */ false);
10041 MemOperand lock_word(root_reg, mirror::Object::MonitorOffset().Int32Value());
10042 __ Ldr(ip, lock_word);
10043 __ Tst(ip, LockWord::kMarkBitStateMaskShifted);
10044 __ B(eq, ¬_marked);
10045 __ Bind(&return_label);
10046 __ Bx(lr);
10047 __ Bind(¬_marked);
10048 static_assert(LockWord::kStateShift == 30 && LockWord::kStateForwardingAddress == 3,
10049 "To use 'CMP ip, #modified-immediate; BHS', we need the lock word state in "
10050 " the highest bits and the 'forwarding address' state to have all bits set");
10051 __ Cmp(ip, Operand(0xc0000000));
10052 __ B(hs, &forwarding_address);
10053 vixl32::Register ep_reg = LoadReadBarrierMarkIntrospectionEntrypoint(assembler);
10054 // Adjust the art_quick_read_barrier_mark_introspection address
10055 // in kBakerCcEntrypointRegister to one of
10056 // art_quick_read_barrier_mark_introspection_{gc_roots_{wide,narrow},intrinsic_cas}.
10057 if (kind == BakerReadBarrierKind::kIntrinsicCas) {
10058 DCHECK(width == BakerReadBarrierWidth::kWide);
10059 DCHECK(!root_reg.IsLow());
10060 }
10061 int32_t entrypoint_offset =
10062 (kind == BakerReadBarrierKind::kGcRoot)
10063 ? (width == BakerReadBarrierWidth::kWide)
10064 ? BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_WIDE_ENTRYPOINT_OFFSET
10065 : BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_NARROW_ENTRYPOINT_OFFSET
10066 : BAKER_MARK_INTROSPECTION_INTRINSIC_CAS_ENTRYPOINT_OFFSET;
10067 __ Add(ep_reg, ep_reg, Operand(entrypoint_offset));
10068 __ Mov(ip, root_reg);
10069 __ Bx(ep_reg);
10070 __ Bind(&forwarding_address);
10071 __ Lsl(root_reg, ip, LockWord::kForwardingAddressShift);
10072 __ Bx(lr);
10073 break;
10074 }
10075 default:
10076 LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
10077 UNREACHABLE();
10078 }
10079
10080 // For JIT, the slow path is considered part of the compiled method,
10081 // so JIT should pass null as `debug_name`.
10082 DCHECK(!GetCompilerOptions().IsJitCompiler() || debug_name == nullptr);
10083 if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
10084 std::ostringstream oss;
10085 oss << "BakerReadBarrierThunk";
10086 switch (kind) {
10087 case BakerReadBarrierKind::kField:
10088 oss << "Field";
10089 if (BakerReadBarrierWidthField::Decode(encoded_data) == BakerReadBarrierWidth::kWide) {
10090 oss << "Wide";
10091 }
10092 oss << "_r" << BakerReadBarrierFirstRegField::Decode(encoded_data)
10093 << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data);
10094 break;
10095 case BakerReadBarrierKind::kArray:
10096 oss << "Array_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
10097 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
10098 BakerReadBarrierSecondRegField::Decode(encoded_data));
10099 DCHECK(BakerReadBarrierWidthField::Decode(encoded_data) == BakerReadBarrierWidth::kWide);
10100 break;
10101 case BakerReadBarrierKind::kGcRoot:
10102 oss << "GcRoot";
10103 if (BakerReadBarrierWidthField::Decode(encoded_data) == BakerReadBarrierWidth::kWide) {
10104 oss << "Wide";
10105 }
10106 oss << "_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
10107 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
10108 BakerReadBarrierSecondRegField::Decode(encoded_data));
10109 break;
10110 case BakerReadBarrierKind::kIntrinsicCas:
10111 oss << "IntrinsicCas_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
10112 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
10113 BakerReadBarrierSecondRegField::Decode(encoded_data));
10114 DCHECK(BakerReadBarrierWidthField::Decode(encoded_data) == BakerReadBarrierWidth::kWide);
10115 break;
10116 }
10117 *debug_name = oss.str();
10118 }
10119 }
10120
10121 #undef __
10122
10123 } // namespace arm
10124 } // namespace art
10125