1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "descriptors_names.h"
18 
19 #include "android-base/stringprintf.h"
20 #include "android-base/strings.h"
21 
22 #include "base/macros.h"
23 #include "dex/utf-inl.h"
24 
25 namespace art {
26 
27 using android::base::StringAppendF;
28 
AppendPrettyDescriptor(const char * descriptor,std::string * result)29 void AppendPrettyDescriptor(const char* descriptor, std::string* result) {
30   // Count the number of '['s to get the dimensionality.
31   const char* c = descriptor;
32   size_t dim = 0;
33   while (*c == '[') {
34     dim++;
35     c++;
36   }
37 
38   // Reference or primitive?
39   if (*c == 'L') {
40     // "[[La/b/C;" -> "a.b.C[][]".
41     c++;  // Skip the 'L'.
42   } else {
43     // "[[B" -> "byte[][]".
44     // To make life easier, we make primitives look like unqualified
45     // reference types.
46     switch (*c) {
47       case 'B': c = "byte;"; break;
48       case 'C': c = "char;"; break;
49       case 'D': c = "double;"; break;
50       case 'F': c = "float;"; break;
51       case 'I': c = "int;"; break;
52       case 'J': c = "long;"; break;
53       case 'S': c = "short;"; break;
54       case 'Z': c = "boolean;"; break;
55       case 'V': c = "void;"; break;  // Used when decoding return types.
56       default: result->append(descriptor); return;
57     }
58   }
59 
60   // At this point, 'c' is a string of the form "fully/qualified/Type;"
61   // or "primitive;". Rewrite the type with '.' instead of '/':
62   const char* p = c;
63   while (*p != ';') {
64     char ch = *p++;
65     if (ch == '/') {
66       ch = '.';
67     }
68     result->push_back(ch);
69   }
70   // ...and replace the semicolon with 'dim' "[]" pairs:
71   for (size_t i = 0; i < dim; ++i) {
72     result->append("[]");
73   }
74 }
75 
PrettyDescriptor(const char * descriptor)76 std::string PrettyDescriptor(const char* descriptor) {
77   std::string result;
78   AppendPrettyDescriptor(descriptor, &result);
79   return result;
80 }
81 
GetJniShortName(const std::string & class_descriptor,const std::string & method)82 std::string GetJniShortName(const std::string& class_descriptor, const std::string& method) {
83   // Remove the leading 'L' and trailing ';'...
84   std::string class_name(class_descriptor);
85   CHECK_EQ(class_name[0], 'L') << class_name;
86   CHECK_EQ(class_name[class_name.size() - 1], ';') << class_name;
87   class_name.erase(0, 1);
88   class_name.erase(class_name.size() - 1, 1);
89 
90   std::string short_name;
91   short_name += "Java_";
92   short_name += MangleForJni(class_name);
93   short_name += "_";
94   short_name += MangleForJni(method);
95   return short_name;
96 }
97 
98 // See http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/design.html#wp615 for the full rules.
MangleForJni(const std::string & s)99 std::string MangleForJni(const std::string& s) {
100   std::string result;
101   size_t char_count = CountModifiedUtf8Chars(s.c_str());
102   const char* cp = &s[0];
103   for (size_t i = 0; i < char_count; ++i) {
104     uint32_t ch = GetUtf16FromUtf8(&cp);
105     if ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') || (ch >= '0' && ch <= '9')) {
106       result.push_back(ch);
107     } else if (ch == '.' || ch == '/') {
108       result += "_";
109     } else if (ch == '_') {
110       result += "_1";
111     } else if (ch == ';') {
112       result += "_2";
113     } else if (ch == '[') {
114       result += "_3";
115     } else {
116       const uint16_t leading = GetLeadingUtf16Char(ch);
117       const uint32_t trailing = GetTrailingUtf16Char(ch);
118 
119       StringAppendF(&result, "_0%04x", leading);
120       if (trailing != 0) {
121         StringAppendF(&result, "_0%04x", trailing);
122       }
123     }
124   }
125   return result;
126 }
127 
DotToDescriptor(const char * class_name)128 std::string DotToDescriptor(const char* class_name) {
129   std::string descriptor(class_name);
130   std::replace(descriptor.begin(), descriptor.end(), '.', '/');
131   if (descriptor.length() > 0 && descriptor[0] != '[') {
132     descriptor = "L" + descriptor + ";";
133   }
134   return descriptor;
135 }
136 
DescriptorToDot(const char * descriptor)137 std::string DescriptorToDot(const char* descriptor) {
138   size_t length = strlen(descriptor);
139   if (length > 1) {
140     if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
141       // Descriptors have the leading 'L' and trailing ';' stripped.
142       std::string result(descriptor + 1, length - 2);
143       std::replace(result.begin(), result.end(), '/', '.');
144       return result;
145     } else {
146       // For arrays the 'L' and ';' remain intact.
147       std::string result(descriptor);
148       std::replace(result.begin(), result.end(), '/', '.');
149       return result;
150     }
151   }
152   // Do nothing for non-class/array descriptors.
153   return descriptor;
154 }
155 
DescriptorToName(const char * descriptor)156 std::string DescriptorToName(const char* descriptor) {
157   size_t length = strlen(descriptor);
158   if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
159     std::string result(descriptor + 1, length - 2);
160     return result;
161   }
162   return descriptor;
163 }
164 
165 // Helper for IsValidPartOfMemberNameUtf8(), a bit vector indicating valid low ascii.
166 static constexpr uint32_t DEX_MEMBER_VALID_LOW_ASCII[4] = {
167   0x00000000,  // 00..1f low control characters; nothing valid
168   0x03ff2011,  // 20..3f space, digits and symbols; valid: ' ', '0'..'9', '$', '-'
169   0x87fffffe,  // 40..5f uppercase etc.; valid: 'A'..'Z', '_'
170   0x07fffffe   // 60..7f lowercase etc.; valid: 'a'..'z'
171 };
172 
173 // Helper for IsValidPartOfMemberNameUtf8(); do not call directly.
174 COLD_ATTR
IsValidPartOfMemberNameUtf8Slow(const char ** pUtf8Ptr)175 static bool IsValidPartOfMemberNameUtf8Slow(const char** pUtf8Ptr) {
176   /*
177    * It's a multibyte encoded character. Decode it and analyze. We
178    * accept anything that isn't:
179    *   - an improperly encoded low value
180    *   - an improper surrogate pair
181    *   - an encoded '\0'
182    *   - a C1 control character U+0080..U+009f
183    *   - a format character U+200b..U+200f, U+2028..U+202e
184    *   - a special character U+fff0..U+ffff
185    * Prior to DEX format version 040, we also excluded some of the Unicode
186    * space characters:
187    *   - U+00a0, U+2000..U+200a, U+202f
188    * This is all specified in the dex format document.
189    */
190 
191   const uint32_t pair = GetUtf16FromUtf8(pUtf8Ptr);
192   const uint16_t leading = GetLeadingUtf16Char(pair);
193 
194   // We have a surrogate pair resulting from a valid 4 byte UTF sequence.
195   // No further checks are necessary because 4 byte sequences span code
196   // points [U+10000, U+1FFFFF], which are valid codepoints in a dex
197   // identifier. Furthermore, GetUtf16FromUtf8 guarantees that each of
198   // the surrogate halves are valid and well formed in this instance.
199   if (GetTrailingUtf16Char(pair) != 0) {
200     return true;
201   }
202 
203 
204   // We've encountered a one, two or three byte UTF-8 sequence. The
205   // three byte UTF-8 sequence could be one half of a surrogate pair.
206   switch (leading >> 8) {
207     case 0x00:
208       // It's in the range that has C1 control characters.
209       return (leading >= 0x00a0);
210     case 0xd8:
211     case 0xd9:
212     case 0xda:
213     case 0xdb:
214       {
215         // We found a three byte sequence encoding one half of a surrogate.
216         // Look for the other half.
217         const uint32_t pair2 = GetUtf16FromUtf8(pUtf8Ptr);
218         const uint16_t trailing = GetLeadingUtf16Char(pair2);
219 
220         return (GetTrailingUtf16Char(pair2) == 0) && (0xdc00 <= trailing && trailing <= 0xdfff);
221       }
222     case 0xdc:
223     case 0xdd:
224     case 0xde:
225     case 0xdf:
226       // It's a trailing surrogate, which is not valid at this point.
227       return false;
228     case 0x20:
229     case 0xff:
230       // It's in the range that has format characters and specials.
231       switch (leading & 0xfff8) {
232         case 0x2008:
233           return (leading <= 0x200a);
234         case 0x2028:
235           return (leading == 0x202f);
236         case 0xfff0:
237         case 0xfff8:
238           return false;
239       }
240       return true;
241     default:
242       return true;
243   }
244 
245   UNREACHABLE();
246 }
247 
248 /* Return whether the pointed-at modified-UTF-8 encoded character is
249  * valid as part of a member name, updating the pointer to point past
250  * the consumed character. This will consume two encoded UTF-16 code
251  * points if the character is encoded as a surrogate pair. Also, if
252  * this function returns false, then the given pointer may only have
253  * been partially advanced.
254  */
255 ALWAYS_INLINE
IsValidPartOfMemberNameUtf8(const char ** pUtf8Ptr)256 static bool IsValidPartOfMemberNameUtf8(const char** pUtf8Ptr) {
257   uint8_t c = (uint8_t) **pUtf8Ptr;
258   if (LIKELY(c <= 0x7f)) {
259     // It's low-ascii, so check the table.
260     uint32_t wordIdx = c >> 5;
261     uint32_t bitIdx = c & 0x1f;
262     (*pUtf8Ptr)++;
263     return (DEX_MEMBER_VALID_LOW_ASCII[wordIdx] & (1 << bitIdx)) != 0;
264   }
265 
266   // It's a multibyte encoded character. Call a non-inline function
267   // for the heavy lifting.
268   return IsValidPartOfMemberNameUtf8Slow(pUtf8Ptr);
269 }
270 
IsValidMemberName(const char * s)271 bool IsValidMemberName(const char* s) {
272   bool angle_name = false;
273 
274   switch (*s) {
275     case '\0':
276       // The empty string is not a valid name.
277       return false;
278     case '<':
279       angle_name = true;
280       s++;
281       break;
282   }
283 
284   while (true) {
285     switch (*s) {
286       case '\0':
287         return !angle_name;
288       case '>':
289         return angle_name && s[1] == '\0';
290     }
291 
292     if (!IsValidPartOfMemberNameUtf8(&s)) {
293       return false;
294     }
295   }
296 }
297 
298 enum ClassNameType { kName, kDescriptor };
299 template<ClassNameType kType, char kSeparator>
IsValidClassName(const char * s)300 static bool IsValidClassName(const char* s) {
301   int arrayCount = 0;
302   while (*s == '[') {
303     arrayCount++;
304     s++;
305   }
306 
307   if (arrayCount > 255) {
308     // Arrays may have no more than 255 dimensions.
309     return false;
310   }
311 
312   ClassNameType type = kType;
313   if (type != kDescriptor && arrayCount != 0) {
314     /*
315      * If we're looking at an array of some sort, then it doesn't
316      * matter if what is being asked for is a class name; the
317      * format looks the same as a type descriptor in that case, so
318      * treat it as such.
319      */
320     type = kDescriptor;
321   }
322 
323   if (type == kDescriptor) {
324     /*
325      * We are looking for a descriptor. Either validate it as a
326      * single-character primitive type, or continue on to check the
327      * embedded class name (bracketed by "L" and ";").
328      */
329     switch (*(s++)) {
330     case 'B':
331     case 'C':
332     case 'D':
333     case 'F':
334     case 'I':
335     case 'J':
336     case 'S':
337     case 'Z':
338       // These are all single-character descriptors for primitive types.
339       return (*s == '\0');
340     case 'V':
341       // Non-array void is valid, but you can't have an array of void.
342       return (arrayCount == 0) && (*s == '\0');
343     case 'L':
344       // Class name: Break out and continue below.
345       break;
346     default:
347       // Oddball descriptor character.
348       return false;
349     }
350   }
351 
352   /*
353    * We just consumed the 'L' that introduces a class name as part
354    * of a type descriptor, or we are looking for an unadorned class
355    * name.
356    */
357 
358   bool sepOrFirst = true;  // first character or just encountered a separator.
359   for (;;) {
360     uint8_t c = (uint8_t) *s;
361     switch (c) {
362     case '\0':
363       /*
364        * Premature end for a type descriptor, but valid for
365        * a class name as long as we haven't encountered an
366        * empty component (including the degenerate case of
367        * the empty string "").
368        */
369       return (type == kName) && !sepOrFirst;
370     case ';':
371       /*
372        * Invalid character for a class name, but the
373        * legitimate end of a type descriptor. In the latter
374        * case, make sure that this is the end of the string
375        * and that it doesn't end with an empty component
376        * (including the degenerate case of "L;").
377        */
378       return (type == kDescriptor) && !sepOrFirst && (s[1] == '\0');
379     case '/':
380     case '.':
381       if (c != kSeparator) {
382         // The wrong separator character.
383         return false;
384       }
385       if (sepOrFirst) {
386         // Separator at start or two separators in a row.
387         return false;
388       }
389       sepOrFirst = true;
390       s++;
391       break;
392     default:
393       if (!IsValidPartOfMemberNameUtf8(&s)) {
394         return false;
395       }
396       sepOrFirst = false;
397       break;
398     }
399   }
400 }
401 
IsValidBinaryClassName(const char * s)402 bool IsValidBinaryClassName(const char* s) {
403   return IsValidClassName<kName, '.'>(s);
404 }
405 
IsValidJniClassName(const char * s)406 bool IsValidJniClassName(const char* s) {
407   return IsValidClassName<kName, '/'>(s);
408 }
409 
IsValidDescriptor(const char * s)410 bool IsValidDescriptor(const char* s) {
411   return IsValidClassName<kDescriptor, '/'>(s);
412 }
413 
PrettyDescriptor(Primitive::Type type)414 std::string PrettyDescriptor(Primitive::Type type) {
415   return PrettyDescriptor(Primitive::Descriptor(type));
416 }
417 
418 }  // namespace art
419